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Abstract— In this work a new approach for a fully automated
calibration of nonlinear PID controllers and feedforward maps
is introduced. Controller design poses a particularly challenging
task in the application to internal combustion engines due to
the nonlinear controller structure, which is usually prescribed
by the manufacturer of the engine control unit (ECU). A
dynamic local model network is used to represent the actual
physical process as its architecture can beneficially be adopted
for scheduling of the nonlinear controller parameters. The
presented calibration technique uses a genetic algorithm to
calibrate the nonlinear PID controller and a static model in-
version to determine the feedforward map. Finally, an example
demonstrates the effectiveness of the proposed method.

I. INTRODUCTION

In engine control units (ECUs) usually discrete-time, non-
linear PID controllers with a specific structure are used for
many control tasks such as the actuator position in a variable-
turbine geometry (VTG) turbocharger for intake manifold
pressure control. Basically, the controller gains are retrieved
from nonlinear maps, which depend on engine load and
speed. Further, there are additional parameters to distinguish
between small and large control errors. Usually calibration
engineers determine the parameters and maps within the
ECU structure with testbed runs, test drives and a lot of
expert knowledge. A model-based calibration method will
help to increase the efficiency of the calibration workflow for
ECUs. For this purpose it is reasonable to use local model
networks (LMN), which approximate even strongly nonlinear
dynamic processes by a network of locally linear dynamic
submodels. Their approximation capabilities allow, or at least
facilitate, the design of PID controllers for nonlinear systems.
LMN from the family of multiple-model approaches (e.g. [1])
are a qualified approach because of their transparent structure
and the possibility to incorporate prior (physical) knowledge,
[2]. LMN interpolate between different local models, each
valid in a certain operating regime. Each of these operating
regimes represents a simple model, e.g. a linear regression
model, describing the local dynamics.

This paper introduces a method for calibration of nonlinear
PID controllers in ECUs using LMN. In this context two
main tasks have to be solved:

• Automatically determine feedforward maps
In ECUs there are two-dimensional feedforward maps,
which usually depend on load and speed.

• Automatically determine controller parameters
The gains of PID controllers (usually P , I , D and
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T1 of the DT1-Part) are two-dimensional maps, which,
very much like the feedforward maps, usually depend
on load and speed. In ECU PID control scheduling of
the controller parameters is usually not only carried out
along load and speed. In addition to these quite obvious
scheduling variables, the control error itself is often used
as a means for parameter scheduling. This approach
is commonly understood as error signal adaption. It is
noteworthy, that this introduces an additional nonlinear-
ity into the closed-loop system.

The feedforward map is determined by a point-wise static
inversion of the local model network. To determine the
nonlinear PID maps a genetic algorithm (GA) is used which
optimizes the closed loop performance of the control system.
This performance is determined by simulating the closed-
loop with proper input/reference signals. The performance
is measured by the summation of the quadratic offset of
the output from an expected output in each time-step. Well
known model based, characteristics based or rule based
methods for the autotuning of PID controllers [3], [4] mostly
account for simple linear process models of low order only.
Such methods could be applied to each local linear model
in the LMN individually, but the overall performance of
the closed-loop would remain unconsidered. To obtain good
initial conditions for the optimization the local application
of such an autotuning method is reasonable.

This paper is organized as follows: First, the nonlinear
PID controller of ECUs is investigated in Section II. The
architecture of local model networks is described in Sec-
tion III. Section IV presents the methodology to design
nonlinear ECU PID controllers. Next, in Section V the
effectiveness of the proposed method is shown by means
of an example, where the VTG position of a turbocharger
is used for controlling the intake manifold pressure. Finally,
the paper is concluded by some remarks in Section VI.

II. ARCHITECTURE OF PID CONTROLLERS USED IN

ECUS

This section describes the architecture as well as the con-
trol algorithm of common PID controllers in ECUs. Figure 1
gives an overview of the architecture, which employs a
PID controller with a DT1-Part. The feedforward map, the
controller gains as well as the reference map to determine
the reference signal w, the actuating variable ufb and the
feedforward signal uff respectively, depend on engine load
q (in mg/stroke) and speed n (in rpm). In contrast to the
feedforward and the controller gain maps, the reference map

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 901



-

min

max

feedforward
control

feedback

Feedforward
Map

Reference
Map

P -Part

I-Part

DT1-Part

n

n

n

q

q

q

u

w

y

e

ufb

uff

anti windup

Fig. 1. Scheme of a nonlinear PID controller used in ECUs

is largely determined from emission limits beforehand and
is usually prescribed for calibration engineers.

