
Hardware Implementation of a Novel Inference Engine for Interval
Type-2 Fuzzy Control on FPGA

Matthew D. Schrieber
School of Engineering

University of Guelph

Ontario, Canada

Email: schriebe@uoguelph.ca

Mohammad Biglarbegian
School of Engineering

University of Guelph

Ontario, Canada

Email: mbiglarb@uoguelph.ca

Abstract—Interval type-2 fuzzy logic controllers (IT2 FLCs)
have shown a promising potential in handling uncertainties
compared to their type-1 counterparts, and as a result, we have
witnessed increasing usage of IT2 FLCs in various applications.
Due to the complex structures of IT2 FLCs, using them in
real-time applications might be computationally expensive. To
facilitate real-time implementation of these controllers, hard-
ware with parallel processing abilities are recommended; field-
programmable gate arrays (FPGA) are one class of such hard-
ware. In this paper, we propose a structure for implementing a
new IT2 FLC inference mechanism called BMM [2] - that has
been recently introduced in the literature - on an FPGA. We first
demonstrated how the proposed structure can be implemented on
software; next, we proposed an implementation architecture for
the IT2 FLC mechanism on hardware. We performed simulations
and experiments on two different plants and compared the speed
of our controllers. The performance speed as well as the tracking
of our proposed control structure in simulations and experiments
were shown to be very close to each other. Using the BMM engine
for the proposed hardware structure proves to be faster than
other existing controllers in the literature. Thus, it is expected
that IT2 FLCs can be easily implemented on hardware to further
enable their real-time applications.

I. INTRODUCTION

Interval type-2 fuzzy logic controllers (IT2 FLCs) are a
class of nonlinear controllers that have become widely used in
systems featuring uncertainty. Their capability in handling un-
certainty allows them to be used in control and identifications
of systems where the dynamics are not completely known. IT2
FLCs have proven to be used in many real-world applications
such as industrial control or mobile robot control, and in some
cases, they out perform traditional controllers [1].

Recently, there has been a significant interest in using IT2
FLCs [2]-[5] largely because of their potential in handling
uncertainty. A unique feature of IT2 FLCs lies in their upper
and lower membership function structure - called footprint of
uncertainty - allowing them to accommodate potential uncer-
tainties. IT2 FLCs also introduce the need for a type reducer
which reduces the IT2 output to a type-1 (T1) fuzzy set, which
makes them computationally expensive. As such, substantial
research on improving and optimizing IT2 FLCs is currently
being conducted. For example, Juang and Hsu [3] designed
an IT2 FLC for use with a wall-following mobile-robot which
was capable of operating without any a priori rule sets by
using an ant colony optimization technique to generate rules
automatically. While Maldonado, Castillo and Melin [4]-[7]

have collectively proposed many new optimization techniques
for IT2 FLC including incorporating genetic algorithms [6]
and particle swarm optimization [7].

Many researchers have concluded that IT2 FLCs are ca-
pable of outperforming some traditional controllers as well as
T1 FLCs in several applications [8]-[10]. For example, Chen
and Tan [9] proposed a T2 FLC that not only was proven
to be stable through Lyapunov analysis, but was also found
to be more robust and perform better than an adaptive T1
counterpart. Karimi and Safarinejadian [10] proposed a new
T2 FLC for the control of a simple nonlinear system, but
experienced problems when using the controller on-line due
to computational expensive operations featured in T2 FLC.
Therefore, despite IT2 FLCs being more capable of handling
uncertainty in comparison to T1, their complex structure has
limited their ability to be utilized on a larger scale. The
computational complexity of any IT2 FLCs invariably leads
to a significant increase in processing time, especially for
applications required to operate at high speeds.

