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Abstract— The idea behind distance metric learning (DML) is
to accentuate the distance relations found in the training data,
maintaining whether the data patterns are similar or dissimilar. In
this paper, we investigate in using DML (GDML, LMNN, MCML
and NCA) in semi-supervised Fuzzy c-means clustering and apply
them on a real, biomedical dataset and on UCI datasets. We used
a cross validation setting with varying amount of labelled data to
test our methodology. Out of eight datasets, statistical significant
improvement was found on five datasets using ssFCM with DML.
This shows that DML can improve ssFCM clustering for some
datasets. Further analysis using 2D PCA projection and sum of
squared distances before and after DML transformation of the
original data are carried out. Interestingly, DML was found to
worsen ssFCM clustering in the NTBC dataset with hierarchical
clusters.

I. INTRODUCTION

Distance metrics are critical in data mining algorithms be-
cause they reflect the important structure within the data.
Traditionally, users manually adjust the metric or experiment
with several different metrics until adequately good clusters are
found. This has motivated researchers to learn a distance metric
using labelled data as examples. Distance Metric Learning
(DML) techniques allow us to learn a distance metric of the
data such that the distance relation among the training data is
preserved by using labelled data to indicate whether they are
similar and dissimilar. Many studies have shown that the use of
a learned metric can improve the performance of classification
and clustering tasks. A review on distance metric learning is
found in [1].

The idea behind DML is such that if the algorithm is in-
formed which data patterns are similar and which are dissimilar,
the algorithm will learn a distance metric that maintains this
relationship, where smaller distances are assigned to similar
distances and bigger distances are assigned to dissimilar dis-
tances. This suggests that the separability between clusters can
be increased using DML, particularly for datasets where clusters
overlap. This in turn can improve clustering for algorithms
such as semi-supervised Fuzzy c-means (ssFCM) where the
similarity of data patterns are defined by distance metrics.
In [2], Reps et al. employed DML into a semi-supervised
clustering framework with integration of existing techniques and
information from the web for the identification of rare adverse
side effects of drugs. Similarly, we wish to employ DML to
ssFCM to improve clustering results.

The popularity of distance metric learning (DML) is rapidly
increasing. While DML has been largely applied to K-means
and constrained K-means clustering [3], [2], a few studies
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have been done on application of DML techniques to semi-
supservised Fuzzy c-means (ssFCM) algorithms [4], [5], [6].
Ceccarelli and Maratea [4] applied GDML [3] to ssFCM. In
this paper, we aim to expand this work by exploring other DML
algorithms such as NCA, MCML and LMNN applied to ssFCM
with investigation in distance metric, which, to the best of our
knowledge, have not been done.

Semi-supervised fuzzy c-means (ssFCM) is an extended form
of fuzzy c-means [7], which uses available prior knowledge in
the form of labelled data to guide the clustering of unlabelled
data. This is beneficial as labelled data are scarce and expensive
to collect. Our study is focused on ssFCM as it can represent
data in more than one clusters using membership values and can
learn from labelled data patterns. Furthermore, ssFCM has been
demonstrated to perform well in many clustering problems, such
as traffic classification in [8] and identifying biological clusters
in [9], to name a few.

To fulfill our overarching research objective [10] of exploring
different techniques to incorporate into an ssFCM framework
for improving its clustering, in this paper, we investigate the
application of DML techniques Global Distance Metric Learn-
ing (GDML) [3], Neighbourhood Components Analysis (NCA)
[11], Maximally Collapsing Metric Learning (MCML) [12] and
Large Margin Nearest Neighbour (LMNN) [13] in ssFCM.
Although NCA, MCML and LMNN are designed for k-nearest
neighbour (KNN), where data patterns located close together
are assigned the same labels and those far away with different
labels, clustering algorithms are recognised to work on similar
concepts of similarity using distance metric. Thus, this paper
focuses on investigating the performance of ssFCM with the
application of DML on the NTBC and UCI datasets.

The paper is organised as follows: We review ssFCM and
DML in Section II and III respectively. The experimental
methods are found in Section IV. This is followed by results and
discussion in Section VI and VII before we reach conclusions
in Section VIII.

II. ALGORITHMS

In this section, we briefly describe the four DML algorithms
and ssFCM algorithm selected for our investigation.

A. Distance Metric Learning

1) Global Distance Metric Learning: The Global Distance
Metric Learning (GDML) technique [3] learns a global distance
metric that that minimises the distance between the data patterns
that are similar.

