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Abstract—Disturbance observer-based control provides a
promising approach to handle system disturbance and improve
robustness. In this paper, a new fuzzy disturbance observer
(FDO) is proposed into the SOS-based approach, where the
polynomial fuzzy model is used to develop the system controller.
Compared with other works published so far, the FDO mainly
features two things: 1) the estimation error between the FDO and
disturbance shrinks asymptotically to zero if the disturbance has
a constant steady-state value; 2) parameters involved in the FDO
is adjusted on the basis of the polynomial fuzzy model which is
basically nonlinear. Finally, computer simulations are provided
to illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

There have been significant advances in the study of the sta-
bility analysis and controller synthesis based on the so-called
Takagi-Sugeno (T-S) fuzzy model [1] since the beginning of
1990s. The T-S fuzzy model is a set of fuzzy rules. In each
fuzzy rule, the antecedent represents a local state space region
whereas the local dynamics is represented by a linear model
such as the form of state-space representation in the corre-
sponding consequent. The control design is developed on the
basis of the fuzzy model by the so-called parallel distributed
compensation (PDC) scheme, where sufficient conditions for
system stability in the sense of Lyapunov are provided by
solving certain linear matrix inequalities (LMIs) [2], which is
referred to as LMI-based approach in this paper.

Recently, the T-S fuzzy model has been extended to a
polynomial fuzzy model [3], which allows the local dynamics
in the consequent of each rule to be represented by the form
of state-dependent linear-like representation involving polyno-
mial matrices and vectors of monomials in the control state.
A polynomial fuzzy controller is thus developed based on
the PDC-like scheme, where sufficient conditions for system
stability in the sense of Lyapunov are provided by solving
certain sums of squares (SOS) [3], which is referred to as
SOS-based approach in this paper. The solution to the stability
conditions can be found numerically using the third-party
Matlab toolbox [4].

It is clear that the SOS-based approach is more comprehen-
sive than the LMI-based one, particularly from the standpoint
of the modelling precision. That is, compared the regular T-
S fuzzy model used in the LMI-based approach that is a
linear model in each local state space region, the one used

in the SOS-based approach is a polynomial model that is
basically nonlinear. This means that the polynomial model
is more effective than the T-S fuzzy model to represent the
dynamics of the plant to be controlled that is usually nonlinear;
nevertheless, there does exist modelling error between the
dynamics of the plant to be controlled and its polynomial T-S
fuzzy model. Moreover, external disturbance imposed to the
plant is due to be taken account in the model. Here in this
paper we use the term, lumped disturbance, to express the
modelling error including the external disturbance, unmodelled
dynamics and parameter perturbations. Generally speaking, the
control performance depends considerably on the quantity of
the lumped disturbance. That is, if the quantity of the lumped
disturbance is significantly large and is not considered in the
model that is used for the controller design, then the control
performance is no longer to be satisfactory as expected.

Disturbance observer-based control provides a promising
approach to handle system disturbance and improve robustness
[5]. In this framework, a baseline controller is first designed
under the assumption that there is not the lumped disturbance,
and then the compensation is added to counteract the influence
of the disturbance that is estimated by a properly designed
disturbance observer (DOB) [6], [7]. In this paper, a new fuzzy
disturbance observer (FDO), motivated by the works in [7], is
proposed into the SOS-based approach. This implies that the
FDO is basically nonlinear because the basis of the FDO is
the fuzzy polynomial model which as such is nonlinear. In
fact, there are a lot of existing works of FDOs ([8], [9], [10],
[11], [12] and references within), which basically use the fuzzy
universal approximator [13] that is linear with respect to an
adjustable parameter vector, to approximate the disturbance.
The parameter vector in the fuzzy approximator is adjusted
not on the basis of the disturbance as such but on the basis of
system stability, and as a result, the fuzzy approximator may
not march the disturbance at all. Compared with the existing
works, the FDO in this paper mainly features two things: 1)
the estimation error between the FDO and disturbance shrinks
asymptotically to zero if the disturbance has a constant steady-
state value; 2) parameters involved in the FDO is adjusted on
the basis of the polynomial fuzzy model which is basically
nonlinear.
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II. POLYNOMIAL FUZZY MODEL WITH DISTURBANCE

OBSERVER

Consider the following nonlinear system:

����� � ������� ����� ����� (1)

where � is a nonlinear function; ���� � ��, the state vector;
���� � ��� , the input vector; ���� � ��, the lumped
disturbance vector that is supposed to be bounded. The system
can be expressed in terms of the polynomial fuzzy model with
disturbance observer as follows.

