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Abstract— As there are many various methods for time series
prediction developed but none of them generally outperforms
all the others, there always exists a danger of choosing a method
that is inappropriate for a given time series. To overcome such
a problem, distinct ensemble techniques, that combine more
individual forecasts, are being proposed.

In this contribution, we employ the so called fuzzy rule-based
ensemble. This method is constructed as a linear combination of
a small number of forecasting methods where the weights of the
combination are determined by fuzzy rule bases based on time
series features such as trend, seasonality, or stationarity. For
identification of fuzzy rule base, we use linguistic association
mining. An exhaustive experimental justification is provided.

I. INTRODUCTION

T IME SERIES PREDICTION is an important tool for
support of individual and organizational decision mak-

ing. It has a wide practical use in economy, industry, demog-
raphy, and other areas of application. The time series is usu-
ally given as a finite sequence y1, y2, . . . , yT of real numbers
and the task is to predict future values yT+1, yT+2, . . . , yT+h

where h denotes so called forecasting horizon.
There are many different methods for this task that are

nowadays widely used in practice, let us recall e.g. well-
known Box-Jenkins methodology [1] which consists of au-
toregressive and moving average models, techniques based
on a decomposition of a given time series into trend, seasonal
and cyclic components, or exponential smoothing methods.

Further, a notable number of works aiming at fuzzy
approach to time series analysis and prediction has been
published. For instance, a study presenting Takagi-Sugeno
rules [2] in the view of the Box-Jenkins methodology [3]
or the works dealing with the linguistic approach [4], [5]
have been published. Analogously, various neuro-fuzzy ap-
proaches, which lie on the border between neural networks,
Takagi-Sugeno models, and evolving fuzzy systems, are very
often successfully used [6], [7].

Unfortunately, there is no single forecasting method that
generally outperforms any other. Thus, there is a danger of
choosing a method which is inappropriate for a given time
series. Note that even searching for methods, that outperform
any other for narrower specific subsets of time series, has not
been successful yet, see e.g. [8], where the authors stated:
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“Although forecasting expertise can be found in the literature,
these sources often fail to adequately describe conditions
under which a method is expected to be successful”.

A. Ensembles

In order to eliminate the risk of choosing an inappropriate
method, distinct ensemble techniques (ensembles in short)
have been designed and successfully applied. The main idea
of ensembles consists in an appropriate combination of more
forecasting methods. Typically, an ensemble technique is
constructed as a linear combination of individual ones. It can
be described as follows. Let us assume that we are given a
set of M individual methods and let for a given times series
y1, y2, . . . , yT and a given forecasting horizon h, the j-th
individual method provides us with the following prediction:

ŷ
(j)
T+1, ŷ

(j)
T+2, . . . , ŷ

(j)
T+h, j = 1, . . . ,M.

Then the ensemble forecast is given by the following for-
mula:

ŷT+i =
1∑M

j=1 wj
·
M∑
j=1

wj · ŷ(j)
T+i, i = 1, . . . , h,

where wj ∈ R is a weight of the j-th individual method.
These weights are usually normalized, that is,

∑M
j=1 wj = 1.

Let us recall that it was perhaps Bates and Granger [9]
who firstly showed significant gains in accuracy through
combinations. Another early work by Newbold and Granger
[10] combined various time series forecasts and compared
the combination against the performance of the individual
methods. They showed that for set of forecasts, a linear
combination of these forecasts achieved a forecast error
variance smaller than the individual forecasts. They found
that the better combining procedures did produce an overall
forecast superior to individual forecasts on the majority of
tested time series.

How to combine methods, i.e. how to determine appropri-
ate weights, is still a relatively open question. For instance,
Makridakis et al. [11] show that taking a simple average
outperforms taking a weighted average method combination.
In other words, the so called “equal-weights combining” [12],
that is an arithmetic mean, is a benchmark that is hard to beat
and finding appropriate non-equal weights rather leads to a
random damage of the main averaging idea that is behind
the robustness and accuracy improvements.

B. Motivation for the Suggested Approach

Although the equal-weights ensemble performs as accu-
rately as mentioned above, there are works that promisingly
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show the potential of more sophisticated approaches. We
recall Lemke and Gabrys [13] that described an approach
using meta-learning for time series forecasting based on the
features of time series such as: measure for the strength
of the trend, standard deviation, skewness, etc. Given time
series were clustered using the k-means algorithm. Individual
methods were ranked according to their performance on each
cluster and then three best methods for each cluster were
selected. For a given new time series, the closest cluster was
determined and the given three best methods were combined.

