
 
 

 

  

Abstract—In this paper, an adaptive impedance force control 
scheme for an n-link robot manipulator under unknown 
environment is proposed. The system dynamics of the robot 
manipulator is assumed that system model is not exactly known 
or has system uncertainty. Therefore, the traditional adaptive 
impedance force controller is not valid. Herein, the fuzzy neural 
networks are adopted to estimate the system model terms of 
robot and the force tracking control is developed by the 
proposed adaptive scheme. The proposed scheme is established 
by gradient descent approach. Using the Lyapunov stability 
theory, the update laws of fuzzy neural networks can be derived 
and the stability of the closed-loop system is guaranteed. Finally, 
simulation results of a two-link robot manipulator with 
environment constraint are introduced to illustrate the 
performance and effectiveness of our approach.  

 

I. INTRODUCTION 
HEN a robot manipulator performs a task in contact 
with environment, the end-effector and the 
environment yields force between each others. The 

force impedance control is one of the complicated control 
problems. To treats the control problem, the position and 
force control are required. For moving payloads or painting 
objects tasks, these tasks are only to follow the desired 
trajectories. However, for during grinding or deburring tasks, 
interacting forces should be developed between the robot 
manipulator and the working environment. Consequently, the 
position and interacting force of end-effector must be 
controlled. In addition, the controller must be robust to deal 
with the unknown environment stiffness and position. 

Within the impedance force control, several approaches 
constrained motion controls have been suggested, such as 
impedance control and the hybrid force control algorithms [1, 
2]. The impedance control of robot manipulators is to adjust 
the end-effector position and sense the contact force in 
response such that a second order mass-spring-damper 
system is satisfied the target impedance behavior. Several 
robust control schemes and adaptive control strategies have 
been proposed [3-8]. In literature [9-12], adaptive impedance 
control schemes for an n-link robot manipulator without 
using regressor and approximation unknown system 
parameter based on the function approximation technique are 
introduced. Therefore, the lack of force tracking capability of 
the impedance control method has been attention by many 

 
Ching-Hung Lee and Wei-Chen Wang are with the Department of 

Mechanical Engineering, National Chung Hsing University, Taichung, 
Taiwan, R.O.C. (Tel: +886-4-22840433, ext: 417; fax: +886-422877170; 
e-mail: chleenchu@dragon.nchu.edu.tw).  

This work was supported in part by the National Science Council, Taiwan, 
R.O.C., under contracts NSC-100-2221- E-005-093-MY2.   

researchers to solve the direct force tracking problem. The 
modification of impedance functions have been proposed to 
solve the force tracking problem on unknown environment 
[13].  

For impedance controller design, the robust problem is 
important for robots with the uncertainties and under 
unknown environment. Recently, many researchers proposed 
several approaches to deal with the controller design for the 
systems with uncertainties and disturbance. The intelligent 
controllers using neural network (NNs) have been proposed, 
which can regulate impedance properties through the learning 
of NNs in considering of robot uncertainties. In [15, 16], the 
NNs play the rule of compensator to treat the system 
uncertainties in force control problem. In addition, the on-line 
learning method is proposed to regulate all impedance 
parameters as well as desired trajectory at the same time [17]. 
Similar to the NNs, the fuzzy logic control was developed by 
human experience to implement nonlinear system algorithms 
[18-20]. Besides, the fuzzy neural network (FNNs) can be 
introduced to deal with uncertainties and disturbances [21]. In 
this paper, a FNN-based adaptive impedance force control is 
proposed for robot manipulator. 

Herein, an adaptive impedance force control scheme for an 
n-link robot manipulator under unknown environment is 
proposed. The dynamic model of the robot manipulator is 
assumed to be unknown or unavailable, since the system 
model uncertainties are assumed to be time dependent and 
their variation bounds ate not practically available. Therefore, 
we cannot solve the impedance force control by using the 
traditional adaptive approach. Thus, the estimators of FNNs 
are adopted to estimate the system model’s matrices and the 
force tracking control is developed. Based on the Lyapunov 
stability theory, the update laws of fuzzy neural networks can 
be derived and the stability of the closed-loop system is 
guaranteed. Finally, simulation results of a 2-DOF robot 
manipulator with environment constraint are introduced to 
illustrate the performance and effectiveness of our approach. 

