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Abstract—Information given in linguistic terms around real
life sometimes is vague in meaning, as type-1 fuzzy set was
introduced to modulate this uncertainty. Meanwhile, same
word may result in various meaning to people, indicating the
uncertainty also exist when associated with the membership
function of a type-1 fuzzy set. Type-2 fuzzy set attempt to
express the hybrid uncertainty of both primary and secondary
fuzziness, in order to address regression problems, we built a
type-2 Linguistic Random Regression Model based on credibility
theory. Confidence intervals are constructed for fuzzy input
and output, and the proposed regression model give a rise to a
nonlinear programming problem focus on a well-trained model,
which would be helpful and useful in linguistic assessment cases.
Finally, a numerical example is provided.

Keywords: Type-2 fuzzy set, Linguistic rules, Regression
model, Creditability theory, Confidence interval

I. INTRODUCTION

Fuzzy sets play a pivotal role in computing with words being
casted in the setting of granular computing [1]. The essence
of granular computing is to carry out computing that exploits
information granules [2]. Information granules are regarded
as collections of elements that can be perceived and treated
together because of their similarity, functional properties, or
spatial or temporal adjacency [3], [4], [5], [6]. In this sense,
fuzzy logic becomes instrumental as an effective vehicle to
manipulate information granules.

It becomes apparent that experts with much professional
experiences are capable of making assessment using their
intuition and experiences. In such cases,experts may express
judgements with linguistic terms. The difficulty in the direct
measurement of certain characteristics makes their estimation
highly imprecise and this situation implies the use of fuzzy
sets [7], [8]. There have been a number of well-documented
cases in some of which fuzzy regression analysis has been
effectively used.

Nevertheless, most of the existing studies on modeling
fuzzy regression analysis have focused on data consisting
of numeric values, interval-like numbers, or fuzzy numbers
without taking randomness into consideration. In practical
situations, there exists a genuine need to cope with data that
involve the factors of fuzziness and probability. For example,
let us discuss experts’ evaluation of products. Assume that we
have 100 samples of the same agricultural product. Suppose
five inspectors (experts) evaluate the products on the basis
of ten attributes. Each expert grades each piece according

to his experiences and expertise. These gradings are given
linguistically, e.g., good, very good, bad, and very bad, or
about 5, about 6, etc. When different inspectors give differ-
ent grades, the grading can be understood stochastic in its
nature, i.e., the differences among the five inspectors can be
treated statistically, but each grade itself should be treated by
considering the formalism of fuzzy sets. When we intend to
build a multi-attribute model of the experts’ evaluation, we
have to consider this twofold uncertainty, i.e., uncertainty due
to both fuzziness and randomness. Therefore, in the example
considered here, fuzzy random data should be employed to
evaluate the products. Moreover, if we measure the change of
the fuzzy random values using their confidence intervals, we
can handle the multi-attribute problem by taking advantage of
statistical analysis.

Information in real life may contain linguistic vagueness.
Traditional set theory uses characteristic function to define
whether an element belongs to a certain set (event) and does
not trying to dealing with such uncertainty. Fuzzy set (type-1
fuzzy set) was first introduced in 1965 by Lofti A Zadeh [8].
After that, Watada and Tanaka expanded a fuzzy quantification
method in 1987 [9]. From then on, it is able to describe an
artificial membership function with its output called primary
membership grades, to which extend one element belongs to
a certain set (event).

On the background that the membership function of a type-
1 fuzzy set may also have uncertainty associated with it, Lofti
A. Zadeh invented type-2 fuzzy sets(type-2 fuzzy set) in 1975
[10]. A type-2 fuzzy set enables us to implement fuzziness
about the membership function into fuzzy set theory and is
a way to address the above concern of type-1 fuzzy sets
head-on. However, type-2 fuzzy set did not become popular
immediately because of its complexity of calculation. type-
2 fuzzy sets are difficult to understand and use because: (1)
the three-dimensional nature of type-2 fuzzy sets makes them
difficult to handel. (2) using type-2 fuzzy sets is computa-
tionally more complicated than using type-1 fuzzy sets. Thus,
the conception was only investigated by a few researchers; for
example, Mizumoto and Tanaka [11] discussed what kinds of
algebraic structures the grades of type-2 fuzzy sets form under
join, meet and negation; Dubois and Prade [12] investigated
the operations in a fuzzy-valued logic. It is not until recent
days that type-2 fuzzy sets have been applied successfully to
type-2 fuzzy logic systems to handle linguistic and numerical
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uncertainties [13], [14], [15], [16], [17].
On the other hand, various fuzzy regression models were

introduced to cope with qualitative data coming from fuzzy
environments where human (expert) subjective estimates are
used. The first fuzzy linear regression model was proposed
by Tanaka [7]. Tanaka [18], Tanaka and Watada [19], Watada
and Tanaka [20] presented possibilistic regression based on the
concept of possibility measure. Chang [21] discussed a fuzzy
least-squares regression, by using weighted fuzzy-arithmetic
and the least-squares fitting criterion. Watada [22] developed
models of fuzzy time-series by exploiting the concept of
intersection of fuzzy numbers.

