
Gradient-based Fuzzy Fault Isolation
in Residual-based Fault Detection Systems

Francisco Serdio, Edwin Lughofer, Kurt Pichler, Thomas Buchegger, Markus Pichler, Hajrudin Efendic

Abstract— We introduce a fault isolation technique based
on the analysis of the deformation of data-driven models
produced by an incoming fault. Combining the gradients within
a model, with the confidence of the model in terms of its quality
influenced by the degree of violation of the uncertainty measure
used in the fault detection phase allows us to successfully
identify faults from the fault alarms produced by a residual-
based fault-detection system relying on data-driven models.
These models are built from scratch fully automatically on the
basis of measurements recorded online and collected off-line in
a preliminary batch phase (no physical or expert knowledge
required). We used Partial Least Squares (PLS) regression and
fuzzy modeling techniques with the inclusion of time lags in
the input variables to establish time-varying prediction models.
The deformation analysis is performed throughout the warning-
models (those signaling the presence of a fault), and combines
the contributions of all channels to the model prediction and
then proposes a candidate faulty channel. We also introduce the
concept of a Fault Isolation Likelihood Curve (FILC), inspired
by the well-known Receiver Operating Characteristic (ROC)
curves, in order to (i) show the isolation rates in a convenient
and interpretable way and (ii) allow comparison between the
detection and isolation capabilities of a fault detection system.
In tandem with the FILC, we introduce the concept of the
Fault Isolation Gap (FIG) as a tool for measuring the isolation
capabilities of an algorithm with regards to the (fault) detection
capabilities achieved by a fault detection method.

I. INTRODUCTION

Fault Detection (FD) is of great importance as proper
and accurate condition monitoring (i.e., early detection of
faults) in industrial systems minimizes costs for repairs
and increases production efficiency. Fault Isolation (FI) in
particular is also attracting attention since once a fault is
detected, it allows system operators to identify the channel
or combination of channels responsible for causing the
abnormality in the process and thus to determine which part
should be maintained or replaced (localization).

Previous works relied on, once a fault was detected,
examining the contribution of the original channels to the ob-
servable characteristic of the system that exceeded a control
limit. This means that FI can be carried out by reverting to the
original process variables. This was the approach followed
in [1], where the authors implemented a process variable
contribution plot for linear Principal Component Analysis
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(PCA) describing the change in the new observation variables
relative to average values calculated from the nominal model.
This work was successfully extended to the non-linear PCA
case in [2]. However, PCA-based fault detection performed
poorly for particular measurement signals, for instance un-
typical occurrences such as abrupt pattern changes; for details
refer to [3]. Other FI approaches rely on analytical fault and
isolation models [4] [5] [6], which are usually very system-
specific (applicable only to one system type) and require
significant manpower (physicians, experts) during setup.

In this paper, we investigate a new kind of FI algorithm
which is based on on-line residuals extracted from System
Identification (SysID) models within a FD framework as
demonstrated in [3]. It can deal with arbitrary types of mea-
surement signal, avoids use of fault patterns and types, acts in
a fully automatic, unsupervised manner, and reduces operator
effort significantly. The FI component serves as an add-
on in this framework and relies on time-lagged prediction
models obtained by data-driven regression techniques (i.e.
PLS and fuzzy modeling, the latter for modeling non-linear
relations). These may become violated in on-line mode,
which means they may show untypical residuals and point
to potential fault candidates. All violated models are used
in the FI process by examining the degrees of contributions
of all the measurement variables/channels included in these
models. The contributions are calculated for each model
separately by a weighted combination of the various models’
gradients (along each input variable) for the current sample,
model quality (in terms of expected prediction error) and the
degree of model violation (distance to tolerance band), and
are accumulated over all the violated models. The variables
with the highest contributions are expected to be those most
affected by system failures.

