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Abstract— The paper presents an approach to applying
a classifier ensemble to identify human body gestures, so
as to control a robot to write Chinese characters. Robotic
handwriting ability requires complicated robotic control
algorithms. In particular, the Chinese handwriting needs
to consider the relative positions of a character’s strokes.
This approach derives the font information from human
gestures by using a motion sensing input device. Five
elementary strokes are used to form Chinese characters,
and each elementary stroke is assigned to a type of human
gestures. Then, a classifier ensemble is applied to identify
each gesture so as to recognize the characters that gestured
by the human demonstrator. The classier ensemble’s size
is reduced by feature selection techniques and harmony
search algorithm, thereby achieving higher accuracy and
smaller ensemble size. The inverse kinematics algorithm
converts each stroke’s trajectory to the robot’s motor
values that are executed by a robotic arm to draw the
entire character. Experimental analysis shows that the
proposed approach can allow a human to naturally and
conveniently control the robot in order to write many
Chinese characters.

I. INTRODUCTION

The robotic writing ability is an interesting research

field, which focuses on how to automatically control

robotic actuators to write complex characters from

single strokes [1]. It is very difficult for robots to draw

Chinese characters containing human-like handwriting

features. This is because handwriting, being a typical

human motion, is a highly demanding task regarding

kinematics and dynamics[2]. Moreover, robotic writing

needs to consider a redundant number of degrees-of-

freedom (DOFs) [3]. Additionally, Chinese character

writing is much more complicated than English writing,

this is because robots may require to contain more

DOFs and to perform more postures for writing Chinese
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characters. Therefore, writing Chinese can be used as a

“test bed” to evaluate the flexibility and control methods

of various robots.

Robotic writing Chinese characters requires robots

to obtain character font information. A number of

current approaches usually applied direct programming

methods to embed fonts database inside robot’s con-

trol systems. However, if human users draw a non-

predefined set of objects such as an artistic free drawing,

the current approach cannot support this ability. There-

fore, imitation of human gestures supplies free drawing

scenario for robotic writing. On the other hand, the

imitation of human gestures reduces the enhancement

complexity of robot’s control algorithms. Because the

imitation is considered as an effective learning method

to transfer skills and knowledge from human beings to

robots [4][5]. Especially, it is very crucial for robots to

acquire new skills without the requirements of repeated

training or complex programming [6]. Therefore, we

believe that applying human gestures to control robotic

writing will reduce the task’s complexity. Also, human

users can use a convenient and natural way to control

robots to write the characters that human users demand

to write.

In order to guide a robot to write Chinese characters

by using human’s gestures, in this paper we focus on

the aspect of mapping the motion parameters of the

relevant body parts, e.g. the gesturing hand or the upper

body including shoulder and arms, to a gesture or action

category. A number of different classifier methods to

classify various types of gestural expressions – ranging

from arm gestures to full-body motion – have been

reported in the literature [7][8]. Several time-series data

analysis methods, ie. “Dynamic Bayesian Networks”

[9] and “Hidden Markov Models” [10][11] are usually

applied to solve the problem of recognising variable

length trajectories of human gestures.

However, to improve the recognition accuracy rate

and to simply the recognition system, the work inspired

by [12] addresses the problem by classifying trajecto-

ry segments comprising a fixed number of sampling

points of a human gesture. In addition, the “Kinect”
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motion sensing input device is able to capture human

body’s skeleton information. The information is then

converted to an array of hand trajectory data. Also,

for the recognition accuracy, we make use of classifier

ensembles for recognition, since the classifier ensembles

are known to usually improve recognition performance

in a wide range of pattern recognition tasks [13]. One

Chinese character can be dissembled to a number of

elementary strokes. In this study, 5 classes of human

gestures are assigned to 5 types of strokes. A human

demonstrator performs diverse poses to represent the

corresponded strokes, so as to implement the entire

character. A 3 DOF robotic arm receives the captured

pattern, and kinematic algorithms are used to convert

the stroke trajectories to the arm’s joint values; and then,

completes the writing task.

The rest of this paper is organized as follows: Sec-

tion II briefly introduces the background of classifier

ensemble and robotic writing. Section III describes the

main implementation issues and an experimental robot

system. Section IV presents the experimental results and

discusses their implications. Section V concludes the

paper and points out future research.

