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Fuzzy C-Means Clustering with Weighted Energy

Function in MRF for Image Segmentation
Chi Wang, Jia Liu, Maoguo Gong, Licheng Jiao, and Jing Liu

Abstract—In this paper, we present a new Markov Random
Field based FCM image segmentation algorithm. A new energy
function is proposed to utilize the spatial and contextual infor-
mation simultaneously. In the proposed energy function, we use a
weighted distance to reflect the different effects of neighborhood
pixels. By using the new energy function, the new algorithm has
a better performance in noise-corrupted images. Experimental
results on real and synthetic images show our method is effective.

I. INTRODUCTION

Image segmentation is a traditional topic in image process-

ing and is of great importance. After decades of development,

many powerful algorithms have been proposed. Segmentation

algorithms divide the given image into several parts by their

intensity, color, texture or other property. A great number of

them are based on the Fuzzy c-means algorithm and proved to

be one of the main classes of algorithm on image segmenta-

tion. On noise-free images, the conventional FCM converges

fast and outputs in an excellent precision. But if noise is added,

the segmentation result would deteriorate. This is mainly

because that the original FCM does not consider context

information. Another reason for the noise susceptibility is the

using of the Euclidean measure which is sensitive to outliers.

Many algorithms introduced regularization terms to include

contextual information. Some of them use kernel measure

instead of the Euclidean one and are proved to be more

robust to noise. To name a few, FCM_S [1] first introduced

spatial neighborhood terms. Chen et al. [2] proposed two

variants of the FCM_S. Zhang et al. [3] proposed kernel

distance measure for the FCM data space. Fast Generated

FCM (FGFCM) [4] uses a sum image based on a non-

linearly weight which consists of both spatial and intensity

information. But the FGFCM have two defects. The first one

is that the algorithm does not apply on the original image so

the original information is not fully used. The second one is

that it needs complicated parameter tuning. The Fuzzy Local

Information C-Means algorithm, proposed by Krinidis et al.

[5], solved these problems by introducing a regularize term

called fuzzy factor. This factor considers both spatial distance

between pixels and intensity differences with the clustering

center.
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Recently, we proposed two powerful derivatives of the origi-

nal FLICM: the RFLICM [6] and the KWFLICM [7]. They are

proved to have a better performance than their predecessors.

The first one we proposed, the RFLICM, improves the noise

robustness of FLICM by introducing a coefficient concerning

the intensity property of the context. The KWFLICM improves

the RFLICM by simultaneously concerning the contextual

dependencies and the kernel distance of a specific neighbor.

We noticed that Markov Random Field (MRF) can utilize

neighborhood information effectively. Geman and Geman [8]

first introduced MRF in image processing by making an

analogy between images and statistical mechanics systems.

They also mentioned the equivalence between MRF and Gibbs

Random Field which makes MRF computable. A comprehen-

sive introduction to MRF in image processing can be found

in [9].

Because of the effectiveness of MRF in utilizing contextual

information, some powerful MRF-based segmentation meth-

ods have been proposed. Using the idea from the mean field

approximation principle in statistical physics [10], Celeux et

al. [11] proposed an EM-like algorithm to infer parameters in

Hidden Markov Random Field. By using the Kullback-Leibler

divergence information, Chatzis [12] introduced the MRF prior

into fuzzy objective function called HMRF-FCM. This method

has a good noise robustness and segmentation precision.

In this study, in order to further exploit the MRF-based FCM

algorithm, a new energy function is proposed which introduces

a weighted distance between central pixel and the neighbor

of it. Theoretical analysis is given and experimental results

verified its excellent performance.

The remainder of this paper is organized as follows: Section

II introduces the MRF-based FCM framework and our im-

provement on it. Section III considers the details in our novel

energy function. Section IV presents experimental results

and comparisons between our methods and competitive ones.

Section V summarizes the whole paper.

II. MOTIVATION AND METHOD

Let X denotes an image which is hoped to be divided into

clusters given by set C. The standard FCM algorithm is the

minimization process of the following objective function

Jij =
∑

i∈C

∑

j∈X

um
ijdij (1)

where dij is the dissimilarity function.m is a parameter called

fuzzifier.U = {uij} is called membership matrix satisfying
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U ∈







uij ∈ [0, 1] |
∑

i=1

uij = 1 and 0 <

N
∑

j=1

uij < N, ∀i, j







(2)

where N is the number of pixels. Using Lagrange multipli-

ers, the objective function can be minimized iteratively. The

FLICM algorithm introduces a fuzzy factor to regularize the

above objective function. Many later algorithms are based

on the FLICM and are proved to have good performance.

However, there are some disadvantages of the FLICM-based

segmentation algorithms. These algorithms are time consum-

ing because of the complicated regularization term. Moreover,

a recent comment on FLICM [13] reveals that it cannot

converge to a local minima and the energy function actually

cannot be minimize iteratively. As mentioned in Section I,

MRF based FCM serves as a good way to model the grey

level relation between pixels. Here comes a brief introduction

to MRF.