The following Section II explains how the FD is built
from scratch and describes the models involved. Section III
explains the FI approach, including how the contribution
of variables is computed and introducing how these con-
tributions are aggregated to make a decision concerning
FI with two variants: crisp (isolated channel) and fuzzy
(relative contributions over all channels). Section IV shows
FI results obtained for a real-world data set from engine test
benches. To this end, the concepts of the FILC and the FIG
are introduced as evaluation measures. Finally, Section V
concludes the paper and presents future work.
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II. FAULT DETECTION

A. The system

We used a residual-based FD system as developed in [3]
using standard soft computing models, extended in [7] with
variable projections (transformations) and time-lagged vari-
ables, inducing non-linear Vector Auto-Regressive Moving
Average (VARMA) and non-linear Box-Jenkins-type models
[8] (observing the dynamics required in the SysID step).
Further details on PLS and fuzzy modeling using Sparse
Fuzzy Inference System (SparseFIS) can be found in [9]
and [10] respectively. Our FD system is based on the online
tracking of residuals extracted from the models for new
instances. There are several models for different monitoring
channels (i.e. for those that can be approximated by a subset
of other channels with sufficient accuracy), which are suitable
for providing a measure of the model’s uncertainty in the
prediction of the target given a concrete input sample. We
show this uncertainty measure as an error bar and use it later
to normalize the residuals, that is, the differences between
predicted and observed targets, which are tracked over time.
A tolerance band is created on the basis of the residuals’
online tracking to handle the mean and standard deviation for
the normalized residuals, thus producing a dynamic threshold
which, when exceeded, raises a fault alarm. ”Exceeding”
means in this context that they show an untypical behavior
in the time signal. Figure 1 presents an overall-overview of
the workflow with the FD system in the upper part. Further
explanations and more detail about the FD system can be
found in [3]. Below we provide a brief summary of the
uncertainty measure and the online tracking of the residuals
used, as these serve as one input to our FI approach.

B. Uncertainty measure

A local error bar serves as uncertainty measure and takes
into account the local data distributions, which may change
over the whole input feature space. Combining the inverse
covariance matrix of the model parameters XT X , which is a
reliable representation of dense and sparse data regions [11],
with the noise level σ2 to integrate the noise intensity yields
a local error bar expressed by the formula:

cov{ŷ}= Xtest σ̂
2(XT X)−1XT

test ŷ±
√

diag(cov{ŷ}) (1)

where Xtest is the current on-line test sample.

C. Online-tracking of residuals

Before residuals are tracked, they are normalized using
the uncertainty of their corresponding model in the current
sample region:

resi(k) =
| fi(~x(k))− yi(k)|

uncerti
, (2)

where ~x(k) is the current sample, fi is the evaluation of
the model of channel i, yi is the observation of the same
channel, and uncerti = cov{ŷi(.)} as given in Equation 1.
Recall that low confidence levels (high values of uncerti)
reduce the residual even when there are clear deviations

Fig. 1. From detection to isolation: reverting to the original process
variables to determine the influence of each

from the model. The tracking is performed samplewise and
handles the mean and standard deviation of the normalized
residual in an incremental fashion:

tolbandi(k) = µi(k)+n∗σi(k), (3)

where µ is the mean, σ is the standard deviation, and
n is a multiplier and an essential parameter in our FD
method. Note the incremental/decremental σ -update includes
rank-1 modification ∆µi(k) for better stability [12] and that
values outside this band are, of course, those seen as fault
candidates.
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D. Fault detection rates

As mentioned above, previous research focused on FD.
Table I summarizes the most meaningful methods, based on
a statistical comparison of their performance. Table II shows
the detection rates of the best methods for one of the data sets
studied (excluding other methods such as Auto-Regressive
Moving Average (ARMA) [13], the PCA-based approach
[14], and One-Class Support Vector Machines (SVMs) [15],
which are non-residual-based techniques and perform much
more poorly). Note that only one column has no win-
ning method (5% fault intensity, with false positives below
3%), which confirms that the 4 methods shown were the
most significant of the 27 different approaches investigated.
Additionally, Table II shows that the PCA-based approach
would not have been a reasonable choice for FI, as its FD
performance was already very poor.

For further information about PLS and its fuzzy variant,
Fuzzy PLS (FPLS), refer to [16] and [17] respectively. For
further details on VARMA models (denoted by the keyword
”lags” in all the tables), see [7] and [13].