Most of the existing studies on modeling fuzzy regression
analysis have focused on data consisting of numeric values or
type-1 fuzzy variables without type-2 hybrid uncertainty into
consideration. In practical situations, there exists a growing
need to cope with data in presence of more complicated
uncertainty. For example, in capital markets, one candlestick
used to model financial series data can be viewed as a fuzzy
set because it is a combination of a line-chart and a bar-chart,
in that each bar represents the range of price movement over
a given time interval. While the membership function of the
prices set of financial instruments is hard to define given that
prices’ structure in periods varies a lot with much uncertainty.
In this case, type-2 fuzzy set will help a lot with no doubt.

Motivated by the above reasoning, the objective of this paper
is to introduce a class of linguistic type-2 fuzzy regression
model based on creditability theory to deal with type-2 fuzzy
inputs and outputs. We use creditability theory introduced
by Liu [23] to define the expected value of a type-2 fuzzy
variable. After that, we transfer the type-2 fuzzy variable
into type-2 fuzzy expected value and build an type-2 fuzzy
expected value regression model. A well-trained model could
get the evaluation itself for the data already entered and output
the linguistic data after the intermediate steps defuzzification
and refuzzification.

The remainder of this paper is organized as follows. In
Section 2, we cover some preliminaries of creditability theory,
linguistic model and type-2 fuzzy sets. Then we define the
expected value of type-2 fuzzy set and type-2 fuzzy variable.
Notice that these two conceptions of expected values are dif-
ferent. Section 3 a linguistic type-2 fuzzy regression has been
built and formulates a type-2 fuzzy expected value regression
model. In section 4 we introduce a numerical example for
this model and extend the applications of the model. Finally,
concluding remarks are presented in Section 5.

II. HISTORICAL BACKGROUND

A. Type-2 Fuzzy Set
Type-2 fuzzy sets were first described by Zadeh as a

development for his fuzzy set theory [24]. According to [25]
type-2 fuzzy sets are “sets whose membership grades are
themselves type-1 fuzzy sets”. A type-2 fuzzy set, denoted
by Ã, can be defined at the universe X as

Ã =

∫
x∈X

∫
x∈Jx

µÃ/(x, u) (1)

where Jx ⊆ [0, 1] is the set of primary membership grades
of x ∈ X , with u ∈ Jx, ∀x ∈ X, and µÃ(x, u) is the type-
2 membership function [26] [27]. Since type-2 membership
functions are defined in R3 [28] [29], obviously there is a
lot of obstacles for drawing, handling and understanding them
[26].

B. Creditability Theory

Credibility measure [30] is an average of the possibility and
the necessity measure, i.e., Cr{·} = (Pos{·} + Nec{·})/2,
and it is a self-dual set function, i.e., Cr{A} = 1−Cr{Ac}for
any A in P (Γ). The motivation behind the introduction of the
credibility measure is to develop a certain measure, which
is a sound aggregate of the two extreme cases, such as the
possibility (which expresses a level of overlap and is highly
optimistic in this sense) and necessity (which articulates a
degree of inclusion and is pessimistic in its nature). Based
on credibility measure, the expected value of a fuzzy variable
is presented as follows:

E[Y ] =

∫ ∞

0

Cr{Y ≥ r}dr −
∫ 0

−∞
Cr{Y < r}dr (2)

provided that at least one integral is finite.
Let ε be a fuzzy random variable with expected value e.

Then, the variance of ε is defined by V [ε] = E[(ε− e)2].

C. Linguistic Fuzzy Random Regression Model

In making assessments regarding some objects, we use
multi-attribute evaluation. The difficulty in the direct measure-
ment of certain characteristics makes their estimation highly
imprecise and this situation results in the use of fuzzy values
and linguistic values. Often, experts use a linguistic word to
judge an object from various features and characteristics. And
the whole process is pursued in linguistic way. For instance,
although it is possible to measure numerical value, it is difficult
to analytically interpret the obtained numerical value in terms
of possible influence. This result might have impacted on
further decision making.

To cope with linguistic variables, we define processes of
vocabulary translation and vocabulary matching which convert
linguistic expressions into membership functions defined in
the unit interval. That is, human words can be translated
(formalized) into fuzzy sets (fuzzy numbers, to be more
specific) which are afterward employed in a fuzzy reasoning
scheme. Fuzzy regression analysis [7], [6], [31] is employed
to deal with the mapping and assessment process [32], [33] of
experts which are realized from linguistic variables of features
and characteristics of an objective into the linguistic expression
articulating the total assessment.