It should be stressed that this approach performed very
well on sufficiently large set of time series. For us, this
approach is one of the main motivations because it demon-
strates that there exists a dependence between time series
features and a performance of a forecasting method.

The second major motivation stems from the so called
Rule-Based Forecasting (RBF) developed by Collopy and
Armstrong [8], [12]. It is an expert system that uses do-
main knowledge to combine forecasts from various forecast-
ing methods. Using IF-THEN rules, RBF determines what
weights to give to the forecasts.

We follow the main ideas of rule-based forecasting [8] and
of using time series features [13] to obtain an interpretable
and understandable model.

II. FUZZY RULE-BASED ENSEMBLE

As mentioned above, RBF uses the rules to determine
weights [8]. However, only few of these rules are directly
used to set up weights. Most of them set up rather a specific
model parameters, e.g. the smoothing factors of the Brown’s
exponential smoothing with trend. Moreover, in antecedents,
the rules very often use properties that are not crisp but rather
vague, e.g. expressions such as: “last observation is unusual;
trend has been changing; unstable recent trend” etc., see [12].
For such cases, using crisp rules, that are either fired or not
(with nothing between), seems to be less natural than using
fuzzy rules. Similarly, the use of crisp consequents such as:
“add 10% to the weight; subtract 0.4 from beta; add 0.1 to
alpha” etc. [12], seems to be less intuitive than using vague
expressions that are typical for fuzzy rules.

A. General Structure of the Model

Therefore, our goal was to propose a method that uses
fuzzy rules instead of crisp rules in order to capture the
omnipresent vagueness in the expressions; to use only quan-
titative features (no domain knowledge) in the antecedent
variables which enable to fully automatize the method;
to use only individual forecasting method weights as the
consequent variables [14], [15]. The result of such motivated
investigation is the Fuzzy Rule-Based Ensemble (FRBE) that
is schematically illustrated in Figure 1.

The FRBE method uses a single linguistic description, i.e.
fuzzy rule base with evaluative linguistic expressions [16],
to determine a weight of each forecasting method based on
transparent and interpretable rules, such as:

Fig. 1. A Structure of the FRBE method.

“IF Strength of Seasonality is Small AND Coefficient of
Variation is Roughly Small THEN Weight of the j-th method
is Big.”

After an appropriate inference method is applied (see Sec-
tion II-B) in order to obtain fuzzy output, a defuzzification
method is employed and thus, a crisp result (weight of a
particular method) is determined.

Based on experiments and previous publications [13], the
following features were considered in introductory studies
[14], [15], [17] as well as in this paper: strength of trend,
strength of seasonality, length of the time series, skewness,
kurtosis, coefficient of variation, stationarity, and frequency.

Based on listed features, the inference mechanism sets
weights to the following forecasting methods in our en-
semble: seasonal Autoregressive Integrated Moving Aver-
age (ARIMA), Decomposition Techniques (DT), Exponential
Smoothing (ES), Random Walk process (RW), and Random
Walk process with a drift (RWd). For details about these
methods, we only refer to the relevant literature [1], [18],
[19].

In this paper, motivated by the promising results published
in [17], we stemmed from them and proceeded similarly yet
with a wider perspective regarding the implementation and
experimental justification.

B. Components of the Model

In order to estimate (set up) a particular value of the
weight of each forecasting method with help of the fuzzy
rules, an appropriate fuzzy inference mechanism has to be
employed. As mentioned above, the FRBE method employs
linguistic descriptions, i.e. fuzzy rule bases with so called
evaluative linguistic expressions. These are expressions of
natural language that are based on the expressions of the ba-
sic trichotomy Small (Sm), Medium (Me), and Big
(Bi). The expressions of the basic trichotomy may be
modified using linguistic hedges either with narrowing or
widening effect, see Table I.

Such linguistic expressions have their theoretical model of
semantics based on intension, context, and extension, which
is in detail described in the referred literature [16]. For
the purpose of this contribution, it is sufficient to mention
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TABLE I
LINGUISTIC HEDGES AND THEIR ABBREVIATIONS.

Narrowing Effect Widening Effect
very (Ve) more or less (ML)

significantly (Si) roughly (Ro)
extremely (Ex) quite roughly (QR)

that extensions, that model the meaning in a given context
[vL, vR], are fuzzy sets that are depicted in Figure 2. One
may see the influence of the modifiers on the shape of the
extensions.