TABLE I
STATISTICAL EVALUATION OF METHODS USING METHOD RANKING,

WHERE (+/-/0) MEANS (WINNER/LOSSER/TIE).

Set / Level PLS PLS +
lags

PLS +
SparseFIS

PLS +
SparseFIS +

lags
PLS 0 - 0 0

PLS + lags + 0 + 0
PLS + SparseFIS 0 - 0 0

PLS + SparseFIS +
lags 0 0 0 0

III. FAULT ISOLATION

Our FI strategy is based on partial derivatives of the SysID
models. As previously mentioned, the partial derivatives of a
function with respect to a specific dimension can indicate the
relative importance of the corresponding variable (channel)
for that function. The lower part of Figure 1 schematically
shows how all violated models are analyzed at a particular
time instant to extract the contribution of each channel
involved and how the quality of the model and the degree of
violation of the model (deviation of the residual with regards
to the threshold) are used to normalize and weight the impact
of the channel.

A. Contribution of the variables

When a fault is detected, the FI system comes into play.
The FI system is fed with all the violated models (i.e., those
whose tolerance band in (3) is exceeded) and the channels
involved in them and then analyzes the contribution of each
channel to the prediction of the model it belongs to. This
process is detailed in Algorithm 1. A unit contribution is
assigned to the target channel (the channel with the model),
while the contribution of the model’s input channels is the
result of the partial derivative of the channel multiplied by
model quality and degree of violation of the model at instant

t. The degree of violation is expressed by the factor by
which the residual is greater than the threshold. The partial
derivatives are directly obtained from the regression coeffi-
cients multiplied by the weights in the principal components
in the case of PLS regression and measured by numerical
differential quotients in the case of fuzzy models (using the
difference between f (~x) and f (~x)+∆ with ∆ a small positive
number). The quality of each model is determined during
the batch off-line system identification steps in a stratified
cross-validation procedure [18] that estimates the expected
prediction error on new samples, see [3]. We use as quality
the coefficient of determination (R2) of the model (function
Get Quality in Algorithm 1). Note that when time lags are
used in the models (VARMA case), the contribution of a
lagged channel must be added to the contributions of its
original (non-lagged) channel, which is the candidate channel
for isolation.

B. Decision based on the accumulated contributions

We consider two ways of isolating the fault (i.e., of
deciding which are the faulty channels where the fault is
mostly likely to happen).

a) Crisp decision: follows a winner-takes-all approach,
that considers the faulty channel to be that with the highest
accumulated contribution amongst the channels present in
the violated models at time t. The decision relies on the idea
that the faulty channel usually contributes most to untypical
residuals obtained from the models and causes them to
exceed the corresponding FD model’s dynamic threshold in
(3). However if the channels affected by a fault contribute
little to the violated models, the residual is unlikely to show
any untypical behavior at all and does not violate (3) (thus,
this fault cannot be detected at this stage, and FI is not
triggered). Since the FI performance therefore depends on the
FD performance, it can never be equally high (see the results
section below). In fact, one channel may contribute more to

Algorithm 1 Extracts the contributions of the channels in a
violated model at a time instant t

1: Input model : the violated model
2: Input inputs t : the inputs at instant t
3: Input violation : the violation degree o f the model
4: Return : contributions o f the channels
5: function CONTRIBUTIONS(model, inputs t, violation)
6: contribs← empty list
7: contrib target← 1
8: ADD TO LIST(contribs,contrib target)
9: quality← GET QUALITY(model)

10: input channels← GET INPUT CHANNELS(model)
11: for all channels chi in input channels do
12: partial chi← ∂ i

∂ t (model,chi, inputs t)
13: contrib chi← partial chi ∗quality∗ violation
14: ADD TO LIST(contribs,contrib chi)
15: end for
16: return contribs
17: end function
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TABLE II
ENGINE DATASET. SUMMARY OF DETECTION RATES WITH DIFFERENT FAULT INTENSITIES AND FALSE ALARM LEVELS.