Suppose there are some points {x𝑖}𝑚𝑖=1 ⊆ ℝ𝑛, and those that
are similar are expressed as:

𝑆 : (x𝑖,x𝑗) ∈ 𝒮 if x𝑖 and x𝑗 are similar. (1)
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To calculate similarity, the distance metric of the following
form is used:

𝑑(x,y) = 𝑑A(x,y) = ∣∣x− y∣∣A =
√

(x− y)𝑇A(x− y).
(2)

For a similarity measure to be a metric, it needs to be non-
negative and conform to the triangle inequality. Thus, A has to
be positive semi-definite, A ર 0 in constraint (5). The constraint
in (4) ensures that A is not zero since this will cause the dataset
to collapse to a single point, which is not useful. The objective
function is expressed as an optimisation problem as follows:

max
A

∑
(x𝑖,x𝑗)∈𝒮

∣∣x𝑖 − x𝑗 ∣∣2A (3)

s.t.
∑

(x𝑖,x𝑗)∈𝒟
∣∣x𝑖 − x𝑗 ∣∣A ≥ 1, (4)

A ર 0. (5)

To learn the diagonal A, the Newton-Raphson method is
used. This would rescale the data and replace each point x with
A1/2x. To learn a full matrix A, the constraint A ર 0 becomes
a hard problem. Gradient descent and iterative projection are
used to solve the objective function for the full matrix A.

2) Neighbourhood Components Analysis: The Neighbour-
hood Components Analysis (NCA) [11] learns a Mahalanobis
distance metric specifically for the KNN classifier by optimising
the expected leave-one-out (LOO) performance on the training
data using stochastic neighbour selection rule. Let a labelled
data set be x1, ...,x𝑛 in ℛ𝒟 with corresponding class labels
𝑐1, ..., 𝑐𝑛. To ensure the metric to be learned symmetric positive
semi-definite, it is in the form Q = A𝑇A such that 𝑑(𝑥, 𝑦) =
(𝑥− 𝑦)𝑇Q(𝑥− 𝑦) = (A𝑥−A𝑦)𝑇 (A𝑥−A𝑦).

In leave-one-out cross validation setting, the authors consider
the entire transformed data set as stochastic nearest neighbours.
Given a point x𝑖, a stochastic (”soft”) neighbour of x𝑖 is
defined by 𝑝𝑖𝑗 , which is the probability of x𝑖 selecting x𝑗 as
its neighbour and sharing the same class label. The probability
𝑝𝑖𝑗 is defined as:

𝑝𝑖𝑗 =
exp(−∣∣Ax𝑖 −Ax𝑗 ∣∣2)∑
𝑘=𝑖 exp(−∣∣Ax𝑖 −Ax𝑘∣∣2) . (6)

We denote the set of points in the same class as 𝑖 by
𝐶𝑖 = {𝑗∣𝑐𝑖 = 𝑐𝑗}. Thus, the probability 𝑝𝑖 that x𝑖 will be
correctly classified is 𝑝𝑖 =

∑
𝑗∈𝐶𝑖

𝑝𝑖𝑗 and the expected number
of points correctly classified is 𝑓(𝐴) =

∑𝑛
𝑖=1 𝑝𝑖. To maximise

the objective 𝑓(𝐴), the first-order derivative of 𝑓(𝐴) is taken
with respect to 𝐴.

3) Maximally Collapsing Metric Learning: The Maximally
Collapsing Metric Learning (MCML) [12] proposed a convex
optimisation problem which learns the Mahalanobis distance
metric that collapses data from the same class to a point and
push data in other classes far apart.

Given a data pattern 𝑥𝑖, a conditional distribution over points
𝑖 ∕= 𝑗 is defined:

𝑝𝐴(𝑗∣𝑖) = 1

𝑍𝑖
𝑒−𝑑

𝐴
𝑖𝑗 =

𝑒−𝑑
𝐴
𝑖𝑗∑

𝑘 ∕=𝑖 𝑒
−𝑑𝐴𝑖𝑘

𝑖 ∕= 𝑗 (7)

where 𝑑𝐴𝑖𝑗 = 𝐷𝐴(𝑋𝑖, 𝑥𝑗) and 𝐴 is a positive semi-definite
matrix. An ideal ”bi-level” distribution expressing the ideal case

where all data patterns from the same class are mapped to a
single point and data patterns in other classes are separated as
much as possible is used. To make the conditional distribution
as close as possible to the ideal case, the KL divergence between
the two distributions, the conditional distribution and “bi-level”
distribution, is minimised. Gradient descent and iterative pro-
jections, similar to [3] is used to solve this convex optimisation
problem.