Rule � �

If 	���� is 
 �
� and � � � and 	���� is 
 �

�� Then

����� � ��������������� �������� ����� � ������ (2)
������ � ����� � ��������

������ � ���������
�
���������������

������������� � �������
�
����
��� (3)

where 	��� � �� 	� � � � � �� is a variable in the antecedent;

 �

��� � �� 	� � � � ��, a fuzzy term corresponding to �th rule;
�������� � ���� � ������� � ����, polynomial matrices in
����; ������� � �� , a vector of monomials in ���� with
assumption that ������� � 
 iff ���� � 
; ����� � ��,
the lumped disturbance including modelling error, external
disturbance, unmodelled dynamics and parameter perturba-
tions; ������ � ��, the estimate of the unknown disturbance;
����� � ��, the internal state vector of the (nonlinear)
disturbance observer; ������� � ��, polynomial vector in
���� to be designed; �������� � ����, the observer gain
which is defined as

������� �
���������

��� ���
(4)

satisfying

�������������� � 
� (5)

Note that for a given ������, it is easy to find a ��������
which upholds (4) and (5) by using some software packages
such as the third-party MATLAB toolbox, SOSOPT, which
supports the operation of differentiation as well.
It is clear that if the lumped disturbance ����� is not consid-
ered, i.e., ����� � 
, then the disturbance estimate and observer
(3) are not needed anymore, and (2) becomes

����� � ��������������� ������������ (6)

which is the regular form in the related studies [3]. In general,
the disturbance does not admit the mathematical expressions.
Therefore, the model proposed in this paper is a general form
that includes the regular case such as (6).
In the polynomial fuzzy model (2), the control input ���� and
the lumped disturbance ����� shared the same control matrix
�������. In the case of different matrices, i.e.,

����� � ��������������� ������������

��������������� (7)

where �������� � ����, and ������ � �� denotes the
(original) lumped disturbance. If we replace ������ by �����
such that

������������ � �������������� (8)

thus, (7) becomes (2). The disturbance is expressed in the
form of ������ in (7), whereas the one is expressed in the
form of ����� � �� �����������������, where ���� denotes the
Moore-Penrose generalized inverse. No matter what form the
disturbance is expressed in, the purpose we try to address it
is no change. Therefore, the polynomial fuzzy model (2) also
covers the more general case (7). Regarding the disturbance,
we give the following assumption:

Assumption 1: The disturbance has a constant steady-state
value, i.e.,

��
���

������ � 
� (9)

Define the estimation error

����� � ������ ������ (10)

then we have

������ � �������
�������

� � �������
���������

������
����� � ������

� � ������� �������� ����� � ������

� ������������������ � ������ (11)

which implies that the estimation error ����� shrinks asymp-
totically to zero due to ������������ � 
 according to (5) and
�����

������ � 
 from Assumption 1, i.e.,

��
���

����� � 
� (12)

Therefore, it is reasonable to assume that the estimation error
upholds the following inequality all the time.

������������
� � Æ�	������������ (13)

where �� � �� denotes the Euclidean norm, and Æ�	� is a potitive
constant.

Remark 1: If the lumped disturbance ����� is slowly time
varing, i.e., ������ � 
, then (11) leads to (12)
immediately without the assumption (9).

Remark 2: Because of ������� � 
��������

�����

in which
�������� is a polynomial vector in ���� to be de-
signed, �������� can be chosen so that ������������
is positively large enough compared to the magnitude
of ������, then we still have that ����� can become very
small quickly in case of ������ �� 
.

Define

������ � ������� ������� (14)

Because ����� is the lumped disturbance which is supposed
to be bounded, ������ should be bounded as well due to
�����

������ � ����� from (12). In consideration of both
�������� and ������ being bounded, we put the following
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assumption on ���������.
Assumption 2: ��������� is norm-bounded as follows.

