
Reasoning with Words: A First Approximation

Clemente Rubio-Manzano, Pascual Julián-Iranzo

Abstract— This paper aims to propose a model of reasoning
based on semantic relations among words and to incorporate
it in the inference mechanism of a logic programming lan-
guage. This model is integrated in a fuzzy logic programming
framework and it is implemented into the Bousi∼Prolog system
by using WordNet. All this process is transparent to the
programmer and the reasoning with words is automatic. The
lexical semantics between symbols (words) provides us with
the ability of reasoning with words and turns the knowledge
representation in a more natural and less complex process.

I. INTRODUCTION

When symbols of a formal language are interpreted as
words, then it is possible to establish a direct relationship
between formal language and natural language, in the sense
that the symbols gain the meaning of the words which they
represent. As a consequence the properties or phenomena
produced among some of them are extrapolated on the sym-
bols (semantic relations, vagueness, impression or ambiguity,
are some examples). In this context, classical logic does not
enables to work in a natural way with these phenomena
or properties, mainly due to its rigid inference mechanism.
Therefore, such mechanism must be extended and adapted to
new requirements. The following example shows this fact.

Example 1: Let’s suppose that we want to formalize a
common sense reasoning rule: “if you are at your car and
you drive from home to airport, then you are at the airport”.
A possible formalization, leaving temporal considerations
aside, would be the following:

at(I, car) ∧ driving(I, home, airport)→ at(I, airport).

In order to make this example to work correctly with
the properties and phenomena mentioned before, a great
amount of additional elements are required; for example,
defining precisely the terms in the sentence (car, driving,
home, airport) and its interrelations, which makes the process
of representing knowledge a very complex task when the
objective is obtaining a complete commonsense reasoning.

On the other hand, while logic reasoning is deductive,
human reasoning is mainly inductive, abductive and em-
pirical; also, concepts, generalizations, categories based on
experience and perceptions play a central role. Logic has
an expressive language in which it is not easy to model
and where simulation of human reasoning, which is mainly
inductive and highly associative, it is a complex process.

Such considerations lead us to consider the use of semantic
relations in a logic programming framework with the purpose
of improving its representation and inference mechanisms.

Clemente Rubio-Manzano with the Department of Information Systems,
University of the Bı́o-Bı́o, Chile (email: clrubio@ubiobio.cl).

Pascual Julián-Iranzo. Department of Information Technologies
and Systems, University of Castilla-La Mancha, Spain (email:
Pascual.Julian@uclm.es).

Also, quantification of semantic similarity between symbols
provide us with the ability of reasoning regarding concepts
and turns the knowledge representation into a more natu-
ral and less complex process. While logic is a synthetic
representation by creating and manipulating symbols in a
closed world, logic enriched with the semantic relations of
the natural language is an open, empirical representation,
combining concepts that have already been definitive and
related to the human language [6].

In this work we present a first approximation to solve
this kind of problems. It consists of designing a model of
reasoning based on semantic relations among words and to
incorporate it in the inference mechanism of a fuzzy logic
programming language. In this new framework, semantic
relations are handled by means of fuzzy relations which are
used within a weak unification process. This way we obtain
a more natural fuzzy logic programming language. Specifi-
cally, this model is implemented into the Bousi∼Prolog by
using WordNet.

The structure of the paper is as follows. First, Section II
introduces the general concepts regarding natural languages
and thesauri. Note that we are interested in the lexical
semantics and the thesauri as a basis for knowledge; so,
we only review a little part of the natural language theory.
Then, in the Section III we propose a model of reasoning
based on the semantic relations among words by means
of the definition of inference rules based on synonymy,
antonymy and hypernymy which are incorporated to a fuzzy
logic programming framework. From a more pragmatic stand
point, Section IV shows the incorporation of WordNet into
the Bousi∼Prolog system and the implementation of this
model of reasoning. Next, Section V shows the potential
problems that we can find reasoning with words. Finally, the
conclusions and the future work are included in Section VII.