Method

5% Fault 20% Fault 100% Fault
Max. Overdetections Max. Overdetections Max. Overdetections

< 3% < 5% < 10% < 3% < 5% < 10% < 3% < 5% < 10%
PLS 73.00 73.00 89.00 69.00 69.00 85.00 62.00 62.00 78.00
PLS + lags 70.00 78.00 85.00 83.00 89.00 94.00 93.00 96.00 97.00
PLS + SparseFIS 72.00 72.00 85.00 79.00 79.00 87.00 75.00 75.00 84.00
PLS + SparseFIS + lags 58.00 80.00 80.00 81.00 90.00 90.00 93.00 95.00 95.00
PCA - CPV 0.90 n/a n/a 79.00 n/a n/a 78.00 n/a n/a 87.00

a particular model than the channel which is really affected
by the fault, but this likelihood decreases with the number of
models violated because the faulty channel appears as input
(exploration through model diversity). Since this strategy is
based on a crisp decision, a faulty channel is either (properly)
isolated or not, but never partially isolated. Considering
degrees of isolation in order to obtain a relative isolation
level and to offer more options to the user naturally leads to
the second approach.

b) Fuzzy decision: allows a set of channels -each with
its corresponding contribution- to be provided to the FD
system operator as valuable extra information. This also com-
pensates for cases in the decision-making process where the
true faulty channel is not that with the highest contribution
amongst the violated models — in this case, the crisp variant
will always deliver a false information, whereas the fuzzy
variant postpones the decision, shows possible alternatives,
and potentially provides a degree of isolation for that faulty
channel. In cases where the faulty channel has the highest
impact, this fuzzy decision approach will, of course, produce
the same results as the crisp decision approach. A remarkable
point directly arising by definition is that this fuzzy version
will always produce better isolation results since every time
a faulty channel is not that with the greatest contribution to
the target’s prediction of a model, it will contribute some

Algorithm 2 Extracts the contributions of the channels all
along the violated models, at a time instant t

1: Input models : the models
2: Input inputs t : the inputs
3: Return : contributions o f channels
4: function JOIN CONTRIBUTIONS(models, inputs t)
5: contribs← empty list
6: for all models mi in models do
7: if mi is violated then
8: v mi← (residual/threshold)
9: ctri← CONTRIBUTIONS(mi, inputs t,v mi)

10: ADD TO LIST(contribs,ctri)
11: else
12: Skip model
13: end if
14: end for
15: return contribs
16: end function

value to the isolation rate due to a partial isolation degree.
In particular, in the fuzzy case, we have

f uzzycont chm =
acc(contrib chm)

maxi=1,...,Macc(contrib chi)
(4)

for each channel m included in the measurement system.
Thus, if the faulty channel has the maximum accumulated
contribution over the set of M channels in all violated models,
then it will be assigned isolation degree 1; otherwise, if will
receive an isolation degree (> 0) proportional to that of the
channel with the maximum accumulated contribution. These
degrees can be reported to operators (in the form of a list of
channels most likely affected by the fault) and are also used
when the FI rates are calculated (see below).

IV. RESULTS

A. Fault Isolation Likelihood Curves (FILC)

ROC curves were used in previous research (e.g., [3]) to
visualize detection rates -we prefer the name Fault Detection
Curve (FDC), for use in this domain. These curves, plotting
true positives (y-axis) against false positives (x-axis) can also
be adapted to display isolation rates in so-called FILC curves:
the x-axis again shows the false positive detections, whereas
the y-axis will show the true positive isolations. This leads
to two direct observations: an FDC will always be above
its corresponding FILC, and the x-values of both curves
will contain the same information (i.e., the false positives
values are the same). This means that a direct measure of
the isolation capabilities of our method can be provided in
term of what we call FIG, as explained below.