Researchers have been exploring the implementation of
IT2 FLCs on hardware to increase the speed of the control
process [11]-[14]. However, the increase in speed as a result of
hardware implementation results in a more restrictive design.
Melgarejo et al. [11] implemented a Wu-Mendel (W-M) IT2
FLC on a field programmable gate array (FPGA) to take
advantage of the parallelism that this hardware offers. The
developed controller was implemented successfully with a
reported operating speed of 33.3ns. However, this work was
not used in a closed-loop system that includes a plant in
which the system performance would have been significantly
affected by the controller being implemented over a reported
9 clock cycles. Huang and Tsai [12] applied their controller
to an autonomous omnidirectional mobile robot and achieved
similar results to [11]. The need for robustness and stability
in developing the controller for the omnidirectional mobile
robot platform [12] increases the complexity of the controller
making it difficult for implementation on hardware, and hence
a hardware/software co-design was employed instead. Because
of hardware/software co-design, the controller was only able
to achieve an operating speed of 150μs, approximately 4500
times slower than what was reported in [11]. Recently, the
concept of hardware implementation of IT2 FLCs was further
explored in [13] where an IT2 FLC with Mamdani structure
was designed for hardware implementation. For speed control
of a DC Motor simulation results showed the desired con-

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 640

troller performance in which the potential operating speed in
comparison to a general-purpose industrial computer featuring
a quad-core processor was reported as 225,000 to 450,000
times faster. However, this potential speed-up is based on a
5 clock cycle process which will most likely affect the system
performance in closed-loop. In another work, an IT2 FLC
with Mamdani structure for a mobile robot was implemented
on an FPGA [14]; in this work, any indication of change
in the operating speed of the controller due to the hardware
implementation is missing.

In this paper, we present a hardware implementation of
an IT2 FLC by considering the specific hardware limitations
in regards to the device area and optimal performance. Us-
ing the Karnik-Mendel (K-M) algorithm [15] for hardware
implementation is significantly more challenging (than other
IT2 FLCs mechanism) due to their iterative nature of these
algorithms [13], [16]. Unlike existing approaches that have
used Mamdani model structure, we use the Takagi-Sugeno-
Kang (TSK) for implementing the controller. Lycnh et al.
have successfully implemented both K-M and W-M type
reduction using Mamdani model stucture and found W-M to
using on average 45% less clock cycles then K-M [17]. Thus,
we propose the use of a new closed-form inference engine
introduced in [2], called BMM inference engine, because of
its simplicity and closed-form structure.

The organization of the rest of this paper is as follows:
Section II contains general background on IT2 TSK FLCs and
hardware design. Section III presents the design methodology
for hardware implementation. Section IV provides simulation
and experimental results. Finally, Section V concludes the
paper.

II. BACKGROUND

A. Interval Type-2 TSK Model

The IT2 TSK FLC in this paper deals exclusively with
the A2 − C0 TSK model classification [18]. This means that
the antecedent membership functions are type-2 (A2) and the
consequents are crisp values (C0). The structure of a rule in a
A2-C0 TSK model is defined as follows:

Rule ith : If xk is F̃ ik, then yi = ai0 +

n∑
k=1

aikxk (1)

where i = 1, · · · ,M , k = 1, · · · , n, F̃ ik represents an interval
type-2 fuzzy set of input state k in rule i, xk are inputs,
ai0, · · · , ain are the coefficients of the output polynomial for
rule i, yi is the output of rule i, n is the number of inputs and
M is the number of rules. In [2] a new closed-form inference
engine for this model was introduced that replaces the type-
reduction and is given as follows:

YT2−TSK = m

∑M
i=1 f

iyi∑M
i=1 f

i
+ n

∑M
i=1 f

i
yi∑M

i=1 f
i

(2)

where the parameters m and n are used to tune the model
variables and the upper and lower firing strengths for rule i,

f i and f
i
, are defined as follows:

f
i
=
∏

μF̃ i
k
(xk) and f i =

∏
μ
F̃ i

k

(xk) (3)

where μF̃ i
k

and μ
F̃ i

k

represent the kth upper and lower mem-

bership functions of rule i. This paper uses (2) to implement a
closed-form inference engine in its proposed hardware design.