II. NATURAL LANGUAGE, THESAURI AND WORDNET

Although natural languages are composed of a number
of components (such as phonetic, morphology, pragmatics
and so on) here we concentrated on syntax and semantics.
Syntax establishes the rules and principles by which words
and sentences are constructed. Semantics studies the meaning
of these constructions at two levels, lexical semantics (word
meaning) and sentence meaning. In this first approximation
we pay attention to the lexical semantics.

An important field in lexical semantics is the study of the
existing relations of words, since the meaning of a word
depends largely on its semantic relations with other words.
The main relations are: Synonymy, which relates words
with similar meanings in a determined context. Thus, two

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 569

words are synonyms when they have the same meaning or
a similar meaning. Synonyms may appear in nouns (baby-
infant, student-pupil, illness-disease), verbs (grow-increase,
buy-purchase), adjectives (pretty-attractive, sick-ill, rich-
wealthy) or adverbs (fast-quickly, really-certainly, currently-
presently); Antonymy, are pairs of words whose meaning
is in opposition, such as hot-cold, fat-thin, up-down. Words
could have different antonyms, depending on their meaning,
for example, long and tall are antonyms of short. There
are three types of antonyms. Gradable antonyms represent
points on a scale that are approximately equal in distance
(slightly-completely, hot-cold, happy-sad or early-late); Com-
plementary antonyms are pairs of words that express a totally
opposite meaning (mortal-immortal, on-off, alive-dead); and
Relational Antonyms (or Converse Antonyms) which are pairs
of antonyms in which one word describes a relation between
two objects and the others describe the inverse relation
(parent-child, teacher-student, buy-sell); (c) Hypernymy, a
word A is an hypernym of another word B if B is a class of
A. It refers to categories or general concepts. For example,
“vehicle” is hypernym of “train, car, airplane, bicycle”,
“animal” is an hypernym that included in its meaning “dog,
cat, horse, lion”; (d) Hyponymy is the opposite of hypernym.
And hyponym is a word whose meaning is included in that of
another word, its hypernym. And hyponym describes things
in a specific way. For example, rose, daisy or tulip are
hyponyms in relation of its hypernym flower; or table, sofa
or bed are hyponyms which hypernym is furniture. Besides
those relations mentioned before, there are other semantic
relations: Polysemy, Homonymy or Meronomy.

A way to obtain the semantic relations among the words,
in a particular context, is by using a thesaurus. A thesaurus
is a vocabulary (terms and descriptions) with links towards
synonyms, equivalents, generics, specific or related terms.
A thesaurus can be general and come from a natural lan-
guage (WordNet [7] o ConceptNet [6], in English, o FDSA
[9], in Spanish) or specialized and come from mastering
a specialized subject (EuroVoc [1] or UMLS [5]). We are
interested in digital thesauri that can be accessed by using
a standard programming language. In particular, we have
chosen WordNet, though the techniques that we present and
explain here can be extrapolated to any other context and
any other thesaurus.

We are going to use WordNet in order to obtain semantic
relations. In particular, synonyms, antonyms and hypernyms.
WordNet is a lexical database of English language where
words (separated by noun, verbs, adjectives and adverbs) are
linked through semantic relations. The semantic relations that
handles were chosen because they are recurrent in English
and due to its familiarity. That is to say, a user does not
have to be an expert to understand them. Wordnet includes
the following semantic relations [7]: (a) synonymy is the
basic relation in WordNet since it uses sets of synonyms
(synsets) to represent the meaning of words. Synonymy is
a symmetric relation between words; (b) Antonymy (op-
posite name) is also a symmetric relation between words,

it is especially important in order to organize the meaning
of adjectives and adverbs; (c) Hyponymy (sub-name) and
its inverse relation, hypernymy (super-name), are transitive
relations between synsets. Since there is only one hypernym,
this semantic relation organizes the meaning of names as
a hierarchy; (d) Meronomy (part-name) and its inverse,
Holonomy (whole-name), are complex semantic relations.
WordNet distinguishes component parts, substantive parts,
and member parts; (e) Troponymy (manner-name) is for
verbs what hyponymy is for nouns, although the resulting
hierarchies are much shallower; (f) Entailment relations
between verbs are also coded in WordNet.