����������
� � Æ��� ����������� (15)

where Æ��� is a potitive constant.
As a result of defuzzification, ����� in the polynomial fuzzy

model (2) can be calculated by

����� �
�

���

���	����
�
���������������

�������� ����� � ������
�
� (16)

where

	��� � �	���� 	���� � � � 	�����

���	���� �
���������
�
���

��������
	 
�

�

��� ���	���� � �

���	���� �
	�

���

�
��	������

III. ADAPTIVE POLYNOMIAL FUZZY CONTROLLER

Based on the polynomial fuzzy model with disturbance ob-
server shown in the previous section, an adaptive polynomial
fuzzy controller is proposed as follows.

Control Rule � �

If 	���� is 
 �
� and � � � and 	���� is 
 �

�� Then

���� � ��������������� � ������ (17)

where �������� � ���� is the baseline feedback gain which
is a polynomial vector in ���� to be designed, ����� is obtained
from (3), which is the compensation to counteract the influence
of the disturbance.
The overall controller is calculated by

���� �

�
���

���	����
�
��������������� � ������

�
� (18)

From here, unless confusion arises arguments such as � will
be omitted just for notational convenience.

Substituting (18) into (16), it follows that

�� �

�
���

�
���

����

�
��������� ��������������

����� ��� �������

�
�

�
���

�
���

����

�

����� ����������

�
����

�����


� ��� �������

�
�������

�
�

�
���

�
���

����

�

����� ����������

�
����

����� ��� �������� ��� �������

�
�

�
���

�
���

����

�

����� ����������

�
����

������� �������� ���
�

(19)

where (14) is used.
The stability of the control system that contains the polyno-

mial fuzzy model with disturbance observer (2) and (3), and
the adaptive polynomial fuzzy controller (18) is investigated
based on the Lyapunov stability theory. Let us consider the
following polynomial quadratic Lyapunov function candidate
[3]:

� ��� � ��������������� (20)

where ������ � ���� is a symmetric positive-definite
polynomial matrix in �, and � � ���� ��� � � � ��� � is a
vector to be chosen such that � � 
 ��  �� � � � �  �� denotes
the indices of the corresponding zero rows in ���� for all
�. Denoting the  th row in ����� and ���� as ������� and
������, respectively, we have

������ � 
 (21)

for all  � �, and

����������

��
� ���������� �� ���������������

� ����������

�
���
���

�� ������

������
������


��������� (22)

where the relation �� ��������� � � ��� ������� � 
 is used
due to the facts that � ��������� � ! and �� ���������

��
� 
,

and

��� �

�
���

������������� (23)

for all  � �. The time derivative of � ��� is given by

�� ��� � ��� ������������� ��� ��������� �����

��� ��� ������������ (24)

Since

����� �
��
���

�����

���
���

� " ��� �� (25)

where �� � ��� �� � � ����, and

" ��� �

�
�����

���

�����

���
� � �

�����

���

�
� ����� (26)

we have

�� ��� � ���" � ������������� ��� ���������" ��� ��

��� ���������

�
���
���

�� ���

���
���


����������

(27)
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where (22) is used. Substituting (19) and (23) into (27), we
have

�� ��� �

�
���

�
���

����

�
�� ���



#����� �#�

�����
�
����

�	�� ���������" ���������

�	�� ���������" ���������� ���
�

�
�

���

���
� ���������

�

���
���

�� ���

���



�����������

�
����������

�

�
���

�
���

����

�
�� ���



#����� �#�

�����
�
����

�	�� ���������" ���������

�	�� ���������" ���������� ���

��� ���������

�

���
���

�� ���

���



�����������

�
����������

�
(28)

where #����� �


����� � ������ ���

��
" � ���������, and

the fact that
�

��� �� � � is used.
Since

	�� ���������" �������������

� $�����
� ���������" �������

��
� ���"

� ������������� �
�

$����
��
�������� ���

� $�����
� ���������" �������

��
� ���"

� �������������

�
�

$����
%����

� ������� (29)

	�� ���������" ���������

� $�����
� ���������" �������

��
� ���"

� ������������� �
�

$����
��� ��

� $�����
� ���������" �������

��
� ���"

� �������������

�
�

$����
%�	��

� ������� (30)

and where (13) and (15) are used, and $���� � 
� $���� � 

are polynomials in �; therefore,

�� ��� �

�
���

�
���

�����
� ������������� (31)

where

������ � #����� �#�
�����

�$�����
�����" �������

�
� ���"

� ���������

�$�����
�����" �������

�
� ���"

� ���������

�
�

$����
%���! �

�

$����
%�	�! � ������

�

���
���

�� ���

���



�����������

�
������� (32)