B. Fault Isolation Gap (FIG)

We define the FIG as the difference between an FDC
and an FILC for a particular value of x in the combined
graph. The concept can, of course, be easily extended to the
difference between Areas Under the Curve (AUCs) when
whole curves instead of concrete points are considered.
However, in both cases this is a measure of what proportion
of detected faults could not be isolated. This gap will produce
a direct graphical and numerical impression of the ability of
a method to isolate faults. This measure should be presented
in combination with the number of candidate channels be-
tween which to distinguish in an isolation-decision-making
process. Tendentially, the higher this number becomes, the
more difficult it is to extract the affected faulty channel

1431



correctly. This is somewhat related to a multi-class classi-
fication problem, where the number of classes represents the
number of channels (possible isolation feedbacks) — and it
is well-known that the performance usually decreases with
an increasing number of classes [18]. Thus, we also report
on the average number of channels involved in the violated
models to assess the ability to isolate faults: for instance,
when 10 different channels are involved in all the violated
models for a particular sample, an isolation rate of 50%
constitutes acceptable performance, whereas when only 2
channels are involved (one-input-one-output model), this is
no better than random guessing.

C. Fault Isolation Ratio (FI Ratio)

Isolation deals with the question of what can be isolated
from what can be detected, i.e., how well our fault isolation
strategy performs once a fault is detected. We therefore define
a Fault Isolation Ratio (FI Ratio) as the proportion between
isolation and detection

FI Ratio = FIR / FDR, (5)

where FIR is the Fault Isolation Rate defined as

FIR = no f aults isolated / no total f aults, (6)

and FDR is the Fault Detection Rate defined as

FDR = no f aults detected / no total f aults. (7)

Note that FI Ratio, FIR and FDR are bounded by 1 (≤ 1)
and that FIR ≤ FDR. Further, note how for fuzzy isolation
approaches the FIR becomes a likelihood instead of a proper
rate since partial isolation results are taken into account.

D. The results

The results of PLS and its VARMA variant for the engine
data set investigated are shown in Figures 2 and 4, respec-
tively. The graphical version compares the FDC and FILC
curves (cf. Section IV-A). The FILC is shown in its crisp and
fuzzy versions, and -as expected- the latter outperforms the
former because the partial identification rates increase the FI
rates in a stepwise manner, whereas the crisp version does
not produce meaningful results.

The role of the fault intensity. From the figures, it is
clear that our fault isolation method is able to isolate more
faults when the fault intensity is sufficiently high (20% to
100% intensity) than when it is low (5% to 10% intensity).
This confirms the expectation that the faulty channel must
influence the models such that it is visible among all other
channels when reverting from the prediction of the model to
the contributions of its channels.

Autoregressive gain. The figures also clearly show that the
autoregressive models help the fault isolation process. This
was also the case in the fault detection stage, but from the iso-
lation results the gain appears to be even clearer than before.
As a good example, high-intensity faults (50% and 100%
intensity) produce isolation rates that are around 40% greater
than those produced by their non-autoregressive counterparts.

However, for low-intensity faults (5% and 10% intensity), the
isolation results with time lags included (VARMA models)
are slightly worse than those without.

The impact of over-detections. From Table III it can be
seen that when the over-detection rates rise, the FI Ratio
decreases, which is in line with our expectations of falsely
violated models corrupting the isolation process (see Section
III). We investigated only small over-detection rates (less
than 3%) as required by the system experts to avoid too many
distractions. However, we were able to observe a similar
trend in cases of 5-20% over-detection rates.