In addition to the above control architecture ECUs employ
error signal adaption, which is applied to the control error
e within each controller part individually and results in a
nonlinearly modified error signal. For example, the adaption
in the P -Part leading to the modified control error ēp is
shown in Figure 2. All three gradients Kp,aPos, Kp,a0 and
Kp,aNeg as well as the two values Wp,pos and Wp,neg de-
scribing the small signal window are subject to optimization
in the process of calibration.
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Fig. 2. Nonlinear characteristic of the error signal adaption within the
P -Part

Figure 3 exemplarily shows the scheme for determining
the actuating variable up within the P -Part of the nonlinear
PID controller. Note that the dimensioned controller gain
Kp,map is multiplied with the adapted control error ēp,
which contains one or several of the constant dimensionless
gradients Kp,a0, Kp,aPos and Kp,aNeg. Thus, the resulting
(time variant) gain depends on load q, speed n and the control
error e itself.

All gains of the PID controller depend on maps, each
of which depends on load and speed itself. The difference
equations describing all parts of the nonlinear PID controller
are given in the following, denoting the sampling time by
Ts:

• P -Part
up(k) = Kp,map(n, q) ēp(k) (1)

with (2).
• I-Part

ui(k) = ui(k − 1) +Ki,map(n, q)Q(e) e(k) (3)
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Fig. 3. Calculation scheme of the actuating variable up within the
proportional part of the PID controller

with

Q(e) =

⎧⎪⎨
⎪⎩
Ki,aPos Ts e(k) > Wi,pos

Ki,aNeg Ts e(k) < Wi,neg

Ki,a0 Ts otherwise

• DT1-Part

ud(k) = exp

(
−Ts

T1

)
ud(k − 1) +Kd,map(n, q) ēd(k)

(4)
with (5).

As it can be seen in these equations, the error signal
adaption of the P - and the DT1-Parts results in nonlinear
gain curves, whereas the error signal adaption of the I-Part
is a simple parameter switch.

According to Figure 1, the P -, I- and DT1-Parts are finally
summed up to form the controller output

ufb(k) = up(k) + ui(k) + ud(k) (6)

As shown in this section, the architecture of the ECU PID
controller is basically nonlinear and there are many param-
eters and maps, which influence the controller behavior. It
is obvious, that it is complex to calibrate the ECU PID
controller because of the high number of degrees of freedom.
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ēp(k) =

⎧⎪⎨
⎪⎩
e(k)Kp,aNeg + (Kp,a0 −Kp,aNeg)Wp,neg e(k) < Wp,neg

e(k)Kp,aPos + (Kp,a0 −Kp,aPos)Wp,pos e(k) > Wp,pos

e(k)Kp,a0 otherwise

(2)

ēd(k) =

⎧⎪⎨
⎪⎩
Δe(k)Kd,aNeg + (Kd,a0 −Kd,aNeg)Wd,neg Δe(k) < Wd,neg

Δe(k)Kd,aPos + (Kd,a0 −Kd,aPos)Wd,pos Δe(k) > Wd,pos

Δe(k)Kd,a0 otherwise

(5)

with Δe(k) = e(k)− e(k − 1)

III. LOCAL MODEL NETWORKS

In previous works LMNs have shown state-of-the-art ap-
proximation capabilities for internal combustion engines; e.g.
[5], [6], [7] and the ability for PID controller design [8], [9].
Thus, in this work dynamic local model networks are used
to approximate the nonlinear process to be controlled. In the
context of combustion engines, a typical subsystem to be
controlled is the intake manifold pressure for example.

As starting point for the description of LMNs, which
follows in this section, their architecture is depicted in
Figure 4.
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Fig. 4. Architecture of a local model network with external dynamics, [10]

The local model outputs

ŷi(k) = r(k)θi, ∀I (7)

where r(k) denotes the input vector for the rule consequents
at time k and contains past inputs and outputs:

rT (k) = [ui(k − 1) . . . uI(k −m)

y(k − 1) . . . y(k − n)] (8)

In (8) m and n denote the system order of the numerator
and denominator respectively. A different choice of the

input vector for the rule premises x̃(k) is advantageous
because the mathematical complexity of the identification is
reduced dramatically. All local estimations ŷi(k) with the
local parameter vectors

θi =
[
b
(i)
1 . . . b

(i)
m a

(i)
1 . . . a

(i)
n

]T
(9)

are used to form the global model output ŷ(k) by weighted
aggregation, see Figure 4:

ŷ(k) =
∑
I

Φi(x̃(k))ŷi(k). (10)

Therein the validity functions are constrained to form a
partition of unity:

∑
I

Φi = 1 (11)

0 ≤ Φi ≤ 1, ∀I. (12)

This LMN uses recursive, axis-oblique partitioning strategy
and smooth validity functions.