4) Large Margin Nearest Neighbour: The Large Margin
Nearest Neighbour (LMNN) technique [13] learns a Maha-
lanobis distance metric by enforcing the KNN classifier to
always belong to the same class while data patterns that belong
to other classes are separated by a large margin. A cost function
is used to penalise large distances between each input x𝑖 and its
target neighbours and small distances between each input and
all other inputs that do not belong to the same class as follows:

𝜀(L) =
∑
𝑖𝑗

𝜂𝑖𝑗 ∣∣L(x𝑖,x𝑗)∣∣2

+𝑐
∑
𝑖𝑗𝑙

𝜂𝑖𝑗(1− 𝑦𝑖𝑙)[1 + ∣∣L(x𝑖,x𝑗)∣∣2

−∣∣L(x𝑖,x𝑙)∣∣2]+ (8)

where ∣∣L(x𝑖,x𝑗)∣∣2 is the squared distance between two data
patterns, 𝑦𝑖𝑗 ∈ 0, 1 indicates the labels of two data patterns,
𝑦𝑖 and 𝑦𝑗 match, 𝜂𝑖𝑗 ∈ {0, 1} indicates whether x𝑗 is a target
neighbour of x𝑖, [𝑧]+ = max(𝑧, 0) in the second term denotes
the standard hinge loss and 𝑐 > 0 is a positive constant. The
first term only penalises large distances between data patterns
and target neighbours, and not between all data patterns that
have similar labels. The second term incorporates the idea of a
margin such that for each input x𝑖, the hinge loss is incurred
by differently labelled data patterns whose distances do not
exceed the distance from x𝑖 to any of its target neighbours by
one absolute unit of distance. Thus, the cost function favours
distance metrics in which differently labelled data maintain a
large margin and do not threaten to to “invade” each other’s
neighbourhoods.

5) Differences: While the four techniques have the same ob-
jective of preserving the distance relation between data patterns,
they take on different learning strategies. For GDML, Xing
et al. [3] focused on minimising the distance between similar
data patterns. NCA, MCML and LMNN are designed based
on the KNN algorithm. For NCA, a distance metric is learned
by finding a linear transformation of input data such that the
average LOO classification performance of stochastic nearest
neighbours is maximized in the transformed space. MCML
attempts to learn a distance metric which map similar data
patterns to a single point and dissimilar data far apart using
“bi-level” distribution. LMNN introduces a cost function which
punishes dissimilar data pattern with small distances, ensuring
a large distance is maintained between dissimilar data.

B. Semi-supervised Fuzzy c-means
Let 𝑁 , 𝑛, 𝑐 and U denote number of data patterns, number of

dimensions, number of clusters and partition matrix containing
memberships of data patterns respectively. 𝑢𝑖𝑗 is membership
value of data pattern 𝑗 in cluster 𝑖, 𝑣𝑖 is the cluster centre
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Algorithm 1 Semi-supervised fuzzy c-means [7]
1: Initialise 𝑐, labelled data membership matrix 𝐹 and initial membership

matrix 𝑈0

2: Calculate cluster centres using

𝑣𝑖 =

∑𝑁
𝑗=1 𝑢

2
𝑖𝑗x𝑗

∑𝑁
𝑘=1 𝑢

2
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑐. (10)

3: Compute fuzzy covariance matrices.
4: Compute squared distances 𝑑2𝑖𝑗 between cluster centres and data patterns.
5: Update partition matrix, 𝑈 using equation :

𝑢𝑖𝑗 =
1

1 + 𝛼

⎧
⎨

⎩

1 + 𝛼(1− 𝑏𝑗
∑𝑐

𝑙=1 𝑓𝑙𝑗)
∑𝑐

𝑙=1

(
𝑑𝑖𝑗
𝑑𝑙𝑗

)2
+ 𝛼𝑓𝑖𝑗𝑏𝑗

⎫
⎬

⎭
(11)

6: If ∣∣𝑈 ′ − 𝑈 ∣∣ < 𝜖, stop. Else, go to Line 2 with 𝑈 = 𝑈 ′

TABLE I

DATASET SPECIFICATIONS SHOWING NUMBER OF DATA PATTERNS (N),

NUMBER OF DIMENSIONS (n), NUMBER OF CLASSES (c) AND THE NUMBER

OF FOLD (k) USED IN CROSS-VALIDATION (CV)
Dataset N n c k-fold CV
Nottingham Tenovus Breast Cancer (NTBC) 663 25 6 10
Wisconsin Original Breast Cancer (WOBC) 699 8 2 10
Arrhythmia 420 277 3 10
Pima Indian Diabetes (PID) 768 8 2 5
Cardiotocography 2126 21 3 10
Yeast 1484 8 10 2
Wisconsin Diagnostic Breast Cancer (WDBC) 569 30 2 10
Dermatology 366 33 6 5

(prototype) for cluster 𝑖, 𝑑𝑖𝑗 is distance between data pattern 𝑗
and cluster centre 𝑣𝑖, 𝑓𝑝 is fuzzifier parameter, 𝑓𝑖𝑗 is member-
ship value of labelled data pattern 𝑗 in cluster 𝑖, b is a boolean
vector indicating if a pattern is labelled and 𝛼 is a parameter for
maintaining balance between the supervised and unsupervised
learning components.