III. LINGUITIC FUZZY REGRESSION MODEL WIH
CONFIDENCE INTERVALS

A. De-Linguitic

We built a model based on the relationship between the
assessments given for different attributes and the overall
assessment of the object totally. Watada et al. [34] propose
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fuzzy random regression model with confidence interval to
deal with situations under hybrid uncertainty. The data given
by experts are shown in Table I such as good, bad, extremely
bad, as fuzzy random numbers.

An event has its population including the finite or infinite
number of samples with probability. Generally such proba-
bility is not known explicitly. We employ it as the linguistic
assessment result percentage. Such as, 50 experts evaluate the
object good, and 50 percentage evaluate the object very good,
then the probability is 0.5, 0.5 respectively.

Then, we translate attributes from linguistic values Li

into fuzzy grades XL making use of triangular membership
functions:

XL ≡ (a, b, c) (3)

where XL denotes the representative value of the fuzzy event,
a is the central value and b, c are the left-side bound and right-
side bound, respectively. The estimation of the total assessment
is written by the following fuzzy assessment function:

Yi = f(XLi1 , XLi2 , · · · , XLiK ) (4)

where i = 1, 2...N , the number of experts, K is the number
of the attributes of the object. Then XL is obtained from the
vocabulary dictionary of experts. From this dictionary we can
convert the linguistic words to fuzzy variable random numbers.

B. Vertical Slice Centroid Type-Reduction

Vertical Slice Centroid Type-Reduction (VSCTR) is a highly
intuitive method employed by John [35]; the paper of Lucas
et al. [36] renewed interest in this strategy. In this approach
the type-2 fuzzy set is cut into vertical slices, each of which is
defuzzified as a type-1 fuzzy set. By pairing the domain value
with the defuzzified value of the vertical slice, a type-1 fuzzy
set is formed, which is easily defuzzified to give the defuzzi-
fied value of the type-2 fuzzy set. Though chronologically
preceding it, this method is a generalisation of the Nie-Tan
method for interval type-2 fuzzy sets [37].

In VSCTR we calculate only the centroids Cj of the jth

vertical slice of B̃. These calculated centroids become the new
memberships of elements y ∈ Y . Thus the type-reduced set is
obtained by

CB̃ =

∫
y∈Y

Cj/y =

∫
y∈Y

∫
u∈Jy

u× fy(u)∫
u∈Jy

fy(u)
/y (5)

C. Type-2 Credibility Based-Interval Regression

All the linguistic data have been converted to fuzzy random
variable data. We need to build a fuzzy regression model for
fuzzy random data, which is based on the possibilities linear
model.

Fuzzy Random Regression Model with Confidence Inter-
val:Table I is the format of data that come from linguistic
words, where input data XiK and output data Yi, for all
i = 1, 2, ..., n and k = 1, 2, ...,K. They are all fuzzy random
variables, which defined as:

TABLE I
LINGUISTIC VALUES OF EACH SAMPLE ω GIVEN BY EXPERTS

sample Input Attribute k-th Value Output Value
1 · · · K Y

1 (L11, p11) · · · (L1K , p1K) (Y1, p1)
2 (L21, p21) · · · (L2K , p2K) (Y2, p2)
3 (L31, p31) · · · (L3K , p3K) (Y3, p3)
4 (good, 0.2) · · · (very good, 0.1) (good, 0.1)
...

...
...

...
ω (Lω1, pω1) · · · (LωK , pωK) (Yω , pω)
...

...
...

...
N (LN1, pN1) · · · (LNK , pNK) (YN , pN )

where LωK and Yω denote linguistic values of input k-th attribute and
output value of ω-th sample, respectively.

Yi =

MY i∪
t=1

{(Y t
i , Y

t,l
i , Y t,r

i ), pti},

XiK =

MXiK∪
t=1

{(Xt
iK , X

t,l
iK , X

t,r
iK ), qtiK}

(6)

respectively. This means that all values are given as
fuzzy numbers with probabilities, where fuzzy variables
(Y t

i , Y
t,l
i , Y t,r

i ) and (Xt
iK , X

t,l
iK , X

t,r
iK ) are associated with

probability pti and qtiK , for i = 1, 2, , N , k = 1, 2, ,K and
t = 1, 2, ,MY i and MXiK respectively.

Let us denote fuzzy linear regression model with fuzzy
coefficients Ā1, · · · , ĀK as follows:

Ȳi = Ā1Xi1 + · · ·+ ĀKXiK (7)

And then we need to determine the optimal fuzzy parameters
Āi. Two optimization criteria are considered. One concerns the
fitness of the fuzzy regression model, h. The other one deals
with fuzziness captured by the fuzzy regression model 7. Let
us elaborate on the detailed formulation of these criteria.