B. Hardware Design

The most prominent hardware platforms for embedded
systems design are classified as: Application Specific Inte-
grated Circuits (ASICs) and FPGAs. An ASIC is designed and
manufactured for a specific and unchanging application. Alter-
natively, an FPGA is a programmable semiconductor device
composed of Configurable Logic Blocks (CLBs) in a matrix-
like structure connected via programmable interconnections.
The hardware components of an FPGAs can be programmed
to meet the functionality of any application allowing designers
to make the changes to their designs freely, and even while in
the field. Due to the flexibility FPGAs offer they are ideal
platform for experimental hardware design. An ASIC could
potentially offer an increase to operating speed, however;
they are expensive to manufacture and would not allow for
any additional modification. Although FPGAs have predefined
hardware blocks of commonly used functions, such as RAM
or DSP blocks, the main components of any FPGA remain the
same. As shown in Fig. 1, an FPGA consists of three main
components: CLBs, In/Out Blocks (IOBs) and programmable
interconnections. CLBs are comprised of a Look-Up Table
(LUT), a multiplexor and a flip-flop, which allow them to be
configured to operate as anything from simple combination
logic circuits to RAM. The programmable interconnections
feature their own unique optimization in the form of routing the
many interconnecting signals to tie the different CLBs together.

Fig. 1. FPGA Block Structure [19] .

Hardware design for FPGAs is done through a hardware
descriptive language (HDL) such as (Very High Speed Inte-
grated Circuit HDL (VHDL). Xilinx System Generator (XSG)
improves hardware design by replacing the coding aspect of
HDL for function blocks similar to Simulink. The function
block interface makes it easy to create complex designs for
a wide variety of applications. FPGAs generally operate at a
much lower clock rate than a general-purpose processor, most
commonly 50-100MHz. This clock rate translates to a clock
cycle of 10-20ns meaning that in most FPGAs the more com-
putational expensive processes will require pipelining. While
pipelining is a viable option for most applications, it becomes
problematic when dealing with real-time applications due to
the extra latency introduced. Additional optimization of a
system is required to achieve specific application requirements
and reduce any unnecessary pipelining.

641

III. DESIGN METHODOLOGY

This section presents the design of the IT2 TSK FLC used
for hardware implementation. The specifications for a general
purpose controller are given in the Control Design section,
while the details of hardware implementation are given in the
Hardware Implementation section.

A. Control Design

1) Membership Functions (MF): Due to the performance
limitations imposed by the hardware implementation Gaussian
and Sigmoid (MFs) could not be used because of their expo-
nential terms making them computationally expensive; instead,
triangular and trapezoidal memberships are used. Fig. 2 shows
the proposed MFs which are defined within the interval [-1,1]
to allow the controller to be as general as possible. By using
scaling factors αxi

for each input, they can tuned for specific
plants.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

xi

µ M
F(
x i
)

NG ZE PSNG ZE PS

Fig. 2. Proposed IT2 Membership Functions.

2) Rule Base: The linguistic terms that correspond to the
MFs shown in Fig. 2 are as follows: Negative (NG), Zero
(ZE), and Positive (PS). Each term has an incrementing binary
value associated with it that is used extensively in the hardware
implementation. We make use of the general MacVicar-Whelan
rule base shown in [20] because of its capability in achieving
good tracking. Table I presents the rules used in this paper.

TABLE I. RULE BASE WITH 9 RULES [20].

Δe/e NG ZE PS
NG NG NG ZE

ZE NG ZE PS

PS ZE PS PS

3) Inference Mechanism: The inference engine used with
this controller was introduced in (2). The advantage of using
the BMM inference engine is that it eliminates the need to use
a type reducer or any complicated defuzzification techniques.
These features are very suitable for hardware implementation
due to inherent physical hardware limitations involved. The
simple structure of the controller makes it also easy to tune.
The parameters m and n as well as the scaling factors αxi

are
the controller tuning parameters.

B. Hardware Implementation

This section provides details on the hardware configuration
for the implementation of an IT2 TSK FLC. The hardware
implementation makes extensive use of the relational operator
and multiplexor blocks to ensure the correct flow of signals
within the controller. When used together, these blocks form
the primary method of decision making used throughout the
hardware implementation. This section is organized into fuzzi-
fication, inference engine, and output subsections.