In [7], the ssFCM objective function is as follows:

𝐽 =

𝑐∑
𝑖=1

𝑁∑
𝑗=1

𝑢𝑓𝑝𝑖𝑗 𝑑
2
𝑖𝑗 + 𝛼

𝑐∑
𝑖=1

𝑁∑
𝑗=1

(𝑢𝑖𝑗 − 𝑓𝑖𝑗𝑏𝑗)𝑓𝑝𝑑2𝑖𝑗 , (9)

The algorithm uses labelled data as training examples to classify
unlabelled data. The algorithm involves iteratively calculating
the cluster centres and partition matrix to minimise the objective
function until a termination criterion is satisfied. The algorithm
is summarised in Algorithm 1.

III. EXPERIMENT

A. Datasets

The specifications of the datasets used are shown in Table I.
For the Nottingham Tenovus Breast Cancer data, the 663 labels
were obtained from [14], which are also used in our previous
work [10]. For Arrhythmia, feature 14 is removed as it contains
many missing values. Data patterns in class 2 to 15 have been
combined together as class 2 as there is too little data patterns in
classes 7, 8 and 11 to carry out 10-fold cross validation properly.
22 data patterns which are unclassified are classed as class 3.
For Cardiotocography, we used the 3-class labels instead of the
10-class labels. As there is not enough data patterns from some
classes to be split into 10 folds in Yeast, we carry out 2-fold
cross validation. For Dermatology, age in column 34 is removed
due to missing values.
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Fig. 1. Experimental set-up using distance metric learning with ssFCM

B. Methodology
We run our methodology in a cross validation (CV) setting

using varying amounts of labelled data 10%, 20%, 30%, 40%,
50% and 60% of the training data, repeated 30 times for each
amount. The labelled data are selected randomly based on
stratified sampling to ensure each cluster is represented. Prior
to running ssFCM, we first perform DML using the selected
labelled data to learn A, a positive-definite matrix, which is
found in the Mahalanobis distance metric between two points
𝑥𝑖 and 𝑥𝑗 in the form:

𝑑(𝑖,𝑗) = (xi − xj)
𝑇A(xi − xj). (12)

The DML codes are implemented in MATLAB and are available
online in [15], [16], [17].

Using A, we transform the training and test data into new
(transformed) training and test data. The transformation would
cause the similar data patterns to become closer and/or the
dissimilar data patterns are pushed further apart. We run ssFCM
using the new training data in the training process. The updated
partition matrix U′ is then used with the new test data in the
testing process to classify the unlabelled data. This experimental
set-up is illustrated in Figure 1.

C. ssFCM set-up
𝛼 is set as 𝑁/𝑀 where 𝑀 is the number of labelled data.

In the original ssFCM [7], all data patterns are assigned mem-
berships based on given labels and stored in F. They are then
selected to be labelled or unlabelled using the boolean vector
b in (11). In our case, we select the labelled data and generate
their memberships prior to running the algorithm. We set our
F = U0, which contain memberships of labelled and unlabelled
data and 𝑏𝑗 is 1 for all 𝑗 (11). A high 0.9 membership value is
arbitrarily chosen to indicate a data pattern’s high possibility of
belonging to the cluster while a 0.02 value indicates otherwise.
The memberships are assigned as follows:

𝑓𝑖𝑘 =

⎧⎨
⎩

0.9 if 𝑥𝑗 is labelled and in class 𝑖
(1−0.9)
(𝑐−1) if 𝑥𝑗 is labelled and not in class 𝑖
1/𝑐 if 𝑥𝑗 is unlabelled

We assumed the number of cluster 𝑐 to be the number of
classes. Instead of the Mahalanobis distance metric with fuzzy
covariance originally used [7], we experiment with Euclidean,
Mahalanobis and kernel-based distance metrics instead as we
found that the fuzzy Mahalanobis ssFCM did not always
produce the best accuracy [10]. A one-tailed Mann-Whitney test
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TABLE II

ACCURACY USING SSFCM WITH DML ON VARIOUS DATASETS IN A CV SETTING. EUCLIDEAN (E), MAHALANOBIS (M) OR KERNEL-BASED (K) INDICATE