II. CLASSIFIER ENSEMBLE AND ROBOTIC WRITING

The core technique of the robotic writing ability is

transforming one character’s strokes to robotic motor

values; then, robotic actuators use the motor values

to act. Therefore, the problem of robotic writing is

required to understand how to acquire a character’s

font information. Several works used commercial front

libraries directly [14], [15]. Other works applied im-

age processing technologies to extract character’s font

information from copybooks or human’s handwritings

[16][17]. The above two methods have the advantage

of using predefined font databases to plan a robot

actuator’s trajectories, but are not sufficiently flexible

to generate the arbitrary curves needed in handwriting

or drawing. In a number of studies, robots can only

write Chinese character’s strokes rather than write an

entire Chinese character; these studies require human

engineers to disassemble each Chinese character into

different strokes, and assign the stroke positions to

the robots to finish the writing [1][18][19][20][21][22].

These approaches can create high quality robotic writ-

ing; however, they are inconvenient in making the

robots write new characters. Additionally, only a few

works have used data gloves and brain-machine inter-

face devices to collect writing gesture information, and

then convert this information to robotic joint values

[23][24][25]. This category of approach inspired us to

consider if human gestures could directly control robots

to write any characters that a human wants to write.

However, the cost of such devices is high; therefore,

we plan to find a cost-effective alternative “Kinect” to

capture human gestures.

III. THE APPROACH
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Fig. 1. The flowchart of the robotic handwriting

Figure 1 demonstrates the working flowchart of the

robotic handwriting approach. The approach consists of

two parts: 1) implement classifier learning and ensemble

reduction; and 2) use the reduced classifier ensemble

to identify the gestures that are performed by a human

demonstrator and write the identified strokes. In the first

part, a human demonstrator repeats to gesturing five

predefined poses in front of the motion sensing input

device “Kinect”. Only the skeleton information of the

human’s poses are captured by the Kinect. Thus, the

gestures are presented by 2 dimensional point arrays.

These point arrays are kept into a temporary dataset;

then, the dataset is applied to train a classifier ensemble.

A new ensemble reduction method, implemented by

feature selection and harmony search techniques, is

applied to train the classifier ensemble, rather than

conventional ensemble approach. After the training, a

size reduced classifier ensemble with high recognition

accuracy is obtained, and ready for the second part.

In the second part, the human demonstrator does

not need to repeat to gesturing the predefined patterns.

The demonstrator merely behaves each stroke’s gesture

in sequence. The Kinect device converts the gesture

trajectories to skeleton data that are directly sent to

the reduced classifier ensemble. Since the classifier

ensemble has been trained in the first part, the ensemble

is able to generate the stroke type that is correspondent

to the gesture. The stroke pattern module transforms the

stroke type and the stroke’s position to the robotic arm’s

joint values. Then, the robot executes the joint values

to write the stroke. All the modules listed in Figure 1

are illustrated in the following sub-sections.
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A. Gesture Sampling

When the human demonstrator gestures a character

by his/her right arm, only straight arm gestures are

recognized and processed to generate the character’s

strokes. However, in order to start a new stroke in a

different position, the demonstrator must bend his/her

arm. Therefore, we build an algorithm to determine

whether the arm is bent or straight. In addition, the

demonstrator also controls the robot to dip in ink and

drag the canvas, thus, several of the left arm’s gestures

are set to support the above two functions.

Right Shoulder

Right Elbow

Right Wrist

b

S1

S2

L1

L2

Fig. 2. The gesture configuration

Figure 2 illustrates the arm gesture determination

algorithm. The picture is mirrored by the Kinect. The

solid line with dark blue stands for the demonstrator’s

right arm. “L1” is the distance between his/her right

shoulder and his/her elbow. “L2” is the distance from

the elbow to the wrist. The dash line indicates the

distance between the demonstrator’s shoulder and the

right wrist. “b” is a floating point within the dash line;

its position is determined in an appropriate ratio based

on the lengths of “L1” and “L2”. Thus, we have:

bi = shoulderi + (wristi − shoulderi)
L1

L1 + L2
(1)

where: i has 1, 2 and 3, which stand for the values

in x, y and z axes; vectors shoulder and wrist are

the positions of the shoulder and the wrist, respectively.

Thus, by using Equation 1, we can obtain the x, y, and

z coordinates of point b. Then, the distance d between

point b and the right elbow is calculated by:

d =

√

√

√

√

3
∑

i=1

(bi − elbowi)2 (2)

The value of d is used to determine whether the arm

is bent or not. If d is less then a threshold δmin, the

state of the arm is straight. If d is larger than another

threshold δmax, the arm is bent. Otherwise, the state

inherits the arm’s previous state.