III. REASONING WITH WORDS

In this section we are going to present a model of
reasoning based on the semantic relations among words and
we will include it in the weak resolution procedure of a
fuzzy logic programming language such as Bousi∼Prolog
[4]. This inference mechanism makes use of two important
concepts: proximity equations and weak unification. Prox-
imity equations allow us to define similarity or proximity
relations and, in general, fuzzy relations. From a syntactic
point of view, a proximity equation “a ∼ b = α” defines
an entry R(a, b) = α of a relation R establishing that a
is close to b with a degree α ∈ [0, 1]. Roughly speaking,
the so called Weak Unification Algorithm states that two
terms f(t1, . . . , tn) and g(s1, . . . , sn) weakly unify if the
root symbols f and g are close, with a certain degree, and
each of their arguments ti and si weakly unify. The following
example serves to illustrate the syntax and the operational
semantics of the language.

Example 2: Assume a fragment of a deductive database
that stores information about people and their preferences
on teaching.
% PROXIMITY EQUATIONS
physics ˜ math = 0.8.
physics ˜ chemistry = 0.8.
chemistry ˜ math = 0.6.

% FACTS
likes_teaching(john,physics).
likes_teaching(mary,chemistry).
has_degree(john,physics).
has_degree(mary,chemistry).

% RULES
can_teach(X,M):-has_degree(X, M),

likes_teaching(X, M).

In a standard Prolog system, if we ask about who can
teach mathematics, ‘‘?-can teach(X,math)’’, the sys-
tem does not produce any answer. However the Bousi∼Prolog
system answers ‘‘X=john with 0.8’’ and ‘‘X=mary

with 0.6’’. Since we have specified that physics is
close to math, with degree 0.8, these two terms may unify
“weakly” with approximation degree 0.8, leading to a refu-
tation. Similarly for the terms physics and chemistry.

As it has been shown in the example, a fuzzy logic pro-
gramming based on weak unification enables to establish and

570

quantify the relation between symbols. On the other hand,
when symbols are interpreted as words it will be possible to
model the semantic relations between them making use of a
thesaurus T . A word w1 ∈ T is related to a word w2 ∈ T
with a degree α through a semantic relation (synonymy,
antonymy or hypernymy) which is obtained from T , what it
is represented in Bousi∼Prolog by using a proximity equation
“w1 ∼ w2 = α”. So, words and their relations become part of
the first order language alphabet and take part in the inference
process naturally. This requires an inference rule based on
the semantic relation that has been used to obtain the set
of proximity equations between words. More formally, we
will call program, Π, a set of first order horn clauses in
which there is a set of symbols that we interpret as words.
This program has an associated dictionary that we will call
vocabulary of Π and that are composed of all those symbols
(predicate, function or constant) present in the program and
that are defined in a thesaurus T .

Definition 1 (Vocabulary of a program Π): Given a pro-
gram Π. The vocabulary of Π, denoted by VΠ, is made of all
the predicate, function or constant symbols in the program.

Definition 2 (Vocabulary of Π and T): Given a program
Π and a thesaurus T . The vocabulary of Π and T , denoted
by VTΠ , is made up of all the predicate, function or constant
symbols in the program Π that are words in T . That is,
symbols which are interpreted as words in a thesaurus T .

Example 3: Let Π be the program of Example 1 and
a thesaurus T of the English language as WordNet. The
vocabulary VTΠ = {at, car, home, airport, driving}.

Now, each of the elements in VTΠ , will be used by the
thesaurus T in order to obtain the semantic relations: syn-
onyms, antonyms and hypernyms. To establish the reasoning
model, we have to define with precision the inference rules
based on the semantic relations among words.