Sm
Bi

Me

vL vR

1 ML Sm

Ex Sm

ML Me

DEE(Bi)DEE(Sm)

DEE(Ex Sm)

DEE(Me)

Fig. 2. Shapes of extensions (fuzzy sets) of evaluative linguistic expres-
sions.

If a fuzzy rule base is viewed as a linguistic descrip-
tion, and thus uses the above recalled evaluative linguistic
expressions with their model of semantics, one can neither
model the rules (and consequently the whole description) as
a conjunction of implicative rules nor as a disjunction of con-
junctions (Mamdani-Assilian model). The used expressions,
mainly their full overlapping, require a specific inference
method – Perception-based Logical Deduction (PbLD) [20].
This method models each fuzzy rule

Ri := IF X is Ai THEN Y is Bi,

by a fuzzy relation Ri on X × Y given as follows:

Ri(x, y) = Ai(x)→Ł Bi(y), x ∈ X, y ∈ Y

where→Ł is the Łukasiewicz implication [21] given by a→Ł
b = 1 ∧ (1 − a + b). For the sake of clarity, let us note
that X, Y denote the so called linguistic variable that take
values from a set of linguistic expressions, these linguistic
expressions are modelled by fuzzy sets (extensions) on given
universes (contexts) X,Y , and finally, x ∈ X and y ∈ Y .

However, unlike in the case of implicative rules, the rules
are not aggregated conjunctively. The PbLD uses a specific
algorithm (perception) that chooses only some rules to be
used in the inference. These are the most specific among the
most fired rules. And only the outputs obtained based on
these fuzzy rules are aggregated by the intersection at the
final stage. For details regarding the algorithm, we refer to
[22], [23].

Finally, the inferred output is defuzzified. This is done
by the Defuzzification of Evaluative Expressions (DEE) that
has been designed specifically for the outputs of the PbLD

inference mechanism. In principle, this defuzzification is a
combination of First-Of-Maxima (FOM), Mean-Of-Maxima
(MOM) and Last-Of-Maxima (LOM) that are applied based
on the classification of the inferred output fuzzy set. Particu-
larly, if the inferred fuzzy set is of the type Small, the LOM
is applied; if the inferred output is of the type Medium, the
MOM is applied; and finally, if the inferred output is of the
type Big, the FOM is applied, see Figure 2. In the case of the
FRBE method, the defuzzification DEE is applied after the
inference, so that the deduced weights wAR, wDT , . . . , wES
displayed in Figure 1 are already crisp numbers.

C. Fuzzy Rule Base Identification

The last missing point is the identification of the linguistic
descriptions. This may be done by distinct approaches. One
could expect a deep applicable expert knowledge, however,
neither our experience nor the experience of others confirms
this expectations. Let us once more refer to the observation
of Armstrong, Collopy, and Adya in [8], already recalled in
Section I.

Because of the missing reliable expert knowledge, we
focus on data-driven approaches that may bring us the
interpretable knowledge hidden in the data.

However, before we apply any data-mining technique, we
have to clarify how we interpret the weights in the data.
Naturally, the individual method weights should be propor-
tionally higher if a given method is supposed to provide lower
forecasting error and vice-versa. Thus, it is natural to put

wj = 1− accj

where accj denotes an appropriate normalized forecasting
error of the j-th method. Now, any appropriate data-mining
technique may be applied in order to determine the depen-
dence between features and the weight of each method.

III. FUZZY GUHA – LINGUISTIC ASSOCIATIONS
MINING

In this paper, we employ the so called linguistic associa-
tions mining [24] for the fuzzy rule base identification. This
approach, mostly known as mining association rules [25],
was firstly introduced as GUHA method [26], [27]. It finds
distinct statistically approved associations between attributes
of given objects. Particularly, the GUHA method deals
with Table II where o1, . . . , on denote objects, X1, . . . , Xm

denote independent boolean attributes, Z denotes the de-
pendent (explained) boolean attribute, and finally, symbols
aij (or ai) ∈ {0, 1} denote whether an object oi carries an
attribute Xj (or Z) or not.

TABLE II
STANDARD GUHA TABLE.

X1 . . . Xm Z
o1 a11 . . . a1m a1

...
...

. . .
...