The Kinect senses the right wrist position values

wrist(x, y, z) of the demonstrator. The trajectory cap-

ture module uses wrist(x, y) values only, because our

robot writes characters on the two-dimensional canvas;

thus, the depth value is redundant. However, during the

phase when the Kinect senses the wrist positions, the

Kinect may lost the wrist; therefore, several unexpected

large changes of the wrist positions may occur. These

unexpected changes terribly disturb the stroke’s shape.

In this case, we apply the amplitude-limiting filtering

algorithm to filter the unexpected changes. We calculate

the distance dist between two consecutive positions

(pospre and poscur). If dist is less than a amplitude

δamplitude, the current position will be kept; otherwise,

the current position is discarded.

A B C

D E

Fig. 3. The examples of human gesture categories

A set of five emblematic command gestures are cho-

sen to present five elementary Chinese strokes. The five

gesture examples are shown in Figure 3’s five pictures.

The gestures are: 1) Horizontal stroke gesture (Picture

A in Figure 3): Raise the forearm to approximately

shoulder height, then perform a horizontal waving mo-

tion. 2) Vertical stroke gesture (Picture B): Raise the

arm to head height, and then wave vertically parallel to

the body. 3) Left falling down stroke gesture (Picture

C): Raise forearm towards head height, then push hand

downwards to the left side of the body. 4) Right falling

down stroke gesture (Picture D): Raise forearm towards

head height, then push hand downwards to the right

side of the body. 5) Fold folder stroke (Picture E): This

gesture is a combination of the horizontal stroke and

the vertical stroke. When the horizontal stroke has been

gestured, vertically move the arm downwards.

For training the classifier ensemble, the output of this

module consists of a gesture’s trajectory point vector
−→
P and the stroke type Tstroke that is assigned to

the gesture. Hence, the data structure of the output is

presented as Dtraining(
−→
P , Tstroke). Each point vector

−→
P contains 10 points, and each point is 2-dimensional

with x, y. Thus, the point vector has 20 dimensions.
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In addition, the stroke type contains only 1 element.

Therefore, each training data D(
−→
P , Tstroke) consists

of 21 elements in total. On the other hand, when the

classifier has been built, the module’s output will not

contain the stroke label any more. Thus, the output

during this term is presented as Dworking(
−→
P ), and has

20 elements.

B. Classifier Ensemble Reduction using Feature Selec-

tion Techniques

The classifier ensemble receives human gestures,

and gives the predictions of the gestures. Before the

ensemble produces predictions, a reduction process is

invoked. The feature selection technology is applied

to handle the reduction process. This idea is based on

the same concepts of classifier ensemble reduction and

feature selection. In addition, harmony search algorithm

exhibits simplistic structure and powerful performance,

so that the algorithm is applied to solving feature

selection problems.

Fig. 4. The flowchart of the classifier ensemble reduction

Fig. 4 illustrates the four key steps of the classifier

ensemble reduction approach used in this paper.

1) The first step is to form a diverse base classi-

fier pool. Both bagging and random subspaces

methods can be used to build the base classifiers.

In this paper, a mixed classifier scheme is im-

plemented. By selecting classifiers from different

schools of classification algorithms, the diversity

is naturally achieved through the various founda-

tions of the algorithms themselves.

2) Once the base classifiers are built, their decisions

on the training instances are also gathered. For

supervised feature selections methods, a class

label is required for each training sample, the

same class attribute is taken from the original

data set, and assigned to each of the instances. A

new dataset is therefore constructed, each column

represents an artificially generated feature, each

row corresponds to a training instance, the cell

then stores the transformed feature value.

3) A new feature selection algorithm “Feature S-

election with Harmony Search”(HSFS) [26] is

then performed on the artificial dataset, evaluating

the emerging feature subset using the predefined

subset evaluator. HSFS optimizes the quality of

discovered subsets, while trying to reduce subset

sizes. When harmony search algorithm termi-

nates, its best harmony is translated into a feature

subset and returned as the feature selection result.

4) Once the classifier ensemble is constructed, new

objects are classified by the ensemble members,

and their results are aggregated to form the final

ensemble decision output.

In the training part, this module will not give any

output, but only receives Dtraining(
−→
P , Tstroke) from

the Gesture Sampling Module. However, in the working

part, the module receives Dworking(
−→
P ) and the gives

its prediction result R(stroke) to the Stroke Generation

module.