A. Reasoning with Synonymy

Reasoning with synonymy consists of using this semantic
relation to infer. It is required to obtain inference rules based
on this property. The deductive calculus based on synonymy
has two rules. A direct inference rule that established that if I
have A then I can infer B as long as A and B are synonyms;
and an adaptation of the modus ponens rule that establishes
that if I have A and B → C then I can infer C as long as A
and B are synonyms. This is formally stated in the following
definitions:

Definition 3 (Synonymy-based Direct Inference Rule):
The synonymy-based direct inference rule states that from
A it can be inferred as immediate consequence B, if A is a
synonym of B.

Definition 4 (Synonymy-based Modus Ponens): The
Modus ponens rule based on Synonymy states that from A
and B → C it can be inferred as immediate consequence C
if A is a synonym of B.

In order to simulate this reasoning, in our framework we
have to compute the synonyms for each of the elements of the

vocabulary of a program Π. Given a program Π, a thesaurus
T and its associated vocabulary cV TΠ , then for all w ∈ VTΠ ,
the set of synonyms of w extracted from T is denoted as
S(w)VT

Π
= {s1, . . . , sn}.

Example 4: Given the vocabulary of Example 3,
for the thesaurus WordNet, it is possible to
obtain a set of synonyms for each element of the
vocabulary: SVT

Π
(at) = {helium, . . .}; SVT

Π
(car) =

{sedan, bike,motorcar, . . .}; SVT
Π

(home) = {home};
SVT

Π
(airport) = {airdrome, heliport, aerodrome, . . .};

SVT
Π

(driving) = {dynamic, impulsive, energetic, . . .}.
Once the vocabulary of synonyms has been constructed,

the proximity equations are created (synonym equations in
this case) from the vocabulary of the program and its set of
associated synonyms.

Definition 5 (Synonymy equations for Π): Given a pro-
gram Π, a thesaurus T and its associated vocabulary VTΠ .
Then for all w ∈ VTΠ and its synonyms SVT

Π
(w) =

{s1, . . . , sn}, an entry w ∼ si = αi is created for each
synonym si, with approximation degree αi.

Example 5: Given a program Π = {loves(a, b)}, the
thesaurus T = WordNet and the vocabulary of the program
and the thesaurus VTΠ = {loves}, we obtain the synonyms of
the vocabulary, that is, SVT

Π
(loves) = {dotes on}. Then the

synonym equation “loves ∼ dotes on = 1.0” is created.
Therefore, it could be asked if a dotes on b, launching
the query “?- dotes on(a,b)”. Then, the system would
respond “Yes”, since a loves b and, by deduction based on
synonymy, it also dotes on b.

B. Reasoning with Antonymy

Reasoning with antonymy consists of using this relation to
obtain a type of reasoning based on this semantic relation.
Following [11], antonymy is a phenomenon of the natural
language which involves a pair of words (P,Q) with some
important features 1: (a) Having the pair (P,Q) then P is
an antonym for Q and Q is an antonym for P , i.e. P = aQ
and Q = aP ; (b) Every object x fulfills that “If x is aP then
it is not the case that x is P”, but it does not fulfill that “If
x is not P then x is aP”. For example, “the bottle is empty”
means that it is not full, but “the bottle is not full” does not
mean that it is empty, i.e. aP implies not P, but not P does
not imply aP (with some exceptions).

We are going to handle antonymy as synonymy of oppo-
site concepts. Consequently, the Synonymy-based Inference
Rules are used but taking into account, in this case, that if
P is an antonym of Q we have that P is a synonym of
aQ, i.e. Q is the opposite of P . On the other hand, and
from a syntactical point of view, it will be necessary to
use a modifier of antonymy “not#” to provide information
regarding the concepts that are antonyms. So, for example,
if “cold” is antonym of “hot” then “cold” is synonym of

1For simplicity we only enunciate two of them, the necessary ones in
order to define the inference rules based on this semantic relation, see [11]
for more information.

571

“not#hot”. Note that the modifier “not#hot” must not be
confused with the logical operator of negation and it only
provides information on the words (concepts) which are
antonymous.