The classification problem. Figures 3 and 5 show how the
number of channels involved in the violated models varies for
the different values of n multiplying the tracking tolerance
band (cf. Section II-C). As expected, when the tolerance
band for the residuals is too narrow (n = 1,n = 2), the
average and standard deviation of the number of channels
involved in the violated models is high (≈ 16.5±2.5 channels
for non-VARMA models, ≈ 20± 5 channels for VARMA
models), thus making the classification problem harder.
For values of n ≥ 3, the average and standard deviation
over the number of channels involved stabilizes at about
[9.75,11.75]± [2.75,4.25] channels, reducing the complexity
of the isolation task to (merely) 10 to 15 channels. These
results are detailed in Table IV: clearly, for a tolerance band
value n≥ 4 (the important band range, as with values below 4
the over-detection rates grows drastically [7]), the complexity
of the isolation problem remains fairly constant.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a residual-based FI system which
relies on partial derivatives and comes in two variants (fuzzy
and crisp) in order to isolate faults in a purely data-driven
black-box Fault Detection and Isolation (FDI) system that
uses neither information about the process producing the data
nor about the faults to be isolated. We have successfully
tested the algorithm with two modeling techniques (selected
from previous research where good detection rates were
obtained) on a data set from a real-world process. Our results
confirm that the technique can be used effectively in real-
world applications and that the influence of a fault in the
residuals of one or several models can be backtracked simply
by investigating the gradients within the models at the time
the fault is signaled by the fault detection system. We have
also introduced the Fault Isolation Likelihood Curve, the
Fault Isolation Gap and the Fault Isolation Ratio as tools
for measuring the (fault) isolation capabilities of a concrete
method/technique and for comparing the detection and the
isolation capabilities within the method/technique itself. Con-
sidering the complexity of the isolation problem (equiva-
lent to a multi-class classification problem with around 10
classes), our approach shows solid isolation ratios. Thus, it
can also be used in other (residual-based) fault detection
frameworks showing a different performance, as the isolation
ratios indicate the FI performance independently of the FD
performance. Future work will focus on how to improve
the technique’s isolation capabilities, mainly by modifying
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Fig. 2. PLS: FDC vs. Fuzzy FIDL vs. Crisp FIDL. Top curve (blue) is FDC, middle curve (black) is Fuzzy-FILC and lower curve (blue) is Crisp-FILC.
The curves plot True Positives (y) against False Positives (x)

Fig. 3. PLS: Error bar plot (µ±σ ) of the number of channels against the σ values of the tolerance band. Low values of σ imply a greater number of
channels to be isolated because of a greater number of violated models, which makes the isolation harder.

Fig. 4. PLS + Lags: FDC vs. Fuzzy FIDL vs. Crisp FIDL. Top curve (blue) is FDC, middle curve (black) is Fuzzy-FILC and lower curve (blue) is
Crisp-FILC. The curves plot True Positives (y) against False Positives (x)

Fig. 5. PLS + Lags: Error bar plot (µ ±σ ) of the number of channels against the σ values of the tolerance band. Low values of σ imply a greater
number of channels to be isolated because of a greater number of violated models, which makes the isolation harder.

the way in which channel contributions are aggregated (for
instance, using time frames) to smooth out the disturbances
produced by false positives.
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TABLE III
ENGINE DATASET. FI RATIO AND AVERAGE ± STANDARD DEVIATION NUMBER OF INVOLVED CHANNELS DURING FI,

BASED ON FUZZY FAULT ISOLATION RATES.

Method
5% Fault 20% Fault 100% Fault

Max. Overdetections Max. Overdetections Max. Overdetections
< 0.8% < 1.6% < 2.4% < 0.8% < 1.6% < 2.4% < 0.8% < 1.6% < 2.4%

PLS 59.42
10.19±0.74

37.90
10.22±0.91

37.90
10.22±0.91

65.20
10.66±1.59

51.45
10.65±1.66

51.45
10.65±1.66

75.83
11.28±2.09

59.80
11.20±2.12

59.80
11.20±2.12

PLS+ lags 21.65
8.61±1.12

21.65
8.61±1.12

21.65
8.61±1.12

44.70
8.37±1.65

44.70
8.37±1.65

44.70
8.37±1.65

63.53
8.70±2.16

63.53
8.70±2.16

63.53
8.70±2.16

SparseFIS 42.10
6.42±1.61

34.74
6.84±1.98

34.74
6.84±1.98

48.59
6.49±1.81

47.77
6.67±1.98

47.77
6.67±1.98

44.47
6.48±1.62

41.69
6.65±1.80

41.69
6.65±1.80

SparseFIS+ lags 50.95
6.57±0.62

41.75
6.68±0.57

31.47
6.81±0.48

72.96
6.60±0.95

56.06
6.70±0.67

41.54
6.77±0.53

68.48
6.67±0.65

53.51
6.86±1.03

45.51
6.93±0.96

TABLE IV
AVERAGE AND STANDARD DEVIATION OF THE NUMBER OF CHANNELS INVOLVED DURING THE ISOLATION PROCESS.