An image I is considered as a field and each pixel j is an

element. According to the Hammersley-Clifford theorem [8],

a field is a Markov Random Field if and only if the following

equation is satisfied

p(xj | xI−{j}) = p(xj | x∂j
), ∀j ∈ I (3)

where ∂j denotes the neighborhood of the pixel j. And

I − {j}means the pixels other than j. This equation is to

indicate that the distribution of a pixel depend only on its

neighbor. The theorem shows the equivalence between MRF

and Gibbs Random Field. So the joint probability distribution

can be given by

p(x | β) ∆
= Z(β)−1 exp[−E(x | β)] (4)

where Z(β) is the partition function given by

Z(β) =
∑

x∈C

exp[−E(x | β)] (5)

where E is the energy function and β is a parameter called

the inverse supercritical temperature.

Here we have a computable expression of MRF. The defi-

nition and utilization of the energy function will be discussed

in Section III.

The FCM objective function is modified to introduce prob-

abilistic distributions. The FCM derivative proposed in [14] is

satisfying. The K-L divergence is used to compute the distance

between two distributions. Thus, the objective function is as

follows

Jij =
∑

i∈C

∑

j∈X

uijdij(xj − vi) + λ
∑

i∈C

∑

j∈X

uij log(
uij

πij

) (6)

where dij = −log[pki (xj | µk
i , σ

k
i )] , λ= 0.1. The other

parameters will be introduced in the following algorithm

procedure.

The MRF-based FCM image segmentation algorithm:

1. Using the standard FCM algorithm, i.e. the equation (1)

to initialize our membership matrix. Let k = 1.

2. Compute the energy function of each pixel. (see Section

III)

3. Minimize the following function (7) to get the parameter

βk.

βk = argmax
β

|C|
∑

i=1

N
∑

j=1

log p(xj = i | x∂j
;βk) (7)

4. Compute the point-wise prior given by

πk
ij =

exp(−Ek
ij(x | βk))

∑|C|
h exp(Ek

hj(x | βk))
(8)

5. Compute the conditional probability by (9) and the

distance matrix given by (10), respectively

pki (xj | µk
j , σ

k
i ) =

1

σk
i

√
2π

exp[−
(xj − µk

j )
2

(2σk
i )

2
] (9)

dkij = − log[pki (xj | µk
i , σ

k
i )] (10)

6. Compute the membership matrix by

uk+1
ij =

πk
ij exp(−dkij)

∑|C|
h=1 πhj exp(−dkhj)

(11)

7. Compute the objective function and compare the differ-

ence of its value given by

∣

∣Jk+1
ij − Jk

ij

∣

∣ < TJ (12)

before changing the loop ending flag. TJ is the converge

threshold.

8. If the loop continues, compute the mean and standard

deviation of the conditional distribution which is Gaussian

distribution given by



















µk+1
i =

∑
j∈X uk

ijxj
∑

j∈X uk
ij

σk+1
i =

√∑
j∈X uk

ij(xj−µk+1

i )2
∑

j∈X uk
ij

(13)

Then, k = k + 1, return to 2.

III. DESCRIPTION OF THE PROPOSED ENERGY FUNCTION

As mentioned in the previous sections, the energy function

is critical to our algorithm. In order to improve the noise

resistance ability, there are two important points. The first one

is the way that the neighborhood information is derived. The

algorithm should compute the data that represents the corre-

lation between pixels in a certain neighborhood system. The

second one is the way the function utilize the neighborhood

information which reflects the effectiveness of the algorithm in

dealing with outliers. So the description of our energy function

is divided into two parts. Namely, the weighted distance and

the introduction of the distance into our energy function. The

weighted distance consists of two different parts. The first part

concerns the Euclidean distance between each pixel in the
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neighborhood system and the central pixel. So the first part

can be obtained by

Ws =
1

dij + 1
(14)

Note that this dij is Euclidean distance, which is different

from the one in (10). Ws denotes the spatial correlation

between the central pixel and the other neighborhood pixels

which have the same class with the central one. The first part

does not consider the intensity values around the central pixel.

So we have the second part of our weighted distance.

Wg denotes the property of the entire neighborhood. In

order to compute Wg , we first compute the deviation mean

ratio Cj .

Cj =
var(x)

x̄
(15)

where x denote the set of pixel in the entire neighborhood. The

ratio, also called index of dispersion, measures the dispersion

of a certain dataset. Then we project it into kernel space in

order to penalize the distance more effectively.

ξij = exp[−(Cj − C̄)] (16)

We finally normalize the ξij by ηij =
ξij∑

k∈∂j
ξik

and guar-

antee the weight to be non-negative by

Wg =

{

2 + ηij Cj < C̄

2− ηij Cj ≥ C̄
(17)

The weighted distance is obtained by

W = Ws ·Wg (18)

We then introduce the weighted distance into our energy

function. Mathematically, an energy function is given by:

E =
∑

{i}∈C1

V1 +
∑

{i,i′}∈C2

V2 +
∑

{i,i′,i′′}∈C3

V3 + ... (19)

where C1, C2, C3 are different sizes of pixel batches called

clique.V1, V2, V3 describe the relationship between pixels in

a clique called clique potential. However, it seems useless to

model the relationship among three or more elements in an

image. So we only consider the mutual dependency in cliques

whose size is 1 or 2. We can simply consider clique potential

as a mutual dependency between the pixel and its neighbor.