1) Fuzzification: The hardware implementation for the
fuzzification stage is shown in Fig. 3 in which the inputs to
the controller are x1, · · · , xi, · · · , xn, where n is the number of
inputs, and xi,1up, xi,2up, xi,1low and xi,2low are upper and
lower membership grades for input xi. The external scaling
factor αxi allows identical MF blocks (NG, ZE, and PS) to
be used for any input. The individual MF blocks are split
between upper and lower blocks, therefore each block produces
a membership grade μMF (xi) for the upper and lower portions
of the MF. Within each MF block the crisp values representing
the first and last values of the support set of the MFs have
been hardcoded as constant values, as well as the slope values
of lines (of the MFS) represent all the boundary sets. The
process for calculating the membership grade from any MF
blocks (upper or lower) is given by the following steps:

• Relational operators determine if xi is within bound-
ary or core set of MF

• If xi is not within boundary or core set of MF, then
μMF (xi) = 0

• If xi is within core set of MF, then μMF (xi) = 1

• If xi is within a boundary set of MF, then μMF (xi) =
m(xi − xμo

), where m is the slope of the line
representing the boundary set and xμo

represents the
xi value that would produce the smallest non-zero
μMF (xi) with the boundary set.

Fig. 3. Hardware Architecture of Fuzzification.

For larger number of MFs, the above methodology can be
easily extended to accommodate additional linguistic terms.
The “Zero Filters” shown in Fig. 3 were created to eliminate
the zero valued membership grades and produce a set of coded
linguistic value. The filtering process (“Zero Filters”) works
by dividing the MF configuration into active regions (ARs).
Each AR represents a different combination of overlapping

642

support sets as shown in Fig. 4. Using these active regions,
the upper and lower “Zero Filters” can be used to find the
coded linguistic values as well as filter out the zero values.
The “Zero Filters” were organized as a simple 3-step process
as follows:

• A 3-bit code, representing which of the active regions
the input xi falls into, is created from relational
operators and basic logic gates.

• Two 2-bit coded linguistic values (xi,1lin and xi,2lin)
are produced from a custom dual line 5-to-2 encoder
that uses the 3-bit code as input.

• The non-zero membership grades are filtered out by
a set of 4-to-1 multiplexers using the two 2-bit coded
linguistic values as the selection lines to the multi-
plexor.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

xi

µ M
F(
x i
)

AR1 AR2

AR3

AR4 AR5

Fig. 4. Active Regions of Membership Functions.

The resulting non-zero membership grades for input xi are
labeled in Fig. 3 as xi,1up xi,2up, xi,1low and xi,2low. The
filtering process results in a total of 4 membership grades (2
upper and 2 lower) meaning that in the current MF configura-
tion, only 2 zero valued membership grades have been elim-
inated. However, while maintaining the general configuration
introduced in Section III.a.1, an increase to the number of
linguistic terms would have no change to the total number of
non-zero membership grades, while the “Zero Filters” would
eliminate 2 additional zero valued membership grades per
additional linguistic term. The general configuration and the
“Zero Filters” maintain the generality of the controller and
ensure that addition linguistic terms would have a minimally
impact only on the fuzzification stage.

2) Inference Engine: The implementation of the inference
engine is organized into identical upper and lower t-norm
function blocks as well as a central rule base. For simplicity,
Fig. 5 shows the general architecture of the inference engine
for a fuzzy system with two rules. Additional inputs could
easily be accommodated by (i) expanding the rule base and (ii)
modifying the t-norm function blocks. The central rule base
is primarily composed of four 16 input multiplexors driven by
a 4-bit concatenated antecedents (ant1, ant2, ant3 and ant4)
of different combinations of the 2-bit linguistic terms (xi,1lin
and xi,2lin). Each multiplexor produces a 2-bit consequent
(con1, con2, con3 and con4) that is required to calculate the
crisp out of the controller. The bit size of con1 would only
be minimally effected by additional linguistic terms as it is a

binary logarithm of the total number of linguistic terms. The
size and quantity of the multiplexors will be doubled for each
addition input in addition to the concatenated selection lines
expanding by 2-bits. The t-norm function blocks consist of 4
identical custom-build minimization functions comprised of a
single relational operator and multiplexor to select the smaller
of the two input values. The inputs to the t-norm function
blocks are arranged to match the different combinations of the
2-bit linguistic terms that form antecedents of the rule base.