THE BEST PERFORMING DISTANCE METRIC FOR SSFCM
10% 20% 30% 40% 50% 60%

NTBC Euclidean (E) 96.12±2.04 96.86±1.94 97.22±1.77 97.54±1.61 97.64±1.55 97.84±1.53
GDML+E 91.22±5.63 92.64±4.42 93.52±3.28 93.72±3.07 93.52±3.21 94.09±2.56
LMNN+E 56.56±11.24 84.16±6.74 90.85±5.61 84.62±15.00 73.94±15.36 62.87±10.29
MCML+E 87.31±5.43 88.66±5.08 89.23±4.55 89.66±4.66 89.69±4.41 90.60±4.29
NCA+E 78.03±8.33 80.37±6.53 81.76±5.74 82.35±5.23 83.12±5.64 83.84±5.15

WOBC Kernel-based (K) 96.22±1.67 95.98±1.56 95.94±1.54 95.76±1.41 95.72±1.38 95.71±1.37
GDML+K 94.99±1.82 94.51±1.97 94.11±2.04 93.81±2.02 93.69±2.03 93.69±2.53
LMNN+K 95.16±2.24 95.50±1.76 95.65±1.87 95.57±1.82 95.56±1.74 95.38±1.80
MCML+K (4) 95.80±2.10 95.88±1.75 95.78±1.82 95.85±1.64 95.77±1.59 95.79±1.53
NCA+K 93.99±3.92 94.72±2.31 94.72±2.36 95.13±2.02 94.90±1.88 95.27±1.70

Arrhythmia Euclidean (E) 38.75±7.59 40.32±7.99 42.40±8.16 43.68±8.13 43.90±7.89 44.33±8.28
GDML+E 41.52±8.01 44.47±7.91 46.91±8.28 47.98±7.83 48.75±7.49 49.98±7.36
LMNN+E 44.17±9.14 41.35±8.15 41.02±8.17 43.68±7.90 44.84±7.83 46.90±8.22
MCML+E 39.89±7.89 41.46±8.61 43.58±8.44 44.67±8.12 44.69±7.65 45.25±8.13
NCA+E 39.70±8.19 40.93±8.09 42.56±8.42 42.92±8.55 43.87±8.55 43.78±8.19

PID Mahalanobis(M) 72.53±2.80 72.95±2.58 73.46±2.54 73.90±2.77 73.87±2.67 74.11±2.57
GDML+M 69.12±5.84 70.84±4.89 71.01±5.36 71.35±5.15 71.66±4.85 71.87±4.66
LMNN+M 72.25±3.39 73.00±2.71 73.54±2.55 73.99±2.72 74.22±2.78 74.34±2.73
MCML+M 72.52±2.82 72.95±2.59 73.45±2.54 73.90±2.78 73.87±2.67 74.12±2.58
NCA+M 71.34±4.34 72.66±3.25 73.32±3.01 73.36±2.85 73.30±3.00 73.51±2.80

Cardiotocography Euclidean (E) 47.60±3.91 48.92±3.00 49.31±3.03 49.94±3.05 50.44±3.08 51.18±3.00
GDML+E 63.41±8.22 68.58±6.67 71.06±5.45 74.46±5.11 74.33±4.03 75.89±4.31
LMNN+E 50.76±6.45 50.98±5.03 52.25±5.24 52.84±4.88 54.07±4.90 55.12±5.14
MCML+E (10) 47.58±6.58 49.23±5.98 49.81±6.24 50.99±6.54 51.21±6.64 51.60±6.33
NCA+E 51.77±9.86 54.12±8.44 56.28±8.34 56.52±7.94 57.88±8.43 60.83±8.90

Yeast Euclidean (E) 33.34±3.51 35.28±2.99 36.94±2.72 37.67±3.05 38.06±2.66 38.21±2.55
GDML+E 29.06±5.39 29.92±4.79 30.83±3.60 31.43±4.16 31.55±4.09 32.28±4.81
LMNN+E 34.54±3.14 37.13±2.75 38.26±2.69 39.48±2.98 40.39±2.75 40.38±2.64
MCML+E 37.66±3.76 39.55±3.11 41.24±3.14 42.26±2.80 42.81±2.90 43.66±2.35
NCA+E 25.92±2.79 27.62±2.79 28.26±3.05 28.52±3.25 28.88±3.95 27.95±3.31

WDBC Mahalanobis (M) 89.03±4.70 90.41±4.48 88.73±5.74 84.70±4.68 85.70±5.40 91.01±5.59
GDML+M 89.60±4.87 91.26±4.64 92.29±4.03 92.87±4.23 93.10±3.83 92.71±4.13
LMNN+M 84.87±5.15 88.88±4.68 90.93±4.13 92.30±3.76 92.89±3.91 93.64±3.44
MCML+M (20) 88.83±4.80 90.78±4.35 92.01±4.30 92.36±4.01 92.88±4.13 93.22±3.94
NCA+M 87.47±5.15 89.78±4.64 90.87±4.65 91.33±4.30 91.67±4.74 92.24±3.98