Consequently, how to model the dependency is vital for the

performance of our algorithm. There are several ways in

designing energy function. In [12], the author proposed that the

energy of a certain pixel equals the number of neighborhood

pixels which have the same class with it. In [15], the energy

function of a pixel depends on not only the above number

of the same class, but also the specific membership of the

entire neighbor together with a presupposed parameter. In the

proposed energy function, we use the weighted distance which

has been mentioned before. The energy of a pixel is equal to

the summation of weighted membership of all the pixels in

the neighborhood which share the same class with the central

pixel

Eij(x | β) = −β
∑

k∈∂j

uij

Wj

δ(xj − xk) (20)

where δ(·) is denoted by

δ(xj − xk) =

{

1 if xj = xk

0 otherwise.

We eventually yield the energy expression. Using (20), the

equation (8) can be computed after substituting Eij into it.

IV. EXPERIMENTAL SETTINGS

In the experimental part, we test our algorithm in various

scenarios to show the effectiveness of it. We use 5×5 window

in all the test images.

A. Segmentation on synthetic images

The weighted energy function significantly improves the

robustness to noise and is suitable for segmentation in noisy

images. In order to show the superiority of our method, we

compare our algorithm with several competitors.

Fig. 1. Upper panel is the original image. Lower panel are images corrupted
by Gaussian noise (µ = 0, σ = 0.03, 0.05, 0.10 respectively).

The segmentation result is given in Fig.2. We can see the

proposed method has a better sementation result. In addition,

these methods is compared with respect to the segmentation

accuracy defined as

SA =
Ncorrect

N
× 100%

where Ncorrect is the number of correctly segmented pixels.

N is the total number of the pixels. The outcome is given in

Table I.

Second we use the coins picture to give a comparison be-

tween our method with HMRF-FCM and KWFLICM. Because

of the background simplicity of this picture, we use it as

synthetic image.
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Fig. 2. Segmentation results of the three corrupted images in Fig.1. The
outcomes are KWFLICM, HMRF-FCM, and the proposed method by row
respectively.

TABLE I
SEGMENTATION ACCURACY OF DIFFERENT METHODS

Noise 0.03 0.05 0.10

KWFLICM 99.84 76.03 75.95
HMRF-FCM 99.97 99.96 99.71

Proposed 99.98 99.98 99.93

In this scenario the noise is significant heavier. But due

to the using of contextual information, the outcome of the

proposed method is quite stable.

In the comparison between these three algorithms, we can

see that because of using the new energy function the proposed

method has a better noise resistance than others. When the

noise is heavy ( σ = 5 in Fig. 4) our method can still have a

good segmentation result.

Fig. 3. Upper panel is the original image. Lower panel are images corrupted
by Gaussian noise (µ = 0, σ = 0.03, 0.05, 0.10 respectively).

Fig. 4. Segmentation results of the three corrupted images in Fig.3. The
outcomes are KWFLICM, HMRF-FCM, and the proposed method by row
respectively.

B. Segmentation on natural images

Natural images have more delicate details than the synthetic

ones and therefore these natural images are harder to be seg-

mented. We evaluate our algorithm using part of the Berkeley

Image Segmentation Dataset. In this experiment, we first test

our method on natural images and then the corresponding

noise-corrupted ones. The results of noise-free ones are shown

in Fig. 5.

Then we test our algorithm on noise-corrupted ones. The

original image is corrupted by Gaussian noise ( µ = 0,

σ = 0.30). The noise is heavy, so we can fully evaluate

the improvement of our energy function in using context

information. Results are in Fig. 6.

We can see that our method largely preserves the original

segmentation results and the contour of each result is still

distinct. The speckles and noisy points are mostly in low-

contrast area.

Finally we compare all the three algorithms: KWFLICM,

HMRF-FCM and the proposed method on the above ostrich

image. The noise is also Gaussian ( µ = 0, σ = 0.30).

Fig. 7. Segmentation results on the noisy ostrich image. From left to right is
the result of KWFLICM, HMRF-FCM and the proposed method.

In Fig. 7, we can see that the proposed method has fewer

speckles in the segmentation result than the HMRF-FCM’s.

In the detailed images (see Fig. 8), the ostrich’s beak is
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Fig. 5. Segmentation results on part of Berkeley Segmentation Dataset.

Fig. 6. Segmentation results on part of Berkeley Segmentation Dataset corrupted by Gaussian noise ( µ = 0, σ = 0.30).

Fig. 8. Details of Fig. 7.

clearer in our result. The KWFLICM’s performance is worse

because the ostrich’s left eye becomes indistinguishable and

the background is blurred too much.

V. CONCLUSION

In this paper, we first discuss the effectiveness of intro-

ducing Markov Random Field in FCM-based segmentation

algorithms. Then the fusion of MRF and FCM is elucidated.

A new energy function is proposed in order to further utilize

the contextual information. Theoretical analysis is presented

and experimental results show that our algorithm outperforms

the comparison algorithms in segmentation on both noise-free

and noisy image.
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