In this study, we employ the confidence-interval based
inclusion, which combines the expectation and variance of
fuzzy random variables and the fuzzy inclusion relation sat-
isfied at level h, to deal with the model (7) as discussed
in [3], [31]. There are also some other ways to define the
fuzzy random inclusion relation ⊂h, which will yield more
complicated fuzzy random regression models. For instance, in
order to retain more complete information of the fuzzy random
data, we can use the fuzzy inclusion relation directly for the
product between a fuzzy parameter and a fuzzy value at some
probability level.

Before building the fuzzy random regression model with
confidence interval, we define the confidence interval that is
induced by the expectation and variance of a fuzzy random
variable based on the credibility theory. When we consider the
one-sigma confidence interval of each fuzzy random variable,
we can express it as the following interval:

I(eXiK
, σXiK

) =
[
E(XiK)−

√
V ar(XiK),

E(XiK) +
√
V ar(XiK)

] (8)
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After then, in order to obtain linguistic expression, we need
to match the obtained fuzzy numbers to the most appropriate
linguistic words (Vocabulary Matching). First we consider the
one-sigma confidence interval of each fuzzy random variable,
and it is expressed as follows:

I(eXiK
, σXiK

) = [eXiK
− σXiK

, eXiK
+ σXiK

]

I(eYi , σYi) = [eYi − σYi , eYi + σYi ]
(9)

Then, the new confidence-interval-based fuzzy random regres-
sion mode is built as follows:

minĀ J(Ā) =
K∑

k=1

(Ār
k − Āl

k)

subject to Ār
k ≥ Āl

k

Āi =
K∑

k=1

ĀkI(eXiK
, σXiK

) ⊃h I(eYi
, σYi

)


.

(10)
where i = 1, 2, ..., N , k = 1, 2, ...,K, and the ⊂h denotes the
fuzzy inclusion relation realized at level h.

Since the product of a fuzzy number (fuzzy coefficient) and
an interval (confidence interval) is influenced by the signs of
each component, in order to solve the model (10), we need
to take into account all the cases corresponding to different
combinations to the signs of the fuzzy coefficients, as well as
the σ-confidence intervals of the fuzzy random data.

D. Solution of the Regression Model

The solution of model (10) can be rewritten as a problem of
N samples with one-output and K-input interval values. This
problem is difficult to solve, since it consists of NK products
between the fuzzy coefficients and confidence intervals. In
order to solve the proposed model (10), we can employ a
vertices method, as given shortly, i.e., these multidimensional
vertices are taken as new sample points with fuzzy output
numbers. In the sequel, we can solve this problem using the
conventional method. Nevertheless, this problem suffers from
combinatorial explosion that becomes very much visible when
the number of variables increases.

Type-2 fuzzy regression model can be developed to include
the mean interval values of all samples in the model. There-
fore, it is sufficient and necessary to consider only both two
vertices of the end points on the interval of each dimension
of a sample. For example, one sample with one input interval
feature can be expressed with two vertices of the end points
on the interval with a fuzzy output value. As a consequence, in
this Model, if we denote ILik and IUik as the left and right end
points of the expected primary grades intervals of the input
Xik, respectively, that is

ILiK = E(XiK)−
√
V ar(XiK),

IUiK = E(XiK) +
√
V ar(XiK)

(11)

for i = 1, 2, · · · , N ; k = 1, 2, · · · ,K; the original Model can
be converted into the following conventional fuzzy regression
model by making use of the vertices method:

minĀ J(Ā) =
K∑

k=1

(Ār
k − Āl

k)

subject to Ār
k ≥ Āl

k

(1)→ Ȳi =
K∑

k=1

Ā1 · ILi1 + Ā2 · ILi2 + · · ·

+ĀK · ILiK ⊃h I(eYi , σYi)

(2)→ Ȳi =
K∑

k=1

Ā1 · IUi1 + Ā2 · ILi2 + · · ·

+ĀK · ILiK ⊃h I(eYi , σYi)

(3)→ Ȳi =
K∑

k=1

Ā1 · ILi1 + Ā2 · IUi2 + · · ·

+ĀK · ILiK ⊃h I(eYi , σYi)

...
...

...

(2K)→ Ȳi =
K∑

k=1

Ā1 · IUi1 + Ā2 · IUi2 + · · ·

+ĀK · IUiK ⊃h I(eYi , σYi)



. (12)

The regression model (12) can be easily solved by exhaustive
way. Unfortunately, this problem cannot be solved within a
reasonable computing time when K becomes even moderately
large. For example, when we have 1000 features and 10000
samples, the linear programming problem will come with 2×
10000 × 21000 constraints and 1000 nonnegative constraints.
Given this, we have to resort to some heuristic strategies.