C. Stroke Generation

The Stroke Generation module is response to use

the identified gestures to produce their stroke trajec-

tories. The trajectories of the five elementary strokes

are designed and implemented before the module starts

to work. The vertical, the horizontal and the fold

strokes are implemented straight line. However, the left

falling stroke and the right falling stroke requires a

certain level of radian. Therefore, the parabola fitting

algorithm is applied to generate such two trajectories.

Besides the stroke type, the parabola fitting algorithm

requires extra two positions to locate each stroke’s

position in the canvas. The the start point position of

a stroke Ps(xstart, ystart) and the end point position

Pe(xend, yend) are used for the two positions.

Note that: the human gesture trajectories
−→
P cannot

be used as Ps(xstart, ystart) or Pe(xend, yend) directly.

We need to apply the following equations to convert:















xps/e
= 20 ·

x−→
P
− H

2

H

yps/e
= 20 ·

y−→
P
+H

H

(3)

where: x−→
P

and y−→
P

are the human gesture trajectory’s

data; xps/e
and yps/e

are the stroke position in the

canvas; s/e indicates the position is belonged to the

start point or the end point; H is a scale parameter that

is determined by the robotic arm’s configuration; H is

set to 480 in this paper.
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The stroke generation method of the five strokes are

introduced as follows: Set Ps(xstart, ystart) as the start

point position of a stroke, and set Pe(xend, yend) as the

end point position,

1) Horizontal Stroke: move the pen from the start

point Ps to the end point Pe directly.

2) Vertical Stroke: the same procedure with the

horizontal stroke, move the pen from the start

point Ps to the end point Pe directly.

3) Fold Stroke: this stroke is divided into compo-

nents. The robot arm use the horizontal stroke

pattern before the arm moves the inflection point

Pi of the fold stroke, and then, the arm switches

to the vertical stroke pattern. The x value of the

end point Pe and the y value of start point Ps

compose the inflecting point position, thus, the

inflecting point is Pi(xend, ystart). Therefore, the

entire trajectory is from Ps via Pi to Pe

4) Left Falling Stroke: The parabola fitting algorithm

is applied to generate the trajectory of the left

falling stroke. The equation of the parabola fitting

is:

y = ax2 + bx+ c, x ∈
[

xstart, xend

]

(4)

where: a, b and c are the three parameters defining

a parabola’s shape. Merely Ps and Pe are not

enough for calculating a, b and c; thus, Pi in the

fold stroke is required for the calculation.











a = ystart−yend

(xstart−xend)2

b = −2xend(ystart−yend)
(xstart−xend)2

c = yend +
b2

4a

(5)

Then, 8 points between Ps and Pe are selected to

fit the stroke trajectory. The 8 points are represent-

ed as (x1, y1), (x2, y2), · · · , (x8, y8). Equation 6

defines the x values of the 8 points.

xk = xstart + k
xend − xstart

10
(6)

Then, bring xk to Equations 4 to calculate yk.

5) Right Falling Stroke: The entire calculation proce-

dure of this stroke is identical with the left falling

stroke’s.

After the parabola fitting process, each human gesture

trajectory Dtraining(
−→
P ) has been converted to an array

of points −→s (xk, yk), k ∈ [1, 9]. The array is sent to

the Robotic Arm Control module, the inverse kinematic

algorithm is applied to transform the array to the robotic

arm’s joint values. The transformation and the control

algorithm are introduced in the following section.

D. Robotic Arm Control

The robotic arm cannot access the stroke trajectories

directly. The arm only executes joint value commands.

In this case, the reverse kinematic algorithm is required

to transform the stroke trajectories to the arm’s joint

values.
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Fig. 5. The configuration of the robotic arm

The top picture in Figure 5 shows the experimental

robotic arm setup. Three joints, which are labeled as

J1, J2, and J3, are used in the work. In addition, a2
presents the distance between the second joint and the

third joint; a3 indicates the distance between the third

joint and the top of the brush.