...
on an1 . . . anm an
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The original GUHA allowed only boolean attributes to
be involved [28]. Since most of the features of objects are
measured on the real interval, standard approach assumed
to binarize the attributes by a partition of the interval into
subintervals, see Example 3.1.

The goal of the GUHA method is to search for linguistic
associations of the form

A(X1, . . . , Xp) ' B(Z)

where A, B are predicates containing only the connective
AND and X1, . . . , Xp for p ≤ m are all variables occurring
in A. The A, B are called the antecedent and consequent,
respectively. Generally, for the GUHA method, the well-
known four-fold table is constructed, see Table III.

TABLE III
CLASSICAL GUHA FOUR-FOLD TABLE.

B not B
A a b

not A c d

Symbol a, in Table III, denotes the number of positive
occurrences of A as well as B; b is the number of positive
occurrences of A and of negated B, i.e. of ‘not B’. Analogous
meaning have the numbers c and d. For our purposes, only
numbers a and b are important.

The relationship between the antecedent and consequent
is described by the so called quantifier '. There are many
quantifiers that characterize validity of the association in data
[27]. For our task, we use the so called binary multitudinal
quantifier ' := @γ

r . This quantifier is taken as true if
a

a+ b
> γ and

a

n
> r,

where γ ∈ [0, 1] is a degree of confidence and r ∈ [0, 1] is a
degree of support.

Example 3.1: For example, let us consider Table IV.

TABLE IV
EXAMPLE OF GUHA TABLE. BMI≤25 DENOTES BODY-MASS-INDEX

LOWER OR EQUAL TO 25, BMI>25 DENOTES THE SAME INDEX ABOVE

25, Chol>6.2 DENOTES CHOLESTEROL HIGHER THAN 6.2 AND

BP>130/90 DENOTES BLOOD PRESSURE HIGHER THAN 130/90.
OBJECTS oi ARE PARTICULAR PATIENTS.

BMI≤25 BMI>25 Chol>6.2 BP>130/90

o1 1 0 0 0
o2 0 1 1 1
o3 0 1 0 1
o4 1 0 0 0
o5 0 1 1 1
...

...
...

...
...

on 0 0 1 1

Depending on the chosen confidence and support degrees,
the GUHA method could generate e.g. the following linguis-
tic association:

A(BMI>25,Ch>6.2) 'B(BP>130/90),

which could be read as: “Body mass index higher than 25
AND cholesterol higher than 6.2 are associated with blood
pressure higher than 130/90.”

The chosen confidence and support degrees ensure that
the association occurs in the given data in sufficiently high
percentage (confidence) and sufficiently often (support).

In many situations, including ours, the fuzzy variant of
the GUHA method [24], [29] seems to be more appropriate.
We adopt the variant firstly used in [17] and described in
detail in [30] that directly uses theory of evaluative linguistic
expressions. Then the attributes are not boolean but vague
such as BMIExBi, BMIMLBi, CholVeBi etc. With canonical
adjectives Small, Medium, Big and eight different lin-
guistic hedges including the empty one, we may define 24
fuzzy sets for every quantitative variable. The values aij (or
ai) are elements of the interval [0, 1] that express membership
degrees to these fuzzy sets. Example of such a fuzzy GUHA
table is provided in Table V.

TABLE V
EXAMPLE OF FUZZY GUHA TABLE. (COMPARE WITH TABLE IV.)

BMIExSm . . . CholExBi BPExSm . . . BPExBi

o1 0.5 . . . 0 1 . . . 0
o2 0.8 . . . 0 0.4 . . . 0
o3 0 . . . 0.1 0 . . . 0.4
o4 0 . . . 0.4 0 . . . 0.3
o5 0.6 . . . 0 1 . . . 0
...

...
...

...
...

...
...

on 0 . . . 0 0.5 . . . 0

The four-fold table analogous to Table III is constructed
also for the used fuzzy variant of the method. The difference
is that the numbers a, b, c, d are not summations of 1s and
0s, but summations of membership degrees of data into
fuzzy sets representing the antecedent A, and consequent B,
or their complements, respectively. Naturally, the fact, that
antecedent A as well as consequent B hold simultaneously,
leads to the natural use of a t-norm [31]. In our case, we
use the Gödel t-norm that is the operation of minimum. For
example, if an object oi belongs to a given antecedent in a
degree 0.7 and to a given consequent in a degree 0.6, the
value that enters the summation equals to min{0.7, 0.6} =
0.6. Summation of such values over all the objects equals to
the value a in Table III, the other values from the table are
determined analogously. The rest of the ideas of the method
remain the same.