E. Heuristic Method

We use the new notations for Āk = [āk, ak], for k =
1, 2, · · · ,K,in (10) and indicate step(n) of the algorithm(see
[31]) by a suffix, say Ā

(n)
k = [ā

(n)
k , a

(n)
k ]. Depending on

different sign of Ak, the product of fuzzy number Āk and
I(eXik

, σXik
) involves three cases, for i = 1, 2, · · · , N , an

α-level set of fuzzy degree of a structural attribute at the level
h0 is denoted as follows:

(Āk)h0 = [ak, āk] (13)

for each i and k, due to the signs of confidence inter-
val and (13) the interval representing the product (Āk ·
I(eXik

, σXik
))h0 requires several cases to be considered sep-

arately, as shown in Table II, where ēik = E[Xik]+V ar[Xik]
and eik = E[Xik]− V ar[Xik].

IV. A NUMERICAL EXAMPLE

Here is a simple example from linguistic evaluation about
present market value and future value for 4 different enter-
prises and they have some inner relations, i.e. supply chain,
then we could build a regression model. The given numbers
are from the authoritative rating agencies, for instance, the
revenue by company A was 5 million in objective way and 6
million in optimal way, in the future the company would have a
objective value about 7 million and if the situation continues,
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TABLE II
DIFFERENT CASES OF THE PRODUCT

Case Condition Result
Case I ēik ≥ eik ≥ 0

I-a āk ≥ ak ≥ 0 (Āk · I(eXik
, σXik

))h0 = [ak · eik, āk · ēik]
I-b āk ≥ 0 ≥ ak (Āk · I(eXik

, σXik
))h0 = [ak · ēik, āk · ēik]

I-c 0 ≥ āk ≥ ak (Āk · I(eXik
, σXik

))h0 = [ak · ēik, āk · eik]
Case II 0 ≥ ēik ≥ eik

II-a āk ≥ ak ≥ 0 (Āk · I(eXik
, σXik

))h0 = [āk · eik, ak · ēik]
II-b āk ≥ 0 ≥ ak (Āk · I(eXik

, σXik
))h0 = [āk · eik, ak · eik]

II-c 0 ≥ āk ≥ ak (Āk · I(eXik
, σXik

))h0 = [āk · ēik, ak · eik]
Case III ēik ≥ 0 ≥ eik

III-a āk ≥ ak ≥ 0 (Āk · I(eXik
, σXik

))h0 = [āk · eik, āk · ēik]
III-b āk ≥ 0 ≥ ak (Āk · I(eXik

, σXik
))h0 = [ak · ēik, ak · eik]

III-c 0 ≥ āk ≥ ak (Āk · I(eXik
, σXik

))h0 = [a⋆k · e⋆ik, a⋆⋆k · e⋆⋆ik ]
note that a⋆k · e⋆ik = min{ak · ēik, āk · eik}, a⋆⋆k · e⋆⋆ik = max{ak · ēik, āk · eik}

TABLE VI
AFTER TRANSFER THE LINGUISTIC TERMS TO TYPE-2 FUZZY SET

X11 (0.4/0.6+0.6/0.7)/5 + (0.7/0.7+0.3/0.1)/6
X21 (0.7/0.4+0.3/0.6)/4 + (0.6/0.8+0.4/0.5)/5
X31 (0.3/0.7+0.7/0.5)/15 + (0.4/0.9+0.6/0.4)/18
X41 (0.3/0.3+0.7/0.4)/20 + (0.5/0.3+0.5/0.4)/24
X12 (0.4/0.7+0.6/0.9)/7 + (0.7/0.3+0.3/0.5)/9
X22 (0.9/0.3+0.1/0.1)/3 + (0.7/0.5+0.3/0.2)/14
X32 (0.8/0.5+0.2/0.6)/18 + (0.6/0.7+0.4/0.3)/22
X42 (0.9/0.6+0.1/0.7)/25 + (0.6/0.9+0.4/0.4)/28

Y1 (0.8/0.7+0.2/0.6)/15 + (0.6/0.7+0.4/0.4)/17
Y2 (0.7/0.4+0.3/0.3)/9 + (0.4/0.2+0.6/0.3)/7
Y3 (0.5/0.5+0.5/0.4)/28 + (0.6/0.4+0.4/0.7)/30
Y4 (0.7/0.7+0.3/0.9)/35 + (0.7/0.5+0.3/0.8)/40

optimistically with the excellent campaign 9 million would
be reachable. And the Table V focuses on the comprehensive
market value from now to the future, it has a affinity bond with
the market performance. Suppose that we have ten excellent
analysts and they hold the different evaluations about the data,
which were given by the rating agencies, evaluate both present
and future concluded in optimistic condition and objective
condition, the details shown in Table III, IV and V.