Now we proceed in a similar way as for synonymy by es-
timating, in this case, the antonyms for each of the elements
that are in VTΠ . Given a program Π, a thesaurus T and its
associated vocabulary VTΠ , then for all w ≡ (not#u) ∈ VTΠ ,
AVT

Π
(u) = {a1, . . . , an} denotes the set of antonyms of u

extracted from T . Once the vocabulary of antonyms has been
constructed, the proximity equations are created (antonym
equations in this case) from the vocabulary of the program
and its set of associated antonyms.

Definition 6 (Antonymy equations for Π): Given a pro-
gram Π, a thesaurus T and its associated vocabulary VTΠ .
Then for all w ≡ not#u with w ∈ Π, and its antonyms
AVT

Π
(u) = {a1, . . . , an}, an entry not#u ∼ ai = αi is

created for each antonym ai, with approximation degree αi.

Example 6: Given a program Π = { bottle(coke,full).
; drink(X) ← bottle(X,not#empty). } and the thesaurus
T = WordNet, VTΠ = {bottle, coke, full, drink} and
AT (empty) = {full} (for simplicity we only consider
“full”). Then, the antonym equation not#empty ∼ full =
1.0 is obtained (also by simplicity, our current implementa-
tion assigns a fixed approximation degree in the antonymy
equations). Therefore, it could be asked if the bottle will
be drunk “?-drink(X)”, and the system would respond
affirmatively by computing “X=coke”.

C. Reasoning with Hypernymy

Reasoning with hypernymy consists of using hypernymy
to obtain a type of reasoning based on this relation. It is
formalized by the following definitions.

Definition 7 (Hypernymy-based Direct Inference Rule):
The Hipernymy-based Direct Inference Rule states that from
A it can be inferred B as immediate consequence, if B is
hypernymy of A.

Definition 8 (Hypernymy-based Modus Ponens): Modus
ponens based on Hypernymy states that from A and B → C
it can be inferred as immediate consequence C if B is
hypernym of A.

We can proceed just like in the case of synonymy and
antonymy calculating in this case the hypernyms of each
element of the vocabulary of a program Π. Given a program
Π, a thesaurus T and its associated vocabulary VTΠ , then for
all w ∈ VTΠ , HVT

Π
(w) = {h1, . . . , hn} denotes the set of

hypernyms of w extracted from T .

Example 7: Given the program in Example 1, the the-
saurus T = WordNet and the vocabulary VTΠ = {
at, car, home, airport, driving }. It is possible to obtain
a set of hypernyms for each element of the vocabulary:
HVT

Π
(thinking) = { }; HVT

Π
(at) = { element, halogen };

HVT
Π

(car) = { compartment }; HVT
Π

(home) = { beginning,
origin, root, rootage, source }; HVT

Π
(airport) = { airfield,

field}; HVT
Π

(driving) = { travel, traveling, travelling, steer-
ing, guidance, direction}

Once the hypernyms vocabulary has been constructed,
the proximity equations are created, in this case hypernymy
equations.

Definition 9 (Hypernym equations for Π): Given a pro-
gram Π, a thesaurus T and its associated vocabulary V TΠ .
Then for all w ∈ VTΠ , and its hypernyms HVT

Π
(w) =

{h1, . . . , hn}, an entry is created for each hypernym hi such
that w ∼ hi = 1.0.

Example 8: Let’s suppose that someone goes to an ex-
hibition of pictures and we want to model the knowl-
edge that a person expresses in a natural language, for
example: “there were pictures of goldfinch and sparrows”.
In this particular case, if we know that “goldfinches”
and “sparrows” are “birds” I could induce that the
exposition was about birds. Let’s suppose a program
Π = {picture(a, goldfinch), picture(b, sparrow).} and
the thesaurus T = WordNet, then VTΠ = {picture,
goldfinch, sparrow}, with HVT

Π
(picture) = {show},

HVT
Π

(goldfinch) = {bird}, HVT
Π

(sparrow) = {bird}.
Now, in particular, the system generates the proximity equa-
tions goldfinch ∼ bird = 1.0 and goldfinch ∼ sparrow =
1.0. So, you could ask about the pictures that are about birds
“?-picture(X,bird)”, and the system would respond “X=a”
and “X=b”.