By using fuzzy sets, we generally get more precise results,
and, more importantly, we avoid undesirable threshold effects
[32]. The further advantage is that the method searches for
implicative associations that may be directly interpreted as
fuzzy rules for the PbLD inference system.

In our case, for each individual forecasting method, we
have transformed the training data set of time series with
their normalized features into a table similar to Table VI.

The rest of this section deals with ARIMA method. Of
course, the same process has been applied for all the other
forecasting methods in our ensemble.
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TABLE VI
TRANSFORMED TRAINING DATA SET FOR THE ARIMA FORECASTING

METHOD.

ΦExSm
1 . . . ΦExBi

q WExSm
AR . . . WExBi

AR
TS1 0.9 . . . 0.7 0 . . . 0.9

...
...

. . .
...

...
. . .

...
TSn 0.1 . . . 0.2 0.8 . . . 0

Objects TS1, . . . ,TSn in Table VI are the time series
from the training set; Φ1, . . . , Φq are normalized features
of given time series. Note that there are significantly more
columns in this part of Table VI because each evaluative
linguistic expression leads to a single column for a single
feature Φi, i.e. for the expression ExSm, there are q columns:
ΦExSm

1 , . . . , ΦExSm
q , where q denotes the number of features.

Once more, let us recall that we construct 24 linguistic
expressions.

Symbol WAR stands for the weight (inverted accuracy) of
the ARIMA method, and again, there are as many columns
in this part of the Table VI as there exist so many evaluative
linguistic expressions, i.e. twenty-four in the chosen setting.

The fuzzy GUHA then combinatorically generates hy-
potheses that are immediately statistically either declined
or confirmed as linguistic associations based on the chosen
quantifier parameters, see Example 3.2.

Example 3.2: Our fuzzy GUHA approach provided us
with the following implicative hypothesis:

A(SeasonExBi,KurtQRSm) @γ
r B(WBi

AR)

where Season denotes the normalized strength of seasonality
and Kurt denotes the kurtosis, that was confirmed on the fol-
lowing confidence degree and support degree, respectively:

γ = 0.65, r = 0.18 .

Such a confirmed association may be viewed, and thus
directly interpreted, as the following fuzzy rule:

“IF Strength of Seasonality is Extremely Big AND
Kurtosis is Quite Roughly Small THEN Weight of the
ARIMA method is Big.”

For our purposes, we set up the thresholds for γ = 0.65
and r = 0.05.

Note that the above described application of the fuzzy
GUHA method generates linguistic description determining
the weight of a single method – in our example of the
ARIMA method. Thus, the method, including the transfor-
mation of training data set into a table similar to Table VI,
has to be applied as many times as is the number of methods
(and consequently of the linguistic descriptions). In our case,
this led to the fivefold use of the method as we deal with
five individual methods.

IV. IMPLEMENTATION

To develop and validate the model, we have used 2829
time series from the M3 data set repository that contains 3003

time series from the M3-Competition [33]. We have omitted
timeseries with other than yearly, quarterly, and monthly
frequencies.

M3 set of time series serves as a generally accepted bench-
mark database provided by the authority of the International
Institute of Forecasters. The time series are of 5 categories:
Microeconomy, Macroeconomy, Industry, Finance, Demog-
raphy.

This selected data set was divided into two distinct sets
simply by putting time series with even or odd IDs into a
training or testing set, respectively, see Table VII.

TABLE VII
SPLIT OF DATA INTO TRAINING AND TESTING SET. TOTAL TRAINING

SET SIZE: 1414, TOTAL TESTING SET SIZE: 1415

Source Training (Testing) Set
Monthly Quarterly Yearly

Demographic 55 (56) 28 (29) 123 (122)
Finance 73 (72) 38 (38) 29 (29)
Industry 167 (167) 42 (41) 51 (51)
Macro 156 (156) 168 (168) 41 (42)
Micro 237 (237) 102 (102) 73 (73)
Other 26 (26) 0 (0) 5 (6)
Total 714 (714) 378 (378) 322 (323)

The training set was used for an identification of our
model, that is, for generation of our fuzzy rule base. The
testing set was used for testing whether the determined
knowledge encoded in the fuzzy rules works generally also
for time series “not seen” by the rule base generation
algorithm.