Dermatology Euclidean (E) 94.33±2.18 94.54±2.15 94.61±2.11 94.63±2.12 94.63±2.02 94.62±1.92
GDML+E 92.81±3.11 93.25±2.54 93.32±2.64 93.57±2.66 93.92±2.39 93.97±2.46
LMNN+E 80.61±7.13 89.32±4.13 92.59±2.86 94.74±2.13 95.28±2.12 95.58±1.85
MCML+E (20) 92.51±3.19 93.95±2.57 95.22±2.30 95.60±2.44 95.73±2.39 96.04±2.04
NCA+E 89.92±4.47 91.67±4.38 91.55±4.25 91.14±4.64 91.72±4.07 92.21±3.28

[18] is used to demonstrate significant improvement between
using ssFCM and DML with ssFCM (with 𝑝-value < 0.05).

IV. RESULTS

Table II shows the accuracy of test data using ssFCM with
DML. Only ssFCM results with the best performing distance
metric is shown. The best results are highlighted in bold and
results which are better than ssFCM are italicised. Results that
are underlined indicate statistically significant improvement in
accuracy when compared to using ssFCM alone. The accuracy is
calculated based on the average number of correct assignments
presented in percentage followed its standard deviation.

Out of the eight datasets used to test our methodology,
significant improvement using ssFCM with DML was found
on five datasets, particularly for Cardiotocography, WDBC and
Dermatology. While improvement was found on WOBC and
PID, it is considered not statistically significant. This is not
to say there is no improvement but, the improvement is not
significant. For the NTBC dataset, we observed no improvement
at all using ssFCM with DML. ssFCM with LMNN showed
significant improvement for more datasets than ssFCM with
GDML, on five out of eight datasets. ssFCM with GDML

produced the highest significant improvement for three datasets.
ssFCM with DML appears to show improvement when the
amount of labelled data are at least 20%, 30% or 40% of training
data for Dermatology, PID and WOBC respectively. This was
also observed in WDBC using LMNN, MCML and NCA.

For dataset WOBC, PID, Cardiotocography, WDBC and
Dermatology where MCML did not improve ssFCM clustering
results, we experiment with reduced number of dimensions
indicated by a numerical in brackets specified in Table I.
For PID, experimentation using ssFCM and MCML with 4
dimensions was conducted but the results did not improve, and
was thus not shown.

Principal Component Analysis (PCA) is used to present a
2D projection view of the resulting DML transformation on
the original datasets and the clustering results based on the
transformed data. Due to space constraints, we show only the
datasets with the worst and best results NTBC, Dermatology
and Cardiotocography, as shown in Figure 2, 3 and 4 respec-
tively. By worst, we mean the dataset where ssFCM produced
good results but, worsen drastically using ssFCM with DML.
The DML-ssFCM results displayed are based on one of the
runs after training and testing using 60% labelled data. Note
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(a) Original data
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(b) ssFCM result
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(c) GDML transformed data
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(d) ssFCM-GDML result
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(e) LMNN transformed data
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(f) ssFCM-LMNN result
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(g) MCML transformed data
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(h) ssFCM-MCML result
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(i) NCA transformed data
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(j) ssFCM-NCA result
Fig. 2. PCA biplots to show DML transformation with original labels in (c), (e), (g), (i) and ssFCM clustering results in (d), (f), (h), (j) for
NTBC dataset

that no clustering using PCA is performed. PCA is solely used
to extract the first two principal components of the original
and transformed datasets for providing visualisation. To reflect
the findings from Table II on the figures, the best performing
ssFCM with DML methods for the dataset are indicated in
bold, and those with improvement italicised and those that are
statistically significant are underlined. Unfortunately, the 2D
projection does not always show exactly the clusters DML or
ssFCM recognise in terms of cluster separability. For instance,
in Figure 3, although transformation by LMNN shows better
cluster separability than MCML (MCML has not push apart
clusters for class 2, 4, 5 and 6), ssFCM-MCML on average
performed better than ssFCM-LMNN. Despite this limitation,
the general idea of DML for projecting distance relations can
still be studied.

To further analyse the DML transformation, the sums of
squared Euclidean distances (SSD) of a train set between similar
data (data with same labels) and between dissimilar data (data
with different labels), before and after DML (using 60% of
labelled data) transformation are also studied, shown in Table
III. The factor SSD is reduced or increased by after DML

transformation is also calculated. Ideally, the larger the factor
SSD for similar data is reduced by after DML transformation,
the more compact the clusters and thus, further away from other
clusters. The train datasets transformed after DML used in these
calculations correspond to the same ones presented in Figures
2, 3 and 4 (c), (e), (g) and (i) for the respective DML and
datasets.