IV. IMPLEMENTATION OF THE MODEL OF REASONING IN
BOUSI∼PROLOG

In this section we are going to explain how the model
of reasoning detailed in the previous section can be in-
corporated into the Bousi∼Prolog system [2], [3], [4]. In
order to obtain the semantic relations we employ the general
thesaurus WordNet. We begin with the syntactic aspects.
Then, we describe the different implementation phases and
data structures which are generated to facilitate the reasoning
with words.

A. Syntax

All sorts of programming languages must provide
specific instructions to declare and define their data
structures. Bousi∼Prolog makes use of one directive
which allows us to specify the thesaurus T we want
to connect. The concrete syntax of this directive is:
“:-thesaurus(Thesaurus_Name,[SR_1,...,SR_N])).”
where, Thesaurus Name is the name of the thesaurus and
[SR1,. . . , SRN] is a set of (eventually empty) semantic
relations defined on such thesaurus.

Example 9: The following directive connects a program
to WordNet and will make use of the semantic relations of
synonymy, and antonymy for reasoning:

:-thesaurus(wordnet,[synonymy,antonymy]).

572

B. Compiling semantic relations

One of the most important features of the Bousi∼Prolog
system is its ability to compile all the information regarding
the thesaurus defined in a program. In this section the differ-
ent compilation phases of the thesaurus are detailed. During
the syntactic analysis phase it is verified whether there exist
syntactic errors in the source program. At the same time, the
syntactic tree, which is the basis for later code generation,
is built. Additionally, in this phase, the directive “thesaurus”
creates a connection with the thesaurus and generates the
vocabulary of Π and T . Once the connection has been
established, the next phase is focused on generating fuzzy
relations from the semantic relations indicated as arguments
in the directive. This is formalized by the Algorithm 1
whose objective is to compile all the semantic information
associated with a program Π and a thesaurus T .

Algorithm 1:
Input: A program Π and a thesaurus T .
Output: A set of entries which defines a semantic relation
R .
Initialization: R := ∅
Calculate VT

Π

For each w ∈ VT
Π

1) Compute Synonyms: SVT
Π

(w) = {s1, . . . , sn}
R := R∪ {R(w, si) = αi};

2) If w ≡ not#u,
a) Compute Antonyms: AVT

Π
(u) = {a1, . . . , an}

b) R := R∪ {R(not#u, ai) = 1.0};
3) Compute Hyperonyms: HVT

Π
(w) = {h1, . . . , hn}

R := R∪ {R(w, hi) = 1.0};
endFor
Return R

Example 10: Following with the Example 1 let’s suppose
that we want to reason by using the semantic relations
(synonymy, antonymy and hypernymy). This can be codified
in Bousi∼Prolog as follows:
:-thesaurus(wordnet,

[synonymy, antonymy, hypernymy]).

at(X,airport) :- at(X,car),
driving(X,home,airport).

at(john, taxi).
driving(X,not#away,aerodrome).

The vocabulary generated for this program is a merge of
the ones appeared in the Examples 4, and 7, in combination
with the set of antonyms of the word “away” which is
prefixed by the modifier “not#”: AVT

Π
(away) = {home}.

Thanks to the implementation of Algorithm 1 the proxim-
ity equations ”aerodrome∼airport=1.0” (by synonymy),
“not#way∼home=1.0” (by antonymy) , ”taxi∼car=1.0”
(by hypernymy) are generated. Then, if we ask the question
“?-at(X, aerodrome).” the system responds “X=john”
with approximation degree 1.0.

Observe that general rules have been developed without
having to specify each element, since this is provided auto-
matically by WordNet and our reasoning is done based on
it. Note also that this way to proceed can cause problems,
since all the semantic relations of a given word are used. This

can cause inefficiencies and even an inadequate reasoning.
Therefore, automatic techniques to prune and to improve
ontologies are necessary. Also the problem of the context
treatment emerges. This problem and a potential solution is
presented in the following section.