Count the frequencies of different evaluation and ap-
ply them the numerical weighs, in extend that is (ex-
treme good,0.9), (very good,0.7), (good,0.6), (normal,0.5),
(bad,0.4), (very bad,0.3), (extreme bad,0.1), and in pos-
sibility, (huge,0.9), (very large,0.8), (large,0.7), (consider-
able,0.6), (fair,0.5), (modest,0.4), (small,0.3), (very small,0.2)
and (tiny,0.1) in the charge, say rule 1. Eventually, we get the
type-2 fuzzy set for this case, see Table VI. And we need to
short the uncertainty on the secondary grade at the same time
adding the confidence interval for the values instead. For more
desirable calculating and more precise model we introduced.
Using the VSCTR for the data and we get the type-1 prior
considering them into confidence intervals.

The fuzzy regression model with confidence interval for the

TABLE VII
INPUT DATA AND OUTPUT DATA

1 X11 = (5, 4, 6)T , 0.66; (6, 5, 7)T , 0.52
2 X21 = (4, 3, 5)T , 0.46; (5, 4, 6)T , 0.68
3 X31 = (15, 13, 17)T , 0.56; (18, 16, 20)T , 0.60
4 X41 = (20, 18, 22)T , 0.37; (24, 22, 26)T , 0.35
1 X12 = (7, 6, 8)T , 0.82; (9, 8, 10)T , 0.36
2 X22 = (3, 2, 4)T , 0.28; (4, 3, 5)T , 0.41
3 X32 = (18, 16, 20)T , 0.52; (22, 20, 24)T , 0.54
4 X42 = (25, 22, 28)T , 0.61; (28, 25, 31)T , 0.70

1 Y1 = (15, 13, 17)T , 0.68; (17, 15, 19)T , 0.58
2 Y2 = (9, 7, 11)T , 0.37; (7, 5, 9)T , 0.26
3 Y3 = (28, 25, 31)T , 0.35; (30, 27, 33)T , 0.52
4 Y4 = (35, 32, 38)T , 0.76; (40, 37, 43)T , 0.59

given data reads as follows:

Ȳi = Ā1I[eXi1 , σXi1 ] + Ā2I[eXi2 , σXi2 ]

where I[eXik
, σXik

], for k = 1, 2, and the one-sigma confi-
dence intervals shown in (8). Since N = 4,K = 2, from the
model (10), and assuming (Āk)h0 = [Āl

k, Ā
r
k], k = 1 and 2,

the model can be built. First of all, we need to calculate all the
I[eXik

, σXik
], and I[eYk

, σYk
], for i = 1, 2, 3, 4, k = 1 and 2.

We need to calculate the pairs (eXik
, σXik

) and eYk
, σYk

.
Hence, the confidence intervals for the input data and output

data are obtained in the follow equations:

I[eXik
, σXik

] = I[eXik
− σXik

, eXik
+ σXik

]

I[eYi , σYi ] = I[eYi − σYi , eYi + σYi ]
(14)

for i = 1,2,3,4 and k = 1,2. They are listed in Tables VII and
VIII, respectively.

We make use of Algorithm 1 to construct a regression
model. Noting that K = 2, all the confidence intervals are
positive, and we need to set

(Ā
(1)
k · I[eXik

, σXik
])h0 = [a

(1)
k · eik, ā

(1)
k · eik]

and from the Algorithm, we get the following linear program-
ming:
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TABLE III
OBJECTIVE VALUE AND OPTIMAL VALUE ASSESSMENT BY 10 ANALYSTS FOR PRESENT

Present View about the Objective Value and Opportunity for the Ideal Value Held by Different Analysts

Value of company 1 2 3 4 5 6 7 8 9 10

A
5 good very good good good very good very good very good good very good very good

6 large tiny large tiny large large large large large large

B
4 bad bad bad good bad good bad bad bad good

5 fair very large very large fair fair very large very large fair very large very large

C
15 very good normal normal normal very good normal normal normal very good normal

18 huge huge huge modest modest modest modest huge modest modest

D
20 very bad very bad very bad bad bad bad bad bad bad bad

24 small modest modest small modest small small modest small modest

TABLE IV
OBJECTIVE VALUE AND OPTIMAL VALUE ASSESSMENT BY 10 ANALYSTS FOR FUTURE

Future View about the Objective Value and Opportunity for the Ideal Value by Different Analysts

Company 1 2 3 4 5 6 7 8 9 10

A
7 very good very good extreme good extreme good extreme good extreme good very good very good extreme good extreme good

9 small small fair fair fair small small small small small

B
3 bad bad bad bad bad bad bad bad bad very bad

4 fair fair very small fair fair very small fair very small fair fair

C
18 normal normal good normal good normal normal normal normal normal

22 large small small large small large small large large large

D
25 good good good good good very good good good good good

28 modest huge huge huge modest modest huge huge modest huge

TABLE V
COMPREHENSIVE MARKET PERFORMANCE ABOUT THE FOUR COMPANIES FOR PRESENT AND FUTURE

Comprehensive Comprehensive Market Performance about the Four Companies for Present and Future