For NTBC in Figure 2, it appears that GDML increase the
separability of the three known main groups [14], where classes
1-3 belong to one group, classes 4-5 to another and finally class
6. The classes within these three main groups can be observed
to be made closer by GDML. But, separability between classes
within a group does not appear to have increased. Similar
observation is found for GDML on Dermatology based on
PCA projection in Figure 3(c). Classes 2 and 4-6 appear
to belong to a group. However, unlike in NTBC, it can be
observed that GDML puts the similar data closer for these
classes (classes 2 and 4-6 of Dermatology) as they appear to
overlap less as compared to the original data in Figure 3(a).
For Cardiotocography in Figure 4(c), we observed that class 2
is better separated from class 1, and class 3 from the other two
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(a) Original data
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(b) ssFCM result
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(c) GDML transformed data
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(d) ssFCM-GDML result
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(e) LMNN transformed data
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(f) ssFCM-LMNN result
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(g) MCML(20)
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(h) ssFCM-MCML(20) result
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(i) NCA transformed data

−0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

PC1

P
C

2

class 1
class 2
class 3
class 4
class 5
class 6

(j) ssFCM-NCA result

Fig. 3. PCA biplots to show DML transformation with original labels in (c), (e), (g), (i) and ssFCM clustering results in (d), (f), (h), (j) for
Dermatology dataset

classes. These observations based on GDML transformation is
also reflected in Table III where the SSD of data with same
labels in the train set is reduced by a greater factor than for
SSD of data with different labels.

For LMNN on NTBC , shown in Figure 2 (e), the separability
between the clusters have reduced, causing clusters to overlap.
This observation is also reflected in Table III where SSD of data
with different labels are reduced by a greater factor than SSD
for data with the same labels. This means that data with different
labels are placed closer together than data with same labels. This
led to the poorer ssFCM accuracy as compared to GDML+E
in Table II. However, on Dermatology and Cardiotocography,
LMNN reduced SSD of similar data by a greater factor than
SSD of data with different labels. In Figure 3(e), LMNN was
able to discriminate between classes 2, 4 and 5, increasing
separability between these classes as compared to GDML and
MCML. LMNN

For MCML, it is not visually obvious whether the separa-
bility between clusters have increased based on the PCA 2D
projections. For NTBC in Figure 2(g), it can be observed that
class 6 is slightly further away from class 3 as compared to

the original data. For Dermatology, it can be observed that data
with same labels in classes 2 and 4-6 are placed closer together
as compared to the original data. Both these observations are
consistent with SSD results in Table III. For Cardiotocography,
however, SSD of data with same labels are reduced by a smaller
factor than SSD of data with the different labels using MCML,
causing poor ssFCM accuracy in Table II.

For NCA, the change in between cluster separability can
be observed in the PCA projections and SSD analysis. While
ssFCM with NCA performed moderately well in compari-
son with ssFCM with other DML techniques, particularly in
Cardiotocography and WDBC, it did not produce the best
significantly improved results.

For Cardiotocography, while the DML techniques were able
to put data with the same labels closer together for class 1 and
2, class 3 remained split in two. Based on the 2D projections
in Figure 4, the clustering results from ssFCM and ssFCM with
LMNN and MCML appear wrong. 3D projections are required
to further analyse the results.
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(a) Original data
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(b) ssFCM result
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(c) GDML transformed data
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(d) ssFCM-GDML result
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(e) LMNN transformed data

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PC1

P
C

2

class 1
class 2
class 3

(f) ssFCM-LMNN result
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(g) MCML(10) transformed data
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(h) ssFCM-MCML(10) result
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(i) NCA transformed data
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(j) ssFCM-NCA result
Fig. 4. PCA biplots to show DML transformation with original labels in (c), (e), (g), (i) and ssFCM clustering results in (d), (f), (h), (j) for
Cardiotocography dataset

V. DISCUSSION

DML has been shown to significantly improve ssFCM clus-
tering for five out of the eight datasets tested. For datasets such
as WDBC and Dermatology, significant improvement was found
when the amount of labelled data are at least 20% of training
data. This suggests that for some datasets, a larger amount of
labelled data is required for DML to improve ssFCM clustering.
All DML used were able to reduce the SSD of similar data by
a greater factor than dissimilar data, for most datasets.