The rest of this paper is as follows. Section II introduces 
the problem formulation and the used fuzzy neural network 
systems. The proposed FNN-based adaptive impedance force 
control scheme is introduced in Section III. In Section IV, 
simulation results of a two-link robot manipulator are 
presented to show the effectiveness of our approach. Finally, 
conclusion is given.  
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II. PROBLEM FORMULATION 

A. System Description 
The dynamic model of an n-link rigid robot manipulator in 

joint space coordinate can be given by 
 

( ) ext
T FJτqgqqqCqqD −=++ )(,)(                              (1) 

 
where nℜ∈q  denotes the vector of generalized displacement 

in  robot coordinates,  nℜ∈τ  is the vector of  joint torque, 
nn×ℜ∈)(qD  is the inertia matrix,  nℜ∈qqqC ),(  is the 

vector of centrifugal and Coriolis forces,  nℜ∈)(qg  is the 
gravity vector.  )(qJ  is the n×n Jacobian matrix that must be 

square and invertible,  and  n
ext ℜ∈F  is the external force at 

the end-effector. The corresponding Cartesian space 
representation is 

 
( ) ext

T
xxx FτJ(xgxxx,Cxx)D −=++ −)(                          (2) 

 
where 

 
         1(( −−= q)JDJx)D T

x                                          (3) 
       ( ) ( ) 11 )JJD(q)Jqq,(CJxx,C −−− −= T

x                     (4) 
         g(q)J(x)g T

x
−=                                                (5) 

 
From the results of literature [9-11], the system uncertainties 
are assumed to be time dependent and their variation bounds 
ate not practically available, thus estimation of the robot 
model are needed for the controller design. In this paper, this 
problem will be solved by the fuzzy neural network. 

In addition, the control goal is to design an adaptive control 
scheme to generate the proper control signals such that the 
end-effector of the robot manipulator, with unknown 
parameters and under unknown environment, follows the 
design trajectories of position and force for free space and 
contact space, respectively. 

B. Fuzzy Neural Network 
Herein, we introduce the fuzzy neural network (FNN) 

systems [18-20]. The schematic diagram of the used FNN is 
shown in Fig. 1. There are four layers. Layer 1 accepts input 
variables and its nodes represent fuzzy input linguistic 
variables. The nodes in this layer only transmit input 
variables to the next layer directly, i.e., ( ) ( )kxkO ii =)1( . Layer 
2 is used to calculate the corresponding Gaussian 
membership value, i.e., 

 

( )( )
( )( )( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

21
2 exp

ij

iji
ij

mkO
kO

σ
                                  (6) 

  
where mij and σij are the center and the width of the Gaussian 
function. Nodes in layer 2 represent the term-nodes of the 

respective linguistic variables. In layer 3, each node 
represents the fuzzy rule and the t-norm product operation is 
adopted. Links before layer 3 represent the preconditions of 
the rules, and the links after layer 3 represent the 
consequences of the rule node, i.e., 

 
       ( ) ( )∏=

i
ijj kOkO )2()3( .                                              (7) 

 
Layer 4 is the output layer. Each node is for actual output of 
this FNN system, which is connected by weighting value wj, 
the pth output is represented as 
 

    ( )
( )

( )∑

∑

=

==== R

j
j

R

j
jj

T
p

kO

kOw
kOy

1

)3(

1

)3(

)4( ψw                            (8) 

 
where w=[w1 w2, …, wR]T is the weighting vector and 

[ ]Rψψψψ  ..., , 21= , jψ = ( ) ( )∑
R

j
jj kOkO )3()3(  represents the 

normalized value and R is the chosen rule number. 
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Figure 1: Schematic diagram of fuzzy neural network [18-20] (the “G” 

denotes the Gaussian membership function). 
 