According to the Lyapunov stability theory, the control system
concerned is asymptotically stable if the following inequality
is satisfied:

���� � 
� �� � � �� 	� � � � � �� (33)

Pre- and post-multiplying both sides of (33) by � ���, we have

�" ���
�
������ ��� �����
����

�
�
�
������ ��� �����
����

��
" � ���

�$����" �������
�
� ���"

� ���

�$����" �������
�
� ���"

� ���

�� ���
�

$����
%���� ���� � ���

�

$����
%�	�� ���

�

���
���

�� ���

���



�����������

�
� 
 (34)

where 
���� � ������ ���. By the Schur complement, (34)
holds if the following conditions are SOS:

&��

�
��

�� � ��� � ���

� ��� �����
��
��




� ��� 
 �����
��
��

�
�� &�� �� � � �� 	 � � � � � (35)

where &� � ��� is an arbitrary vector independent of �,

�� � �" ���
�
������ ��� �����
����

�
�
�
������ ��� �����
����

��
" � ���

�$����" �������
�
� ���"

� ���

�$����" �������
�
� ���"

� ���

�

���
���

�� ���

���



�����������

�
� '������! (36)

and '������ 	 
 is a polynomial in �. If the SOS (35) with
(36) are feasible, then the control feedback gain ����� in (17)
is calculated by

����� � 
�����
������ (37)

Summarizing the above result, we get a theorem as follows.
Theorem 1: Consider the polynomial fuzzy model with the

lumped disturbance and its observer (2) and (3) subject to the
Assumptions 1 and 2, under the adaptive polynomial fuzzy
controller (17), where ����� is obtained from (37), the closed-
loop control system will be asymptotically stable, if there exist
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symmetric polynomial matrix � ��� � ���� , polynomial ma-
trix 
���� � ���� , and polynomials $���� � 
� $���� � 
,
'���� � 
, '������ 	 
 such that

&�� �� ���� '����!�&� is SOS (38)

���� is SOS (39)

where &� � �� � &� � ��� are arbitrary vectors independent
of �.

The configuration of the control system with the FDO is
depicted in Fig.1.

∑ Plant

Polynomial

Polynomial u

model with FDO

∑
controller

fuzzy

∑

d

Fig. 1. Configuration of the control system with the FDO

Regarding the SOS in Theorem 1, we give the following
remarks.

Remark 3: �� ��� in (31) can be written as

�� ��� �
�

���

����
� �������������

�

�
���

�
�����

�����
� ���

� ������� � ������������ (40)

Therefore, after some similar manipulation as above,
the control system stability condition in (39) can be
replaced by

&��

�
��

��� � ��� � ���

� ��� �����
��
��




� ��� 
 �����
��
��

�
�� &�

is SOS� � � �� � � � � � (41)

&��

�
��

�	� � ��� � ���

� ��� �����
��
��




� ��� 
 �����
��
��

�
�� &�

is SOS� � � � (42)

where

��� � �" ���
�
������ ��� �����
����

�
�
�
������ ��� �����
����

��
" � ���

�$����" �������
�
� ���"

� ���

�$����" �������
�
� ���"

� ���

�

���
���

�� ���

���



�����������

�
� '�����!

�	� � �" ���
�
������ ��� �����
����

�
�
�
������ ��� �����
����

��
" � ���

�$����" �������
�
� ���"

� ���

�$����" �������
�
� ���"

� ���

�

���
���

�� ���

���



�����������

�
�" ���

�
������ ��� ������
����

�
�
�
������ ��� ������
����

��
" � ���

�$����" ����� ���
�
�����"

� ���

�$����" ����� ���
�
�����"

� ���

�

���
���

�� ���

���



�����������

�
� '������!

and '����� � 
 is a polynomial in �.
Remark 4: If the lumped disturbance ����� in (2) is not

considered, i.e., ����� � 
, then from (34) the control
system stable conditions become that

&�

�
��

�" ���
�
������ ��� �����
����

�
�
�
������ ��� �����
����

��
" � ���

�
���

���

� ���

��



�����������

�
� '������

�
�� &�

is SOS� �� � � �� � � � � � (43)

where &� � �� is arbitrary vector that is in-
dependent of �. (43) is one of the regular SOS
for the control system stability without the lumped
disturbance.