IV. CONTROLLER CALIBRATION

This section describes the proposed methodology for auto-
matic calibration of the nonlinear PID controller of ECUs. To
recapitulate, it is required to determine the feedforward map,
the maps of the PID controller parameters and the parameters
of the error signal adaption as shown in Section II. The error
signal adaption comprises 15 parameters overall: for each
controller part three slope values (Kp,a0, Kp,aNeg , Kp,aPos,
Ki,a0, Ki,aNeg , Ki,aPos, Kd,a0, Kd,aNeg, Kd,aPos) and two
small signal window values (Wp,neg , Wp,pos, Wi,neg , Wi,pos,
Wd,neg , Wd,pos).

Basically, each of the calibration tasks in Section IV-A, IV-
B and IV-C is accomplished separately, although the previous
result is considered by the following task. Subsequently, the
methodology will be applied to control the intake manifold
pressure by actuating a variable-geometry turbocharger of a
light-duty internal combustion engine.

For the investigated case of controlling the intake manifold
pressure by actuating a variable-geometry turbocharger, the
maps of the ECU PID controller depend on load and speed.
Thus, the trained such that control input u is the turbocharger
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actuator position, whereas load and speed are chosen as
partition space dimensions

Φ = [n(k − 1) q(k − 1)] . (13)

A. Determination of Feedforward Map

In current ECU structures static maps are a commonly
accepted and easy to understand way of feedforward control.
Dynamic LMN facilitate a direct way of steady state system
inversion for the parametrisation of such maps. However,
attention should be pointed to the fact, that LMN bear the
potential of more sophisticated approaches of feedforward
control such as dynamic system inversion of dynamic de-
coupling in the case of multi-input multi-ouput systems. In
the presented application the feedforward map is generated
by a point-wise static inversion of the open-loop state-space
model by

uff(Φ) = w(Φ)
1−∑n

j=1 aj(Φ)∑m
j=1 bj(Φ)

(14)

Therein, the reference signal w(Φ) depends on a given
reference map according to Figure 1.

B. Determination of PID Maps

The calibration of the PID maps is based on an evolution-
ary optimization to optimize the performance of the closed-
loop. For this purpose, a genetic algorithm ([11]) is used. It
is noteworthy that the introduced concept needs not neces-
sarily be used in combination with genetic algorithms. Other
evolutionary algorithms such as Particle Swarm Optimization
(PSO), [12], may also be used.
Due to the fact, that the proposed PID controller design
method aims to optimize closed-loop performance the fol-
lowing performance criterion is considered:

Performance Criterion: The major task of the performance
criterion is to quantify the quality of the PID controller in
terms of its performance (e.g. rise time, overshoot...). For
this purpose the performance criterion is based on given load
and speed excitation signals. These signals cover the whole
identified operating area of the LMN to capture the global
nonlinear closed-loop performance. Ideally, load and speed
signals should reflect as many realistic driving operations
as possible in a preferably short time interval to keep the
duration of its simulation limited. As the simulation has to be
performed each time the criterion is evaluated, the length of
this driving cycle strongly influences the overall computing
time of the optimization.

To constitute synthetic signals, which are as realistic as
possible, the load signal may exhibit jumps as the quantity
of injection mass can be altered almost instantaneously in
combustion engines. On the other hand, the gradient of the
speed signal must be limited due to inertia. Usually the speed
gradient is limited to 250 rpm/s.

By means of a given reference map, the reference signal
w(k) is obtained from the load and speed signals in each
point in time. Figure 5 exemplarily shows excitation signals
(top graph), a reference map for the intake manifold pressure

as well as the resulting reference signal (bottom graph). As
steps, which occur in the load signal, are directly reflected
in the original reference signal w(k), its application as ideal
reference for optimization is not recommended. It would
favor very fast controller setups with large overshoot and high
actuating effort. Therefore an optimal output signal ydmd(k)
is found by applying a moving average considering a few
samples of w(k).
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Fig. 5. In the upper panel: speed and load excitation signals, below:
reference map for the intake manifold pressure for a light-duty Diesel
engine, lower panel: resulting demanded output signals for the performance
criterion.

In the evaluation of the performance criterion, this refer-
ence signal is applied in a closed-loop simulation for each
genome. The fitness function compares the simulation output
y(k) to the demanded optimal output ydmd(k), which is
derived from the reference signal w(k). For a sequence
of length K, the fitness function fP for the performance
assessment is the sum of squared errors

fP =

K∑
k=1

(ydmd(k)− y(k))2. (15)

C. Determination of the Error Signal Adaption

In the determination of the parameters describing the error
signal adaption, the same approach as for the PID maps is
chosen.
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Again a GA with a criterion similar to that of Section IV-
B is used. The PID maps, which have been found in the
previous section, are now considered given and the GA is
applied to the 15 parameters of the error signal adaption
only. Slightly different speed and load signals are used to
increase operation time in the large error windows, which
is crucial to optimize these parameters. The main difference
regarding the excitation lies in a larger gradient of the speed
signal, which is increased to 500 rpm/s.