III. FNN-BASED ADAPTIVE IMPEDANCE FORCE CONTROL 
As the results of traditional impedance control [22], the 

corresponding system parameters are assumed to be exactly 
known, and then the closed-loop system satisfies the target 
impedance relationship, i.e., 

 
( ) extdmdmdm FxxKxxBxxM −=−+−+− )()(               (9) 

 
where Mm, Bm, and Km are diagonal n×n matrices, n

d ℜ∈x  is 
the desired end-point trajectory. This means that the system 
trajectory follows the desired trajectory for free space phase 
(Fext=0).  In practical cases, the system parameters are usually 
not exactly known and the traditional impedance controller 
cannot be derived, therefore we will consider 
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    ( ) extdmmdmmdmm FxxKxxBxxM −=−+−+− )()(        (10) 
 
where n

m ℜ∈x  is the state vector of (10). 
 
    Our control goal is to design an adaptive impedance 
controller to derive x approaches to xm asymptotically. Thus, 
the new target impedance (10) converges to traditional one 
(9). In addition, we should pay additional effort to design the 
adaptive force controller such that Fext is equal to the desired 
force Fd for contact space. From the results of [9-12], the 
environment stiffness is difficulty of known then we cannot 
design the reference trajectory xr to achieve the desired force. 
Herein, we will solve the problem by FNN-based adaptive 
impedance force control. Herein, we first introduce the 
adaptive force control scheme. 

Adaptive  Force Control Scheme 
As above description, our goal is to achieve Fext=Fd. In 

contact cases, the end-effector of robot manipulator satisfies   
xd=xe and the relationship between force and environment. 
We know the inertia and damping parameters only influence 
the transient response of the end-effector [24] 

 
)( emeext xxKF −≅− .                                              (11) 

 
Thus, we have the desired trajectory force Fd as 
 

)( *
emed xxKF −≅− .                                 (12) 

 
where *

mx  is desired trajectory such that Fext=Fd. 
According equations (12) and (13), we have 

 
)( *

mmeextd xxKFF −≅− .                        (13) 
 

However, the stiffness parameter eK  is usually unknown, 

therefore *
mx  cannot be obtained by equation (12) directly. 

Therefore, the estimation of the stiffness should be designed, 
thus (13) is modified as 

 
            )(ˆ *

mmeextd xxKFF −≅− ,                             (14) 
 

where eK̂  is the estimated stiffness parameter. To achieve 

the adaptation of eK̂ , we first define the force error and the 
corresponding objective function to be minimized as 

 
extd FFv −=                                         (15) 

 
and  

 

                vvT

2
1=ℑ .                                        (16) 

 
For simplicity, we consider that force is applied to only one 

direction. Then, let eK̂  be an element of eK̂  and 

extd ffv −= , the corresponding gradient of ℑ  is   
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Thus, the following update law is chosen 

 

)ˆ()(ˆ)(ˆ)(ˆ)1(ˆ
e

eeee K
kKkKkKkK

∂
∂ℑ−+=Δ+=+ η        (18) 

 
where η is the learning rate. For the training process, the 
learning rate plays an important role for this case. A small 
value of η leads a slower convergence and a large value may 
have unstable result. Hence, the selection of η is important 
but it is not easy to solve. Then, the Lyapunov approach is 
adopted to guarantee the convergence of eK̂ . Rewrite 
equation (16) as 
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where )()()( kfkfke extdf −=  and k is time-instant for 
parameter update. Let )()()( kfkfkf extd −=Δ and then we 
have 
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By the gradient result, e
e
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K
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and   
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As above, we can obtain the stability condition for selection 
of learning rate η 
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this implies ,0)( <Δ kV  k∀ . Then, the stiffness parameter 
can be obtained. To accomplish force control, we should 
design the suitable xm for contact space. From (14), we have 
the variation of desired position 

 

e
m K̂

Fx Δ=Δ                                                       (24) 

 
where mmm xx −=Δ *x  and extd FFF −=Δ , then we design 

the desired trajectory to achieve force control as 
 

)()()1(* kkk mmm xxx Δ+=+ .                       (25) 
 

This guarantees the convergence of force tracking error even 
the stiffness gain eK  is unknown, i.e., dext FF → . Figure 2 
summaries the proposed adaptive force control scheme. 
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Figure 2: The block diagram of force tracking scheme. 
 