Evaluation 1 2 3 4 5 6 7 8 9 10

A
15 very good very good good very good good very good very good very good very good very good

17 large large large modest modest large modest large modest large

B
9 bad bad very bad bad very bad bad bad very bad bad bad

7 small very small very small small small very small very small small small small

C
28 normal 28,bad bad bad normal normal bad bad normal normal

30 modest modest modest large large modest modest large modest large

D
35 good good good extreme good good extreme good extreme good good good good

40 fair fair fair very large fair very large fair very large fair fair

min J(Ā) = ā
(1)
1 − a

(1)
1 + ā

(1)
2 − a

(1)
2

subject to ā
(1)
1 ≥ a(1)1 , ā

(1)
2 ≥ ā(1)2

[a
(1)
1 , ā

(1)
1 ] · 5.44 + [a

(1)
2 , ā

(1)
2 ] · 7.61

⊇ [13.10, 18.74]

[a
(1)
1 , ā

(1)
1 ] · 4.60 + [a

(1)
2 , ā

(1)
2 ] · 8.17
⊇ [6.85, 9.49]

[a
(1)
1 , ā

(1)
1 ] · 16.55 + [a

(1)
2 , ā

(1)
2 ] · 20.04

⊇ [26.17, 32.43]

[a
(1)
1 , ā

(1)
1 ] · 21.94 + [a

(1)
2 , ā

(1)
2 ] · 26.60

⊇ [24.82, 49.52]



. (15)

Solving the linear programming, we obtain:

min J(Ā) = ā
(1)
1 − a

(1)
1 + ā

(1)
2 − a

(1)
2

= 0.21− 0.21 + 2.32− 0.77 = 1.55.

Next, we move to Step 2. Since the a
(1)
k and ā

(1)
k are

nonnegative, then according to case I-a in Table ii, we can
determine

(Ā
(2)
k · I[eXik

, σXik
])h0 = [a

(2)
k · eik, ā

(2)
k · eik]

.

Then we determine a(2)k and ā(2)k , by solving the following
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TABLE VIII
CONFIDENCE INTERVALS OF THE INPUT DATA AND OUTPUT DATA

i (eXi1
, σXi1

) I[eXi1
, σXi1

]
1 (5.44,0.66) [4.78,6.10]
2 (4.60,0.63) [3.97,5.23]
3 (16.55,4.41) [12.14,20.96]
4 (21.94,3.84) [18.10,25.78]
i (eXi2

, σXi2
) I[eXi2

, σXi2
]

1 (7.61,1.33) [6.28,8.94]
2 (3.69,0.38) [3.31,4.07]
3 (20.04,5.65) [14.39,25.69]
4 (26.60,6.61) [19.99,33.21]

i (eYi
, σYi

) I[eYi
, σYi

]
1 (15.92,2.82) [13.10,18.74]
2 (8.17,1.32) [6.85,9.49]
3 (29.20,3.03) [26.17,32.43]
4 (37.19,12.33) [24.82,49.52]

linear programming:

min J(Ā) = ā
(1)
1 − a

(1)
1 + ā

(1)
2 − a

(1)
2

subject to ā
(1)
1 ≥ a(1)1 ≥ 0, ā

(1)
2 ≥ ā(1)2 ≥ 0

[a
(2)
1 ·4.84, ā

(2)
1 ·6.04] + [a

(2)
2 ·6.48,

ā
(2)
2 ·8.74] ⊇ [13.10, 18.74]

[a
(2)
1 ·4.05, ā

(2)
1 ·5.15] + [a

(2)
2 ·3.14,

ā
(2)
2 ·4.24] ⊇ [6.85, 9.49]

[a
(2)
1 ·12.75, ā

(2)
1 ·20.35] + [a

(2)
2 ·14.71,

ā
(2)
2 ·25.37] ⊇ [26.17, 32.43]

[a
(2)
1 ·16.61, ā

(2)
1 ·27.27] + [a

(2)
2 ·21.55,

ā
(2)
2 ·31.65] ⊇ [24.86, 49.52]



. (16)

Solving this linear programming, we obtain:

min J(Ā) = ā
(2)
1 − a

(2)
1 + ā

(2)
2 − a

(2)
2

= 0.39− 0.39 + 1.83− 0.89 = 0.94.

Since a(2)k ·a
(1)
k ≥ 0, ā

(2)
k ·ā

(1)
k ≥ 0, we move directly to Step

5 in heuristic method. We check all the vertices, in this case,
16 vertices in the regression that are obtained by (16) and we
could found some vertices do not satisfy the range I[eYi , σYi ],
given the limited pages, we would not listed them all, and
after the check, we need to add at most 32 qualifications if
the lower range or the upper range do not met. In our example
we add 13 qualifications in (17). And from (17), the optimal
value of J(Ā) is obtained:

min J(Ā) = Ār
1 − Āl

1 + Ār
2 − Āl

2

= 0.66− 0.66 + 2.48− 0.39 = 2.09.