V. EXAMPLE

In this section, an ECU calibration for actuating a variable-
geometry turbocharger of a light-duty 4-cylinder Diesel en-
gine to control the intake manifold pressure is investigated.
The proposed method is compared to a conventional calibra-
tion, which has been achieved by a calibration engineer. It
is represented by an in-vehicle measurement. Results of the
proposed method have been found using simulations on a
validated semi-physical engine model. As input data for the
simulation the measurement data were used to ensure a fair
comparison.

The following parameters have been applied in the identi-
fication of the dynamic local model network describing the
intake manifold pressure:

• Engine Speed: n = 3100− 4400 rpm
• Injection Mass: q = 20− 55 mg/stroke

• Turbocharger actuator position: uV TG = 20%− 96%
• 6 local models
• Input order: m = 2
• Output order: n = 3
• Partition space: Φ = [n q] (as implemented in the ECU)

In the following, three calibrations will be compared:

• Conventional calibration (in-vehicle measurement)
• Two different calibration stages

– Initial Design
The feedforward map is determined as described in
Section IV-A and local PID controller parameters
are found by using the automated tuning feature
pidtune of Matlab [4] applied to each local
controller individually.

– Final Optimization
The feedforward map is used and PID controller
parameters are found by the proposed method.

A comparison of intake manifold pressure in time domain
is made in Figure 6. The simulated model output is compared
to the training data. In most parts, sufficient dynamic approx-
imation capabilities, but partial static offsets can be observed,
which are caused by the restricted choice of engine speed
and load in the partition space. By including other values
into the partitioning, the model accuracy could be increased
although such a choice would not be possible in the current
ECU structure.

In Figure 7 simulation results for two stages of the
controller calibration are depicted. The upper plot shows
the intake manifold pressure simulated on a performance
sequence (Pdmd) for the initial design (Pini) and for the
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final calibration (Pfin). The bottom plot shows the cumulated
absolute error

∑
i |Pdmd,i−Pi| of the two calibration stages.

As compared to the initial design, the cumulative error is
reduced to 50% in the final design.

The final calibration has been achieved with a population
size of 100 genomes and 50 generations.
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Fig. 7. Comparison of different controller calibration stages by means of
the performance sequence cycle

The effectiveness of the proposed methodology and its ad-
vantages over conventional calibration are demonstrated by a
test run using the conventional calibration. Manifold pressure
and relevant input quantities such as engine speed or injection
mass have been recorded by in-vehicle measurement over an
interval of approximately 580 seconds. To give a general
notion of how the test run looked like, Figure 8 gives a
comparison of the measured reference performance (Pmeas)
with the two calibration stages being simulated using the
measured inputs. It has to be said, that during the test run
the in-vehicle controller has been deactivated during some
periods with idle operation such as for example from 300 s
to 350 s.

To give a better insight into the performance and to come
up with a fair comparison of calibrations, two intervals are
investigated in detail. Therein, the controller has not been
deactivated during the measurement. Altogether the proposed
method reliably yields applicable controller parameters. Ad-
ditionally, all stages, including the initial design, do not show
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any unstable or unexpected behavior.
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Fig. 8. Comparison of measured reference performance and simulation of
the controller calibration stages: Overall

Detail A, which shows the range from 50 s to 120 s is
depicted in Figure 9. Already the initial design achieves equal
performance as the conventional in-vehicle calibration. The
final calibration further improves the performance.
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Fig. 9. Comparison of measured reference performance and simulation of
the controller calibration stages: Detail A

Figure 10 (Detail B) illustrates the range from 350 s to
550 s. It shows similar results as compared to Detail A.

A quantitative comparison of the conventional calibration
and the two calibration stages is given in Table I. For this
purpose, the final cumulated absolute errors E of the different
calibrations according to the time intervals shown in Fig-
ures 8-10 are compared. In addition, the relative improvement
compared to the measured reference performance is given.

Detail A Detail B
Emeas 8.3915 100% 18.342 100%
Eini 6.7912 80.9% 15.148 82.6%
Efin 6.2204 74.1% 13.528 73.8%

TABLE I

QUANTITATIVE COMPARISON OF THE CUMULATED ABSOLUTE ERROR E

(IN BAR) AND ITS RELATIVE VALUE COMPARED TO THE MEASURED

REFERENCE PERFORMANCE Emeas

This application example shows, that the introduced cal-
ibration method achieves better controller performance than
the conventional manual calibration.
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of the controller calibration stages: Detail B

VI. CONCLUSION

A new calibration method for ECU PID controllers is in-
troduced in this paper. The proposed method is model-based
and offers an efficient and robust basic calibration. However,
fine-tuning will still be carried out by calibration engineers
during test rides, because subjective driving experience is not
reproducible by computer aided calibration methods.
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