No improvement to ssFCM clustering using ssFCM with
DML on the NTBC. Based on observation of 2D projections
on the DML transformed data, the subgroups belonging to the
same main group are being placed closer together. This type of
hierarchical grouping with main groups and subgroups appears
to be a challenge for DML techniques. ssFCM performed with
high accuracy on NTBC but, DML actually worsens ssFCM
clustering on this dataset. We suspect that ssFCM with LMNN
(as well as other DML techniques) performed poorly on NTBC
due to the hierarchical nature of its classes.

Interestingly, the contrary was found with Dermatology
where classes 2 and 4-6 appear to belong to a larger common

group on the 2D projection. LMNN was able to separate these
classes well. Similarly for NCA, it could separate the classes
2, 4-6 in Dermatology but, causes more overlapping for classes
in NTBC. The classes of NTBC appear to have a conflicting
effect on DML transformation. Further investigation is required
to study this effect.

ssFCM with MCML have produced some of the best results,
such as for Yeast and Dermatology. But, MCML is found to be
the least visually informative as compared to the other DML
techniques on 2D projection.

We found that when SSD of similar data is reduced by
a factor smaller than the SSD of data with different labels,
this usually indicates that the DML will not improve ssFCM
for that dataset. This was observed in LMNN for NTBC and
in MCML(10) for Cardiotocography. This may seem an intu-
itively obvious way to check if a particular DML will improve
clustering for a dataset. But, it is not a foolproof method, as
was found with LMNN for WDBC. For WDBC, ssFCM with
LMNN produced significant improvement. But, based on the
analysis of SSD where the factor SSD of similar data after DML
transformation is reduced by (4.5E+02) is found smaller than for
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TABLE III

SUM OF SQUARED EUCLIDEAN DISTANCES FOR DATA WITH SAME (S) AND

DIFFERENT (D) LABELS BEFORE AND AFTER DML TRANSFORMATION AND

SSD CHANGE FACTOR (BEFORE÷AFTER)

before DML after DML factor
NTBC GDML S 9.2E+09 6.5E+09 1.42

D 8.0E+10 7.9E+10 1.01
LMNN S 9.2E+09 3.6E+07 255

D 8.0E+10 2.1E+08 388
MCML S 9.2E+09 6.1E+09 1.50

D 8.0E+10 5.7E+10 1.40
NCA S 9.2E+09 7.6E+04 1.2E+05

D 8.0E+10 9.4E+05 8.5E+04
Dermatology GDML S 3.7E+05 2.8E+05 1.33

D 3.9E+06 4.4E+06 0.881
LMNN S 3.7E+05 2.3E+04 15.7

D 3.9E+06 5.7E+05 6.77
MCML(20) S 3.7E+05 1.9E+05 1.94

D 3.9E+06 3.2E+06 1.21
NCA S 3.7E+05 1.5E+06 0.247

D 3.9E+06 2.6E+07 0.149
Cardiotocography GDML S 1.8E+10 1.4E+10 1.33

D 1.8E+10 1.9E+10 0.965
LMNN S 1.8E+10 3.2E+07 580

D 1.8E+10 3.2E+07 563
MCML(10) S 1.8E+10 1.3E+10 1.43

D 1.8E+10 1.2E+10 1.48
NCA S 1.8E+10 6.1E+09 3.04

D 1.8E+10 8.4E+09 2.17
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(b) LMNN-transformed data
Fig. 5. PCA biplots to show of original data (a) and LMNN-
transformed data (b) for WDBC

dissimilar data (7.1E+02)), this would suggest poor clustering
results. On analysis of the 2D projection in Figure 5, the class 1
data patterns have been placed closer together, producing a more
compact cluster and thus, improving clustering results. Thus, it
is crucial to conduct both analysis using visual projections and
SSD, before and after DML transformation to study the DML
effects in clustering techniques.

VI. CONCLUSION

The NTBC and seven popular UCI datasets have been tested
using ssFCM with DML techniques. Comparison between accu-
racy of test results are conducted and statistical tests from using
DML in ssFCM are analysed. ssFCM with DML was found to
produce significant improvement to ssFCM clustering for five
out of the eight datasets. Furthermore, DML was found not to
always improve ssFCM clustering on datasets with hierarchical
clusters such as the NTBC.

Based on our observation using comparisons of ssFCM
accuracy, SSD measures and 2D projection between different

DML techniques, we found that further information about the
internal structure that are useful for clustering can be gained.
In fact, the SSD measures and 2D projection provide important
analysis as further support to findings in the ssFCM accuracy.

As preliminary work in the application of DML to ssFCM,
these findings are considered promising. As our future work,
we hope to perform 3D projections on the DML transformed
datasets to get a better view of how the separability between
clusters have increased or decreased. To further support our
findings, DML transformations on datasets with hierarchical
clusters need to be further investigated.
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