Method PLS PLS+Lags
Fault 5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

n∗σ Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1 16.38 2.58 16.45 2.65 16.63 2.62 16.94 2.66 16.94 2.63 20.20 5.42 20.47 5.21 20.99 5.02 21.49 5.17 21.86 4.98
2 12.88 2.90 13.13 2.99 13.16 3.09 13.22 3.16 13.41 3.19 12.13 4.50 12.42 4.70 13.21 4.90 14.15 5.25 14.74 5.75
3 10.90 1.98 11.00 2.08 11.17 2.08 11.38 2.25 11.38 2.24 10.25 3.25 10.28 3.11 10.85 3.43 11.39 3.97 11.74 4.26
4 10.53 1.41 10.60 1.55 10.71 1.64 11.03 1.92 11.14 1.99 9.73 3.05 9.80 3.23 9.65 3.03 9.84 2.74 10.35 3.55
5 10.25 1.06 10.48 1.48 10.49 1.54 10.90 1.88 11.02 1.90 8.97 2.00 9.04 2.41 8.97 2.29 9.29 2.44 9.58 2.52
6 10.22 0.91 10.52 1.55 10.65 1.66 10.96 1.92 11.20 2.12 9.79 2.56 9.51 2.83 9.19 2.82 9.12 2.56 9.66 2.33
7 10.19 0.74 10.50 1.35 10.66 1.59 10.81 1.78 11.28 2.09 9.41 1.95 9.25 2.03 8.99 2.80 9.05 2.40 9.09 2.34
8 10.29 0.88 10.61 1.54 10.89 1.76 10.95 1.87 10.83 1.90 8.61 1.12 8.49 1.22 8.37 1.65 8.61 2.23 8.70 2.16
9 10.32 0.92 10.37 1.06 10.63 1.52 10.66 1.61 10.84 1.72 8.24 1.19 8.08 1.24 8.16 1.68 8.23 1.99 8.58 2.14
10 10.00 0.00 10.13 0.61 10.50 1.48 10.57 1.46 10.39 1.16 8.58 0.49 8.47 0.67 8.16 1.70 7.98 2.15 8.31 1.94

Method SparseFIS SparseFIS+Lags
Fault 5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

n∗σ Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
1 12.27 4.20 12.29 4.20 12.40 4.17 12.31 4.18 12.43 4.24 8.31 2.58 8.23 2.60 8.10 2.53 8.01 2.57 8.29 2.70
2 10.03 3.79 10.15 3.82 10.34 3.80 10.24 3.80 10.43 3.80 7.64 2.12 7.67 2.16 7.57 2.10 7.61 2.16 7.55 2.15
3 8.03 2.54 8.01 2.60 8.04 2.64 8.15 2.79 8.05 2.65 7.18 1.63 7.16 1.58 7.17 1.66 7.04 1.49 7.13 1.62
4 7.70 2.49 7.68 2.55 7.60 2.50 7.60 2.45 7.60 2.55 7.04 1.19 7.07 1.28 6.93 1.11 6.85 0.90 6.85 0.92
5 7.11 1.88 7.17 2.11 7.01 2.00 6.89 1.89 7.08 2.02 6.81 0.48 6.85 0.71 6.77 0.53 6.77 0.53 6.93 0.96
6 6.84 1.98 6.88 1.98 6.67 1.98 6.44 1.74 6.65 1.80 6.68 0.57 6.71 0.79 6.70 0.67 6.73 0.68 6.86 1.03
7 6.42 1.61 6.69 2.12 6.49 1.81 6.47 1.80 6.48 1.62 6.57 0.62 6.70 0.90 6.60 0.95 6.68 0.78 6.67 0.65
8 6.43 1.62 6.93 2.29 6.61 1.91 6.64 1.88 6.53 1.65 6.91 0.71 6.97 0.71 6.80 0.71 6.87 0.86 6.86 0.71
9 5.87 1.15 6.31 1.93 6.29 1.83 6.09 1.35 6.15 1.38 6.96 0.76 7.00 0.76 6.88 0.77 6.74 0.81 6.97 1.19
10 5.69 1.07 6.41 2.25 6.43 1.94 6.14 1.36 6.16 1.33 6.92 0.92 7.07 0.88 6.85 0.85 6.68 0.88 6.81 1.30
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