After the desired trajectory *
mx  being desired, the 

reminding work is to consider the tracking control of robot 
manipulator. The system parameter D, C, and g are not 
exactly known in real world applications. We define the state 
error mxxe −=  and error vector ees Λ+= , 

),...,,( 21 ndiag λλλ=Λ  with 0>iλ  for i=1, …, n. Rewrite the 
robot dynamics model (2) as 

 

.  

ˆˆˆˆˆˆˆ

ext
T

x

FτJ

ΛeCxCeΛDxDgsCsD xmxxmxxx

−=

−+−+++
−

      (26) 

 
And the designed controller is  
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where ,ˆ  ,ˆ
xx CD  and xĝ  are the estimations of Dx, Cx, and gx 

using FNNs, respectively. They can be represented by 
according equation (8) 

 
                D

T
DψwDx ˆˆ =                                                  (28a) 

                C
T
CψwCx ˆˆ =                                             (28b) 

                g
T
gψwgx ˆˆ = .                                                       (28c) 

 
According to the universal approximation of the FNNs, the 
unknown functions are represented as follows with 
approximation error ε , i.e., 
 

XD
T

D Dx ψwD ε+= *                                    (28d) 

XC
T

C Cx ψwC ε+= *                                     (28e) 

Xg
T

g gx ψwg ε+= *                                          (28f) 
 

where Rn
D

2* ℜ∈w , Rn
C

2* ℜ∈w , and nR
g ℜ∈*w  are weighting 

matrices and Rn
D

2

ℜ∈ψ , Rn
C

2

ℜ∈ψ , nR
G ℜ∈ψ  are the 

firing strength of the corresponding fuzzy rules. R represents 
the number of fuzzy rule of the FNN. Substituting (27) to 
equation (2)  
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x

ggΛexCC

eΛxDDsKsCsD

mxx
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−−=++

ˆˆ

ˆ
.                       (29) 

 
If we can design the proper update laws of FNNs such that 

xx CCDD xx →→ ˆ  ,ˆ , and xx gg →ˆ . Hence the closed-loop 
system becomes stable and the tracking error will approach to 
zero by the following discussion. Rewrite (30) as  

 
   0=++ sKsCsD dxx                                     (30) 

 
where Kd is positive definite. We select the Lyapunov 
candidate function as 

     

              sDs x
TV

2
1

1 =                                                 (31) 
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such that 

                ( ) .2
2
1

1 sCDssKs xx
T

d
TV −+−=               (32) 

 
Since xx CD 2−  is skew-symmetric, we have 
 

                 01 ≤−= sKs d
TV .                                          (33) 

 
It is simple to prove that ,2LL ∩∈ ∞s  and ∞∈ Ls . Thus, s 
converges to zero when t approaches to infinity, this implies 
the tracking error e will approaches to zero as ∞→t . This 
completes the proof of tracking control problem. Therefore, 
the remained work is the stability analysis and the 
convergence of the FNNs.  
For the system with uncertainties, equation (29) can be 
rewritten as 
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where ( ) ( ) ( ).*

.. ˆ~ www −=  and ),,(11 iX
xs,ε,εεεε gCD=  is due to 

the approximation of Dx, Cx, and gx. Let us consider the 
Lyapunov candidate function 
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where RnRn 22 ×ℜ∈DQ , RnRn 22 ×ℜ∈CQ , nRnR×ℜ∈gQ  are 
positive definite matrices and Tr(.) is the trace operation. 
Hence  
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Since 0)](2)([ =− sxx,CxDs xx
T  for all nℜ∈s  and we 

choosing the update laws to be [25] 
 
            )ˆ(ˆ 1
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             )ˆ(ˆ 1
xx

T
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(37c) 
                   

where (.)ϑ >0  and is used to smooth the controller [24]. 
Hence, equation (36) becomes 
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It can further be derived to guarantee the stability of the 
closed-loop system. Herein, we omitted the detailed proof 
due to the limitation of the writing space.  