3) Output: Fig. 6 shows a hardware representation of the
BMM inference mechanism on a controller with 2 inputs. The
Rule Outputs block features the hardcoded TSK consequent
coefficients. Selecting which rules is activated is done through
a bank of multiplexors driven by the 2-bit consequent linguistic
terms (coni). The inference mechanisms implementation is
organized into upper and lower arithmetic function blocks,
as shown in Fig. 6. These blocks feature the hardcoded
tuning parameters m and n, and use yi and the upper and
lower consequent firing strengths (f i and f i). The results
of these arithmetic blocks are summed to produce the final
output YT2−TSK . For each additional input, the number of
multiplexors within the Rule Output block will be doubled, as
well as the total number of addition and multiplier blocks used
in each of the arithmetic blocks.

Each arithmetic block contains a single division operation.
To reduce any unnecessary latency that may accompany the
predefined XSG divider blocks, a Newton-Raphson division al-
gorithm is implemented instead. This method commonly used

Fig. 5. Hardware Architecture of Inference Engine.

643

Fig. 6. Hardware Architecture of the Output.

for solving nonlinear equations, uses iterative approximations
based on the following formula [21]:

xi+1 = xi − f (xi)

f ′ (xi)
(4)

where f(x) = 0 and f ′ (xi) is the derivative of f at xi. The
division algorithm finds the reciprocal of the divisor (D) by
solving the following nonlinear equation [22]:

f (xi) =
1

x
−D. (5)

Substituting (5) and its derivative into (4) yields the following
iterative division algorithm:

xi+1 = xi(2−Dxi) (6)

where x0 is an initial approximation. The accuracy of the
division is dependent on the number of iterations, with each
iteration involving only two multiplication operations.

IV. RESULTS

This section presents the simulation and experimental
results. First, we define a structure for the proposed IT2
FLC to test its effectiveness. Next, we present comparison
results between the proposed hardware implementation of the
controller and a Simulink model of the controller in a discrete
environment. Lastly, we present the results of the hardware
implementation on a Nexys3 Spartan-6 FPGA.

A. Controller Stucture

A PD IT2 TSK FLC is considered for implementation. The
controller inputs are error (e) and the rate of change of the error
(Δe). The rule structure for this controller is defined as

If e is F̃ i1 and Δe is F̃ i2, then yi = ai1e+ ai2Δe (7)

where i, F̃ ik, y, M , aik have all been defined in Section II Part
A.

To evaluate the controller performances, two different
plants were considered.

1) The model of the first plant in the Z-domain is given
as follows:

z

z − 1
. (8)

2) The model of the second plant in the Z-domain is
given as follows:

0.4323z + 4.8× 10−17

z2 − 1.135z + 0.1353
. (9)

B. Simulations

The proposed hardware for implementing the IT2 FLC on
hardware was constructed using XSG. The resolution of the
arithmetic operations for the controller was specified to be
16 bits, with the decimal point after the 8 least significant
bit. This bit resolution is large enough to accurately represent
most decimal numbers, but small enough to maintain low
operating times for most arithmetic functions. General-purpose
processors generally operate with a bit resolution of 32-64
bits. With only a 16 bit resolution, there is a potential for
small discrepancies occurring in a direct comparison between
the controller output values. Another potential source for
discrepancy is in the NR division algorithm used. In this
implementation, two iterations of the NR algorithm are used
to produce the crisp output.

The Simulink model used to perform the comparison was
constructed to match the hardware implementation directly.
The simulation was performed in a discrete environment. A
Simulink model was tuned using the tuning parameters αe,
αΔe , n and m. Once the controller was properly tuned, these
values were using in the hardware implementation to perform
a proper comparison. The simulation results for the two plants
are reported in the following subsections:

1) Plant 1: The comparison results of plant 1 are show
in Fig. 7 where the tuning parameters used are as follows:
αe = 10, αΔe = 0.3 , n = −0.1 and m = 0.2. These results
show the controller is capable of a fast response time as well
as near perfect tracking.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Clock Cycles

St
ep

 In
pu

t

Simulink
Hardware

Fig. 7. Comparison between XSG and Simulink of proposed IT2 FLC
hardware architecture for plant 1.

644

TABLE II. SPARTAN-6 FPGA RESOURCES.