The bottom picture in Figure 5 illustrates the coor-

dinate systems of the three joints and the mechanical

parameters. By using D-H method and the inverse

kinematics formula, we obtain the following equations

to calculated θ1, θ2 and θ3. Note that z is is the distance

between the brush and the shoulder, xk and yk are the

trajectory’s x, y components.

z =
a2 + a3 −

√

a22 + a23
2

+
√

a22 + a23 (7)

θ1 = arctan
z

xk

(8)

θ3 = arccos
(z cos θ1 + xk sin θ1)

2 + y2k − a22 − a33
2a2a3

(9)

̺ = a3 sin θ3

√

a22 + a23 + 2a2a3 cos θ3 − y2k (10)

θ2 = arcsin
a2yk + a3 cos θ3yk + ̺

a22 + a23 + 2a2a3 cos θ3
(11)

where: a2 is 9.5mm and a3 is 43.5mm. Thus, we are

able to obtain the values of θ1, θ2 and θ3 by using

Equations. 8, 11 and 9.

E. The Experimental System

Figure 6 shows the experimental system. The system

contains a robotic arm with 6 DOFs. The arm is

mounted on a workspace, and 3 DOFs of the arm

are used to perform writing movements. A brush pen

is mounted on the top of the arm. This setup allows
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Fig. 6. The experimental system

the robotic arm to have enough DOFs to act in a 3-

dimensional environment. Each rotational joint of the

robot arm has a motor driver and also an encoder that

senses the motor’s position. A writing board facing the

arm is fixed vertically. A canvas is installed on the

board. The canvas will turn to black if water touches

the canvas, and the black area will disappear when the

canvas is dry. A canvas motor drags the canvas when

the robot completes one character, so that the robots

can always write a new character in the blank area of

the canvas.

Both the robot and the canvas motor are controlled

by the hardware controller AVR computer, which is

placed near the arm. A small bottle of water is used

as ink. The arm puts the brush into the bottle when the

human demonstrator sends a command. A Kinect device

is set up separately to face the human demonstrator. In

our experiments, the Kinect’s sampling rate is about 30

frames per second, and its image output resolution is

320× 240.

IV. EXPERIMENTATIONS

Robot Arm System

Human Demonstrator

Kinect

Graphic Interface

Fig. 7. The experimental setup

Figure 7 illustrates the positions of the human demon-

strator, the user interface, the Kinect device and the

robotic arm system. The demonstrator stands within

the detection range of the Kinect. A laptop computer

running the graphic user interface is placed facing to

the demonstrator, so that, the demonstrator is able to

adjust his gestures. The robotic arm system is placed

TABLE I

NUMBER OF SAMPLING GESTURES

Strokes Hori. Vertical Left Right Fold

Instances 220 217 208 219 206

separately. For the software implementation, an algo-

rithm computer is for the gesture sampling, the classifier

ensemble reduction, and the stroke generation modules.

The robotic arm is driven by an AVR computer. The

programs in the algorithm computer are developed by

using the C# programming language and the “Mi-

crosoft Kinect SDK 1.5”; the robotic control program

is written in C++.

The experimental procedure is also divided into t-

wo parts: 1) Classifier ensemble training part, and 2)

Human gesture guided robotic writing part. In Part

1, five persons join the experiment to perform the

five predefined gestures. Each person performs about

40 times for each gesture. The captured dataset are

used to train the classifier ensemble. In Part 2, only

one human demonstrator stands in front of the Kinect

device to demonstrate a Chinese character with his/her

right arm. the demonstrator adjusts his/her gestures

via the interaction interface window. Once the arm

receives the stroke’s trajectories, the robotic arm starts

to move. Therefore, the arm’s writing actions have

a very short delay. Usually, when the demonstrator

finishes demonstrating a character’s strokes, the robot

has almost completed the writing.

A. Reduction Performance for Gesture Classification

Table I lists the number of the samples of the five

elementary gestures. In order to extend the classifier’s

generalization, the gestures are performed by 5 different

persons. Each category consists of more than 200 sam-

ples. Hence, the entire training dataset contains more

then 1000 samples in total.

To demonstrate the capability of the proposed CER

framework, a number of experiments have been carried

out. The main ensemble construction method adopted

is the bagging approach, and the base classification

algorithm used is C4.5. The correlation-based feature

selection algorithm (CFS) is employed as the feature

subset evaluator. The HSFS algorithm then works to-

gether with the various evaluators to identify quality

feature (classifier) subsets. In order to show the scala-

bility of the framework, the base ensembles are created

in three different sizes, 50, 100, and 200.

Table II summarizes the obtained three sets of results

for CFS. After applying CER, as compared against the

results of using: 1) the base algorithm itself, 2) the full

base classifier pool, and 3) randomly formed ensembles.
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Several general observations can be drawn across all

three setups. First of all, the prediction accuracies

of the constructed classifier ensembles are universally

superior than that achievable by a single C4.5 classifier.