All forecasts were computed with the R software, version
3.0.2, and package forecast [34]. We have chosen the
most often used forecasting methods: seasonal Autoregres-
sive Integrated Moving Average (ARIMA), Decomposition
Techniques (DT), Exponential Smoothing (ES), Random Walk
process (RW) and Random Walk process with a drift (RWd).

These methods were executed with fully automatic pa-
rameter selection and optimization which made possible to
concentrate the investigation purely on the combination tech-
nique. Moreover, their arithmetic mean (AM), that represents
the equal weights ensemble method, was also determined and
used as a valid benchmark.

There are many accuracy measures that are used to analyze
the performance of the various forecasting methods. How-
ever, very popular measures such as Mean Absolute Error or
(Root) Mean Squared Error are inappropriate for comparison
across more time series because they are scale-dependent.
Therefore, we use Symmetric Mean Absolute Percentage Er-
ror (SMAPE) that is scale-independent and thus, appropriate
in order to compare methods across different time series [35].
This accuracy measure is defined as follows:

SMAPE =
1
h

T+h∑
t=T+1

|yt − ŷt|
(|yt|+ |ŷt|)/2

× 100%.

Let a given time series y1, y2, . . . , yT is of the frequency
F , i.e. F = 1, 4, 12, for yearly, quarterly, and monthly time
series, respectively. Then the features used to predict weights
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of the forecasting methods are defined as follows. The nor-
malized frequency is given by the reciprocal value of F , i.e.,
it is given as 1/12, 1/4, and 1 in case of the monthly, quarterly,
and yearly time series, respectively. The normalized length of
the time series is given by min (T/100, 1) where T denotes
the number of known time lags. The skewness is given as

skewness = min

(
1
6
·

(
m3

m
3/2
2

+ 3

)
, 1

)
,

where mi = 1
T

∑T
t=1(yt − ȳ)i and ȳ is the arithmetic mean

of the given time series {yt}Tt=1. The kurtosis is given as

kurtosis = min
(

m4

10m2
2

, 1
)
,

with mi given as above. The coefficient of variation is given
as CV = min (sy/ȳ, 1), where sy is the standard deviation
of {yt}Tt=1. The strength of trend is given by (1− p), where
p is a p-value of the statistical test of the null hypothesis
H0 : β1 = 0, where β1 is a slope parameter of the linear
regression model:

yt = β0 + β1t+ εi, for t ∈ {1, 2, . . . , T}.

The strength of seasonality is given by

1−min(p2, p3, . . . , pF ),

where pi for i ∈ {2, 3, . . . , F} is the p-value of the test of
the null hypothesis H0 : βi = 0, where βi is the coefficient
of the linear regression model

yt = β0 + β1t+ β2xt,2 + β3xt,3 + . . .+ βFxt,F + εi

for t ∈ {1, 2, . . . , T} and xt,j ∈ {0, 1} is an artificial variable
such that xt,j = 1 if t mod F = j mod F . Finally, the
stationarity is given by (1− p), where p is a p-value of the
Augmented Dickey–Fuller Test of stationarity.

As you can see, many of the features have slightly different
definition than expected by statisticians. The reason is that we
need them to be normalized to the interval [0, 1]. Therefore,
for instance, although a traditional definition of kurtosis is
m4
m2

2
−3, we use min

(
m4

10m2
2
, 1
)

to obtain a reasonable number
in the interval [0, 1] etc. Our future research will address the
normalization of features more deeply.

V. RESULTS

As mentioned above, the associations generated by GUHA
method are implicative. Thus, they may be directly inter-
preted as fuzzy rules. Due to the large amount of such
generated rules, a redundancy removal and size reduction
algorithms were applied on these rules. The first process
consists in an automatic detection and deletion of redundant
rules based on a rather complicated and sophisticated, yet
fully theoretically justified algorithm, see [22], [23]. After
the application of the redundancy detection algorithm, the
number of rules was significantly reduced, although not
sufficiently in case of some huge fuzzy rule bases. Anyhow,
the redundant rules are those that have to be deleted first.

Only after the redundancy removal, a heuristic size reduc-
tion and simplification algorithm was applied again on the
redundancy-free rule bases, for results see Table VIII.

TABLE VIII
NUMBER OF RULES GENERATED BY THE FUZZY GUHA METHOD AND

NUMBER OF RULES AFTER POST-PROCESSING.