 

IV. SIMULATION RESULTS 
Herein, the proposed control approach is applied on the 

impedance force tracking control of a robot manipulator 
system with two rigid links and two rigid revolute joints 
shown in Fig. 2. For i=1, 2, mi, li, lci, and Ii are mass, length, 
gravity center length and inertia of link i , respectively. The 
actual values of quantities refer [12] as m1=2kg, m2=1kg, 
l1=l2=0.75m, lc1=lc2=0.375m, I1=0.09375kg-m2, I2=0.046975 
kg-m2. The inertia matrix D(q) is defined as  
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The Jacobian matrix is defined as  
 

    ,
0sin

sin)(sin

21212

22121222212
⎥
⎦

⎤
⎢
⎣

⎡ +−−
=

qqllm
qqqllmqqllm
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The initial condition for the end-point and reference state are 

)0(x T]0  0  75.0  75.0[=  and T
m ]0  0  8.0  8.0[)0( =x . The 

desired trajectory xd is a 0.2 m-radius circle centered at (0.8m, 
1.0m) in 10 seconds. As above discussion, system parameter 
matrices D, C, and g  are assumed to be not exactly known 
and are approximated  by the FNNs. Initial weighting vectors 
of FNN are chosen as to be zero to avoid initial large control 
effort and the fuzzy rule number are chosen as seven for 

,ˆ  ,ˆ CD  and ĝ . The update laws gain matrices in (24) are 
chosen with 
 

),,...,( 71 qqdiag== −− 1
C

1
D QQ   ,1=iq  7,...,1=i . 
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    ),,...,( 71 qqdiag=−1
gQ   ,100=iq  7,...,1=i . 

 
In this simulation, we assume the approximation error can be 
neglected such that 01 ≈ε , and hence the ϑ -modification 
parameter are   chosen 0)( =⋅ϑ . The constraint surface is a flat 
wall with a triangle crack and the environment can be 
modeled as linear spring )( wwext xxkf −= .  fext is the force 
acting on the surface, wk =5000 N/m is the environment 
stiffness, x is the coordinate of the end-point in the x-direction, 
and mxw 95.0= is the position of the surface. Therefore, the 

external force vector in equation (2) becomes T
extext f ]0  [=F .  

The controller gains are selected as 
 

,
1000
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Matrices in the target impedance are designed to be [9] 
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⎥
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⎤
⎢
⎣

⎡
=

1000
0100

mK (kg/m). 

 
Several illustrated examples are introduced to demonstrate 

the performance and effectiveness of the proposed adaptive 
control approach.  

Simulation results and comparisons are shown Figures 3-6. 
Figure 3 shows the trajectory tracking performance in the 
Cartesian space (solid line: robot position; dashed-line: 
environment position; dash-dotted: desired position). We can 
find that the end point of robot contact the constraint surface 
with a triangle crack and track the reference trajectory in free 
space. For the force control, herein, we test the different 
learning rates =η 10000, 30000 and 60000 to have result in 
Fig. 4. Obviously, the larger value of η  performs quickly. As 
our experience, the learning rate is chosen as =η 15000. 

Figure 5 shows the estimate stiffness eK̂  can be stabilized by 

our proposed adaptive algorithm and the estimated  *ˆmx  is 
changed value at 1.35s, 2.1s, 2.51s, 2.9s, since the end point 
touches the wall and triangle crack, respectively. From the 
observation of Fig. 5, we can find that the estimated stiffness 
parameter is convergent and the estimated environment 
position is contained to achieve the adaptive force control. 
Figure 6 shows the control effort at t = 1~10s. 
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Figure 3: Position tracking performance result at t=0~4s. 
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Figure 4: Force tracking performance with different learning rates. 
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Figure 5: Estimated Stiffness and estimated environment position. 
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Figure 6: control effort. 

 

We can observe that the proposed adaptive impedance 
force control scheme performs well for unknown 
environment case and variant desired force case.  

 

V. CONCLUSION 
In this paper, we have proposed the adaptive control 

scheme to treat the impedance force tracking control for an 
n-link robot manipulator under unknown environment. The 
unknown system parameter matrices are estimated by the 
fuzzy neural networks and the adaptive force control laws are 
established by gradient method. Based on the Lyapunov 
stability theory, the update laws of fuzzy neural networks can 
be derived and the stability of the closed-loop system is 
guaranteed. Finally, simulation results of a 2-DOF robot 
manipulator with environment constraint are introduced to 
illustrate the performance and effectiveness of our approach.  
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