The accurate rates of the three types of C4.5 are less

than 90%. Most of the datasets that revealed the most

performance increase are either large in size or high

in dimension. This confirms the benefit of employing

classifier ensembles. All feature selection techniques

tested demonstrate substantial ensemble size reduction,

showing clear evidence of dimensionality reduction.

Based on the observation of the table, in order to use

the smallest ensemble size to achieve relatively good

performance, the ensemble size is set as 30. After

the testing the classifier ensemble’s performance, the

experiment switches to Part 2.

TABLE II

C4.5 BASED ENSEMBLE CLASSIFICATION ACCURACY RESULT

COMPARISON

CFS Random Full
Pool Size Acc. Size Acc. Size Acc. Size C4.5

50 91.40 22.2 89.53 10 92.06 50 87.38
100 91.50 28.2 90.84 20 91.21 100 86.73
200 91.31 30.4 91.21 40 91.04 200 87.20

B. Performance of Robotic Writing

Horizontal stroke Vertical stroke

Left falling stroke Right falling stroke

Horizontal and fold stroke

Fig. 8. The robotic writing results of the typical strokes

Figure 8 demonstrates the robot’s writing results

of the predefined five strokes. To easily compare the

writing quality, the print versions are listed in the

left column. The writing result of the horizontal and

the vertical stroke are satisfactory. However, the two

trajectories are not straight enough. We believe the

situation is caused by the limitations of the robotic

arm, which cannot give very high repeated positioning

accuracy. The left falling stroke’s quality is excellent;

the its entire trajectory is smooth, and the shape is

very close to the print version’s. The results of the

right falling stroke and the fold stroke are not good

enough. In particular, there exists a gap between the

writing result and the print version: the robot arm does

not execute a horizontal drawing when the arm writes

the tail part of the trajectory. This gap might be solved

by improving the trajectory fitting algorithm. As a

summary, the system’s classifier successes to recognize

the human demonstrator’s gesture, and the stroke pattern

is able to generate accurate stroke trajectories.

Character 1

Character 2

Character 3

Fig. 9. The writing results

Figure 9 shows the writing results of three simple

Chinese characters. The first and the third characters

contains three strokes, and the second has four in total.

The characters in the left column of the figure are the

printed style of the Chinese characters. The characters

in the right column are generated by the robot. This fig-

ure shows that the Kinect device successfully captures

the human action sequence, since these three charac-

ters consist of simple structures and slightly-changed

strokes. For the those sequential gesture trajectories,

the classifier ensemble algorithm also produces high

recognition accuracy, each stroke’s type of the charac-

ters is precise. In addition, the layouts of the strokes

are exactly correct; especially, in the third character, the

starting and the end positions of each stroke are almost

in the same position. This indicates that the approach’s

trajectory conversion algorithm works properly. Also,

compared with characters’ printing style, the effects of

the robot’s writing are good.

V. CONCLUSIONS

This paper has presented a human gesture guided

approach to robotic Chinese character writing. The

approach is achieved by (1) using a Kinect device

to obtain human gesture’s information; (2) applying

classifier ensemble algorithms to recognize captured tra-

jectories; (3) employing feature selection with harmony

search method to optimize the recognition accuracy; (4)
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invoking parabola fitting algorithm to generate stroke

trajectories; and (5) using inverse kinematic algorithm

to obtain robotic joint parameters. The observations

from the experiments demonstrate that using human

gesture can conveniently transform Chinese character

font information to the robot arm; the classifier en-

semble is able to recognize the human gestures with

high accuracy; and the robot system is able to easily

write many simple Chinese characters without complex

calculations and image processing. In addition, the writ-

ing quality is good, especially, each stroke’s position is

exactly correct.

In the present work, we only use human arm gestures

to obtain character’s information. In our future work,

we propose to send more information of a human’s

gestures to the robot system, such as wrist orientation;

thereby increasing our robotic ability to write charac-

ters that are more human-like. Also, the robot only

follows optimized stroke trajectories to write. In our

future work, we will focus on building robotic learning

algorithms that allows the robot to gradually learn better

writing skill through autonomous attempt movements

and human-robot interactions. Furthermore, the current

stroke trajectories are generated by the fitting algorithm,

we will also use human gesture to guide the robot to

produce the stroke trajectories.
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