Method Number of Rules After Application of Algorithms
Fuzzy GUHA Redundancy Removal Size Reduction

ARIMA 11206 9904 37
DT 63 29 10
ES 2244 1968 30
RW 153 49 14
RWd 2579 1941 45

In order to judge its performance, the fuzzy rule-based
ensemble was applied on 1415 time series from the testing
set. Table IX shows that arithmetic mean and standard
deviation of SMAPE forecasting errors over all testing time
series is better for fuzzy rule-based ensemble than any
individual forecasting method. Moreover, the equal-weights,
i.e. arithmetic mean (AM), has been outperformed as well.

TABLE IX
AVERAGE AND STANDARD DEVIATION OF THE SMAPE FORECASTING

ERRORS.

Method Error Average Error Std.Dev.
ARIMA 14.58 16.77
DT 23.58 29.36
ES 14.31 16.44
RW 16.53 17.20
RWd 16.63 19.97
AM 14.73 16.88
FRBE 13.93 15.47

Although the improvement does not seem significant,
it is evident that the fuzzy rule-based ensemble performs
very well even against the equal-weights combining, i.e. a
procedure that has performed well in prior studies.

To indicate superiority of our method, a statistical test of
significance has been performed. Namely, we have performed
Wilcoxon signed rank test with continuity correction for
the null hypothesis that median of the random variable
(SMAPEAM−SMAPEFRBE) equals to zero, with the non-
zero equality alternative hypothesis. The null hypothesis
was rejected in the standard significance level α = 0.05 .
Particularly, the obtained p-value was less than 2.2× 10−16.

Let us stress that the victory has been reached not only in
the accuracy but also in the robustness (standard deviation
of the SMAPE forecasting errors, see Table IX), which is
perhaps even more important w.r.t. the goals of ensemble
methods.

To compare variances of SMAPEAM and SMAPEFRBE,
the F-test was performed. As a result, null hypothesis of
ratio of variances being equal to 1 was rejected with p-
value lower than 0.001 . Also comparison of error variance
of the FRBE method with error variance of all the individual
methods (with p-values adjusted for multiple comparisons)
indicate statistically significant differences with adjusted p-
values lower than 0.02 .
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This investigation also confirms that there is really a
dependence between time series features and success of
forecasting method. This fact is good motivation to continue
in this topic.

R1: IF length is QRMe AND trendStrength is QRBi AND kurtosis is
QRSm AND varcoef is QRMe AND stationarity is QRMe THEN
wDT is RoSm.

R2: IF length is QRMe AND trendStrength is Bi AND seasonStrength is
QRMe AND stationarity is QRMe THEN wDT is RoSm.

R3: IF trendStrength is VeBi AND skewness is QRMe AND stationarity
is RoMe THEN wDT is RoSm.

R4: IF length is QRMe AND trendStrength is VeBi AND kurtosis is
QRSm AND varcoef is QRMe AND stationarity is QRMe THEN
wDT is MLSm.

R5: IF length is RoMe AND trendStrength is Bi AND varcoef is QRMe
AND stationarity is QRMe THEN wDT is MLSm.

R6: IF trendStrength is QRBi AND seasonStrength is QRSm AND
skewness is QRMe THEN wDT is QRSm.

R7: IF length is QRMe AND seasonStrength is QRMe AND stationarity
is QRMe THEN wDT is QRSm.

R8: IF length is RoMe AND varcoef is QRMe AND stationarity is
QRMe THEN wDT is QRSm.

R9: IF skewness is QRMe AND stationarity is RoMe THEN wDT is
QRSm.

R10: IF length is MLMe AND trendStrength is QRBi AND
seasonStrength is QRSm THEN wDT is QRSm.

Fig. 3. Complete exemplary post-processed rule base for the Decomposition
Techniques (DT) method.

In order to emphasize the linguistic nature of the approach,
we provide readers with one of the linguistic descriptions
generated by the fuzzy GUHA method in Figure 3. Because
of the small number of generated rules, we choose the lin-
guistic description that set up the weight of the DT method.
The fuzzy rules symbolically displayed in Figure 3 can be
easily read as conditional sentences of natural language. For
example, let us take fuzzy rule R9, which may be read as
follows:

“IF time series skewness is quite roughly medium AND
its stationarity is roughly medium THEN the weight of
Decomposition Techniques is quite roughly small.”