Then, we terminate the Algorithm and return the optimal
solution:

Āl
1 = Ār

1 = 0.66, Āl
2 = 0.39, Ār

2 = 2.48.

min J(Ā) = ā
(1)
1 − a

(1)
1 + ā

(1)
2 − a

(1)
2

subject to ā
(1)
1 ≥ a11 ≥ 0, Ā

(1)
2 ≥ Ā(1)

2 ≥ 0

a
(2)
1 · 4.78 + a

(2)
2 · 6.28 ≤ 13.10

a
(2)
1 · 3.97 + a

(2)
2 · 3.31 ≤ 6.85

a
(2)
1 · 12.14 + a

(2)
2 · 14.39 ≤ 26.17

a
(2)
1 · 18.10 + a

(2)
2 · 19.99 ≤ 24.86

18.74 ≤ ā(2)1 · 6.10 + ā
(2)
2 · 8.94

9.49 ≤ ā(2)1 · 5.23 + ā
(2)
2 · 4.07

32.23 ≤ ā(2)1 · 20.96 + ā
(2)
2 · 25.69

49.52 ≤ ā(2)1 · 25.78 + ā
(2)
2 · 33.21

⋆The added portion is followed.

a
(2)
1 · 20.96 + a

(2)
2 · 14.39 ≤ 26.17

a
(2)
1 · 25.78 + a

(2)
2 · 19.99 ≤ 24.86

a
(2)
1 · 18.10 + a

(2)
2 · 33.21 ≤ 24.86

18.74 ≤ ā(2)1 · 4.78 + ā
(2)
2 · 6.28

18.74 ≤ ā(2)1 · 4.78 + ā
(2)
2 · 8.94

18.74 ≤ ā(2)1 · 6.10 + ā
(2)
2 · 6.28

9.49 ≤ ā(2)1 · 3.97 + ā
(2)
2 · 3.31

9.49 ≤ ā(2)1 · 3.97 + ā
(2)
2 · 4.07

9.49 ≤ ā(2)1 · 5.23 + ā
(2)
2 · 3.31

32.23 ≤ ā(2)1 · 12.14 + ā
(2)
2 · 14.39

49.52 ≤ ā(2)1 · 25.78 + ā
(2)
2 · 19.99

49.52 ≤ ā(2)1 · 18.10 + ā
(2)
2 · 19.99



. (17)

Thus, the fuzzy random regression model with confidence
interval is given in the form:

Ȳi = Ā1I[eXi1 , σXi1 ]+Ā2I[eXi2 , σXi2 ]

= Ā1I[eXi1 , σXi1 ]+((Āl
2+Ā

r
2)/2, Ā

l
2, Ā

r
2)I[eXi2 , σXi2 ]

= 0.66I[eXi1
, σXi1

]+[1.44, 0.39, 2.48]I[eXi2
, σXi2

].

We could recover the regression model in linguistic rule, we
use E for evaluation, and R for range that R = 0.66 · (eXi1 +
σXi1 − (eXi1 − σXi1) +1.44 · (eXi2 + σXi2 − (eXi2 − σXi2)),
which means the standard level of the company, and calculate
the difference between Ȳi and eYi , the ratio of the difference
and R, the numerical evaluation obtained.

E =
1.44 · eXi2 + 0.66 · eXi1 − eYi

R

transfer E to word guiding by rule 2, that is when E
greater than 1, it was splendid good, if below 0, junk level
perhaps, to the rest (0,0.33], overvalued, (0.33,0.67), deserved,
[0.67,1), undervalued. then we got our result. that the four
companies evaluation in sequence of A, B , C, and D should
be: overvalued, deserved, undervalued, superb.
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V. CONCLUSION

In this paper we built a model for transferring linguistic
data to type-2 fuzzy data and importing random regression
model, in the end recover the result to linguistic data. After
talking about type-2 fuzzy set and reduce function as well
as linguistic transform, we use expectations and variances of
fuzzy random variables to construct the confidence interval
based fuzzy random data. The proposed vertices method can
convert the original fuzzy random regression to a conventional
fuzzy regression, with the heuristic algorithm, integrates linear
programming and vertices checking, which enables us to
handle the proposed regression by solving a series of linear
programming problems. An illustrative example was provided
to demonstrate the solution process.

The method can be implemented to several applications,
it works on the non-meta linguistic data handling, lots of
evaluations could be qualifiable, and helps the decision maker
do the more appropriate choice. And also the fuzzy random
multi-attribute evaluation for production, further applications
will be discussed in our forthcoming studies.
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