C. Integration of WordNet in Bousi∼Prolog

The Bousi∼Prolog architecture consists of three layers:
GUI, compiler and abstract machine. The compiler is respon-
sible for translating Bousi∼Prolog programs into Similarity-
based Abstract Machine Code. The Similarity-based WAM
[2] is an extension of the WAM that allows the execution of
Bousi∼Prolog programs. It modifies the two parts of which
the original machine consists: the memory layout and the
instruction set.

In order to be able to use WordNet together with
Bousi∼Prolog, a tool for connecting with WordNet, called
WN∼Bousi2, has been built and incorporated to the
Bousi∼Prolog architecture by enhancing the compiler layer.
This tool allows to consult semantic relations for each
one of the symbols present in a Bousi∼Prolog program.
To be precise, WN∼Bousi is a GUI for WordNet and
WordNet::Similarity which uses a library called RitaWN3

which allows to get all the features of WordNet for a
Java software application. This can be integrated into the
Bousi∼Prolog system or it can work in an independent way.
The WN∼Bousi architecture has two layers: presentation and
domain.
• The presentation layer: is composed by two classes

(FMessage.java and FWordNet.java) and it allows to
perform the I/O in a graphical way by means of a
WordNet Window. This has options to consult the
semantic relations for a particular word and to enable
the use of WordNet::Similarity. It is accessed via the
menu bar of the Bousi∼Prolog GUI (see Figure 1).

• The domain layer: is composed by two classes (WN-
Symbol.java and WordNet.java). It is responsible for the
hole functionality described in previous sections, that is:
(i) it computes the semantic relations (indicated in the
directive thesaurus) for each symbol (representing a
word) in the program and (ii) it generates the proximity
equations.

V. PROBLEMS IN REASONING WITH WORDS

When we employ a general thesaurus to obtain the se-
mantic relations, the context is not taken into consideration.
In our framework, this is produced because all the possible
proximity equations are used in the inference process. That
is, we do not use context information to generate the most
adequate proximity equations that must be employed. The
following program shows this fact:

% proximity equations from wordnet::similarity
bank˜deposit=1.0. bank˜swear=1.0.
bank˜trust=1.0.

2Available at: http://www.face.ubiobio.cl/∼clrubio/bousiTools/
3Available at: http://www.rednoise.org/rita/wordnet/documentation/

573

Fig. 1. WN∼Bousi: WordNet in the GUI of the Bousi∼Prolog system

% knowledge representation
person(john,job(bank)).
person(mary,job(park)).

In this case, we use WordNet::Similarity to consult
which words are closer to “bank”, we obtain “deposit”,
“swear” and “trust”. Note that the context is not taken
into consideration, what generates certain unnecessary
proximity equations. A potential solution is to determine
which is the appropriate semantic relation for a concrete
situation, e.g., the meaning of a word in a particular context.
A way to deal with this problem is to use the symbols close
to the symbol in question to identify the context where it
appears, what we call structural context (SC for short) for a
symbol “s”. For example, because the word “bank” appears
in an atomic formula like “person(john,job(bank))”
we can infer that there exists a structural dependency with
regard to the words “job” and “person” (“bank” is a job
of a person). From there we may construct the structural
context: SC(bank)={person,job}. Then, in order to select
the more adequate proximity equations we can compute
the approximation degree between the symbols which are
related to “s” (“bank” in this case) and its structural context.
We obtain three groups: (a) {job ∼ deposit = 0.426,

person ∼ deposit = 0.256} for “deposit”; (b)
{job∼swear=0.0, person∼swear=0.0} for “swear”;
and (c) {job∼trust=0.439, person∼trust=0.318} for
“trust”. So the proximity equations “bank∼trust=1.0”
and “bank∼deposit=1.0” would be the right candidates.
Finally we could discard the proximity equation
“bank∼swear=1.0” because it has very little relation
with the structural context of “bank”.