IV. SIMULATION

To illustrate the proposed results, consider the following
nonlinear system [3]:

������� � ��� � ��� � ����� � ���
�
� � �� � ����� �� (44)

����� �������� �� (45)

where �()	 � �� � ()	. The ����� phase plane with � � 

and � � 
 is shown in Fig. 2, which indicates the nonlinear
system is unstable.

-1.5 -1 -0.5 0 0.5 1 1.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
1

x 2

Fig. 2. �� � �� phase plane with � � � and � � �
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Based on the concept of sector nonlinearity [2], the non-
polynomial function, �������, can be exactly expressed by

������� � *������� �*�����
	

(
��

where *������*����� � �. Therefore, we have the following
membership functions (Fig.3):

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

x
1

M
e
m

be
rs

h
ip

 f
u
n
c
ti
o
n
s

N
1
↑

N
2
↓

Fig. 3. Membership functions ������ and ������

*����� �
��������

�
�
��


�� �
�

�
��

(46)

*����� �
�� � �������

�� �

�

�
��

(47)

and the nonlinear system can be represented by the following
polynomial fuzzy model:

Rule i � If �� is *������Then

�� � ��������� ����� ��� ���

where � � �� 	, � � ���� � ���� ���
� � � � ��, and

����� �

�
�� � �� � ��� � ���� � ��� �

�� �

�

����� �

�
�� � �� � ��� � ���� � ��� �

� �
�

�

�

���� �

�
��



�
� ���� �

�
��



�
�

For disturbance observer (3), by setting ����� � �
  ���, we
have ����� � ���
�� 
� satisfying ��������� � 
 in (5). In
order to obtain 
���� for ����� in (37), we have to solve SOS
in Theorem 1. Setting the related parameters as %	� � 
��,
%�� � 
��, '���� � 
�


�, '������ � 
�


�, $� � ��
,
$� � ��
, we have

����� � ��
�	��
��� � 
�������� � �������
	������� � ��	���� �
�	�� � 
����	�

 
����� � ����	����� � ��


	�� � �������

���	��� � ��
�
�� �
�	�� � 
����	�
 

����
��� (48)

where the degrees of polynomials 
����, and � ��� are set to
be �, and 
, respectively. It is obvious that when the degrees

are set differently from the preceding ones, different �� will
be obtained accordingly.
Using the fuzzy controller (17) where ����� and ����� are
shown in (48), the �� � �� phase plane with � � 
 is shown
in Fig. 4. The nonlinearly unstable system is stabilized via the
controller.
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Fig. 4. �� � �� phase plane with fuzzy controller (17) and � � �

Next, let us consider the following square wave disturbance
���� that is imposed on the nonlinear system:

���� �

!"
#

	� ��
 � � � 	�

�	� 	�
 + � � ��


� otherwise

(49)

For comparison purposes, we re-calculate �����, and �����
for the regular case where the lumped disturbance is not taken
into consideration so that (43) is used instead of (39) in
Theorem 1. We have

����� � ��
������ � ��


��� � ���	���
���
�	�� � ����	�� �
�	�� � 
��
	��

 
����� � ��
�������� � 
�����	�� � ���	���

�������� � ������� �
�	�� � 
��
���
 

����
��� � (50)

The control results are depicted in Figs.5 and 6, where the
solid lines are related to the proposed controller with (48) and
the dotted lines are related to the regular controller with (50). It
is shown that the proposed controller can stabilize the system
with the disturbance (49), whereas the regular controller is no
longer to make the system stable when the disturbance occurs
at � � �. Fig.7 shows the disturbance (49) and its estimate
(dotted line) which is obtained by ����� �

�

��� ��
�������

V. CONCLUSION

A new FDO was proposed into the SOS-based approach,
where the polynomial fuzzy model is used to develop the
system controller. The parameters involved in the FDO were
adjusted on the basis of the polynomial fuzzy model, and
the estimation error between the FDO and the disturbance
can shrink asymptotically to zero under the assumption that
the disturbance has a constant steady-state value. As one of
future works, how to alleviate the assumption such as varying
disturbance will be taken into consideration.
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Fig. 5. System states driven by the proposed controller with (48) and the
regular controller with (50)
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Fig. 6. Control inputs corresponding with the proposed controller with (48)
and the regular controller with (50)
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Fig. 7. Disturbance and its estimate
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