Please note that the obtained rule base (Fig. 3) contains
rules with consequents containing variants of “small” weight
only. That means, the rule base captures circumstances of
small weight of the DT method. For inputs that do not meet
antecedent of any of the determined rules, no rule is fired, the
output is constantly equal to one on the whole output domain
and the defuzzified output equals precisely to its middle.

Recall, that we have chosen the weight to be proportional
to the expected method accuracy and thus the weight and
the accuracy may be freely replaced. This makes the rule
even more interpretable, which underlines the goal of our
approach.

VI. CRITICAL DISCUSSION AND FUTURE DIRECTIONS

The obtained results showed an improvement in the accu-
racy as well as in the standard deviation of the accuracy that
confirms the improvement in the sense of “robustness”.

Let us now open a short critical discussion related to the
results and the approach, generally. Undoubtedly, the results

confirm some sort of improvement. One could surely express
objections to the too slight improvement and also to the
too difficult and technologically demanding approach. Both
objections have to be taken seriously as they have reasonable
cores.

Related to the first objection, we have to stress that we
have tested the improvement in accuracy not only compared
to the arithmetic mean but also compared to all the individual
methods (with p-value adjustment for multiple comparisons).

The suggested FRBE method was found significantly
better in median error than DE, RW and RWd. For ARIMA
and Exponential Smoothing, the null hypothesis could not
be rejected. The null hypothesis of the variance F-test was
rejected in case of all the individual methods with no
exception.

This means that the results provide maybe slight yet
statistically significant improvement. This is not that much
surprising, having in mind the extremely high number of time
series in the testing set. However, this is nothing against the
validity of the results. Vice-versa, the bigger the testing set,
the better for the experimental justification.

One should also note the interesting fact that two of the
individual methods, particularly ARIMA and ES, provided
better results than the arithmetic mean AM. This is rather
unusual observation that should not occur. It is a conclusion
of the fact that the ensemble was composed of only two well-
established methods, two naive methods, and one method
(DT) that was significantly outperformed by all the others
including the naive ones.

The choice of this unbalanced composition of the en-
semble significantly reduced the positive influences of any
possible combination, including the standard equal weights
(AM) method.

This may be viewed even positively. The AM combination
of two well-performing methods with one significantly worse
method and two naive methods is nearly as good as the two
well-working methods. The sophisticated FRBE even outper-
formed all the methods in error variance. This underlines the
potential of such ensembles, especially of the FRBE.

Of course, the choice of individual methods is a crucial
step. The way out of this problem clearly lies in a different
composition of individual methods in the ensemble. On the
other hand, too many methods might be counterproductive.

In order to avoid the trial-error approach, a stochastic
optimization task will be implemented on a high performance
computer in order to find the optimal setting of all “bricks”
building the FRBE. This does not relate only to the individual
methods, but also to the features itself, and their normaliza-
tion.

For example, the used (1 − p)-values (strength of trend,
strength of seasonality, stationarity) lie in the [0, 1]-interval
and thus, are not further normalized anymore. However,
(1 − p)-values around 0.7 or 0.8 are extremely low from
the statistical point of view, as p-value around 0.2 usually
does not allow to reject null hypothesis. But within the
standard context [0, 1], the values around 0.8 are found rather
big. Narrowing the interval of p-values and consequently the
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derived features given by (1− p)-values seems to be neces-
sary. Nevertheless, the particular realization of the narrowed
normalization is again an open question that may be solved
within the more general optimization task performed by the
stochastic optimization implemented on a supercomputer.
This foreshadows the future direction of our research.

Regarding the second objections, let us stress that the
difficulty appears only in the construction phase. In the final
phase, that is planned to be reached, we expect to have
a rather simple (from a user point of view) tool that will
automatically determine a given time series features, use the
pre-determined fuzzy rules to set-up weights of individual
methods, perform individual method forecasts, combine them
according to the determined weights, and finally, provide a
user with a single accurate yet robust forecast. The actual
study shows the potential to reach this task rather soon as
the constructed ensembles demonstrated that: i) even the
arithmetic mean that includes also an unreliable method may
be comparable with the good ones; ii) FRBE composed of
the same methods is sophisticated enough to even outperform
the good methods though, 3 out of 5 individual methods
used in FRBE should not be preferably used. The potential
of FRBE composed only of well-performing methods and
based on optimized (and optimally normalized) features can
be only guessed at this phase of investigation and it is our
goal number one in future investigations.
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