VI. RELATED WORKS

The approach closer to ours is [10] in which a linguistic
natural fuzzy Prolog is suggested. This prolog consists of
a synonymy-based unification mechanism and a antonymy-
based resolution procedure. This idea is employed in our
work in some sense. The main difference is that, in our
framework, antonymy is not employed directly but as a sim-

ilarity of opposite concepts. The reason is that we adapt the
model of reasoning described in this paper to be implemented
in our system i.e. Bousi∼Prolog and WordNet.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a first approximation for reasoning
with words. The idea consists of employing the semantic
relations between words as a constituent part of a weak
unification algorithm of a fuzzy logic programming lan-
guage. As main advantage we can mention that knowledge
is obtained from the thesaurus in an automatic way and
hence it is not necessary to introduce all relations explicitly.
In order to materialize these ideas, we have integrated the
thesaurus WordNet into the Bousi∼Prolog system and we
have extended some syntactical and semantical aspects of this
language. All this changes enable reasoning in presence of
synonymy, antonymy and hypernymy. Although these tech-
niques are in their first stages, we think they can contribute
to meet fuzzy logic programming languages based on weak
unification and the computing with words paradigm.

Despite its power, there are several important problems
that must be fit in this new framework. First, it will be
necessary to establish its theoretical foundation and secondly
the treatment of the context will be an essential requirement
to improve the inference processes.

Acknowledgements: This work has been partially supported by
FEDER and the Spanish Ministry of Economy and Competition under grant
TIN2013-45732-C4-2-P and it is the result of the work of the research group,
SOMOS (SOftware - MOdelling - Science), funded by the Dirección de
Investigación and Facultad de Ciencias Empresariales of the Universidad
del Bı́o-Bı́o under grant 130415 GI/EF.

REFERENCES

[1] J. De Smedt and B. Vatant. The EUROVOC Thesaurus Ontology
Schema. Publications Office of European Union (2009).

[2] P. Julián-Iranzo and C. Rubio-Manzano. A similarity-based WAM for
Bousi∼Prolog. In: LNCS, vol 5517, pp. 245–252. Springer, Heidelberg
(2009).

[3] P. Julián-Iranzo and C. Rubio-Manzano. An Efficient Fuzzy Unifica-
tion Method and its Implementation into the Bousi∼Prolog System.
In: Proc. of FUZZ-IEEE’10, (2010).

[4] C. Rubio-Manzano and P. Julián-Iranzo. Fuzzy linguistic prolog and
its applications Journal of Intelligent and Fuzzy Systems, vol. 26 pp.
1503–1516 (2014).

[5] A. Kumar, B. Smith The Unified Medical Language System and the
Gene Ontology: Some Critical Reflections. Lecture Notes in Artificial
Intelligence 2821, 135–148 (2003).

[6] H. Liu and P. Singh ConceptNet: a practical commonsense reasoning
tool-kit BT Technology Journal Vol 22 No 4 October (2004).

[7] G.A. Miller. WordNet: A Lexical Database for English. Communica-
tions of the ACM,1995, 38, pp. 39–41 (1995).

[8] T. Pedersen, S. Patwardhan and Jason Michelizzi. WordNet::Similarity
- Measuring the Relatedness of Concepts. In: Proc. AAAI-04, pp. 1024-
1025 (2004).

[9] S. Fernández Lanza et al. Introducing FDSA: applications on informa-
tion retrieval and stand-alone use. In J. Mathware and Soft Computing
10 (2-3): 57-70, 6 Ref (2003).

[10] A. Sobrino. The Role of Synonymy and Antonymy in ’Natural’ Fuzzy
Prolog. Soft Computing in Humanities and Social Sciences. Studies
in Fuzziness and Soft Computing Vol. 273 Springer (2012).

[11] E. Trillas, S.Cubillo and E. Castiñeira. On Antonymy from Fuzzy
Logic. X Spanish Conference on Fuzzy Logic (2000).

[12] L.A. Zadeh. Computing With Words and Perceptions: A Paradigm
Shift. In Joint Colloquium Distinguished Lecture Series June 22
(2009).

574