Resource Used Available Percentage(%)
Number of DSP48A1s 10 32 31

Number of CLB Slices 872 2178 38

Number of Slice Registers 485 18224 2

Number of Slice LUTs 2712 9112 29

2) Plant 2: The results of this comparison are show in
Fig. 8 where the tuning parameters used are as follows: αe =
12, αΔe = 0.3 , n = −0.3 and m = 0.4. These results show
the controller is still capable of a fast response time as well
as perfect tracking even with a second-order plant.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Clock Cycles

St
ep

 In
pu

t

Simulink
Hardware

Fig. 8. Comparison between XSG and Simulink of proposed IT2 FLC
hardware architecture for plant 2.

C. Experiments

In this section, using the same controllers in the Simula-
tions section, we implement the IT2 FLC on an actual FPGA
and report the controller performance in real-time. The specific
model of the FPGA used to perform the experiments is a
Spartan-6 XC6SLX16 shown in Fig. 9. The resources available
for this FPGA are shown in Table II along with their usage (in
percentage) by the proposed hardware implementation struc-
ture. This table makes reference to CLB slices and DSP48A1.
The Spartan-6 family of FPGAs feature CLB slices that contain
four LUT and eight flip-flops each, while the DPS48A1
are dedicated arithmetic functions that feature an 18 by 18
multiplier, an adder and an accumulator [23]. The DSP48A1
blocks are key features making this controller design possible.
For example, by using these function blocks, multiplication
between two unknown signals at a rate of approximately 8-
9ns is possible regardless of how computationally expensive
a task might be. However, because of the rate of a single
multiplication, the hardware implementation is required to be
run at a clock rate of 50MHz to allow multiple multiplication
operations occurring within a single 20ns clock cycle. In
addition, to reduce the number of multiplication blocks that are
in serial, the NR algorithm was reduced to a single iteration.

The proposed IT2 FLC hardware implementation was broken
down into a three stage pipeline, resulting in a total operation
time of 60ns. However, due to the added latency introduced
by the pipelining the controller was required to be re-tuned.
The results of the re-tuned FPGA implementation are shown
in Fig. 10 & 11 where the tuning parameters are now set to

Fig. 9. Nexys3 Spartan-6 FPGA Board [24].

αe = 4, αδe = 0.25 , n = 0.01 and m = 0.04 for plant
1 and αe = 6, αδe = 0.35 , n = 0.01 and m = 0.05 for
plant 2. The three stage pipeline is responsible for the small
latency in the system response as shown in Fig. 10 & 11.
Comparisons with the simulation results from Fig. 7 & 8 show
that despite a larger rise and settling time the controller is
still capable of perfect tracking. When properly tuned, the
controller is capable of reaching the steady state set point in
15 clock cycles achieving a real time value of 0.3μs, which is
considerably faster then what is being reported in literature for
steady state responses [6], [8], [10], [12], [13]. Therefore, the
proposed control structure using the BMM inference engine
can outperform other IT2 FLC implemented and hence can be
a viable structure for real-time implementation

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Clock Cycles

St
ep

 In
pu

t

Fig. 10. Spartan-6 FPGA results of proposed IT2 FLC hardware architecture
for plant 1.

V. CONCLUSION

We presented a hardware architecture for implementing an
IT2 FLC designed for any real-time application. We developed
a methodology for designing the controller in regards to the
limitations of a hardware implementation. The IT2 FLC was
implemented in XSG as well as Simulink and the results

645

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Clock Cycles

St
ep

 In
pu

t

Fig. 11. Spartan-6 FPGA results of proposed IT2 FLC hardware architecture
for plant 2.

were compared to verify the effectiveness of the controller for
two different plants. Finally, the hardware implementation was
tested experimentally on a Spartan-6 FPGA on the two plants.
The controller was capable of responding to a change of input
after only 60ns which was easily compensated for by retuning
the controller. By using the BMM inference engine, the im-
plemented controllers were capable of performing at a much
higher rate than what is currently being reported in literature.
In addition, due to the straight forward implementation of (2),
the FPGA area used by the IT2 FLC is considerably smaller
than what any other type reducers would use. Furthermore,
we have shown that the FPGA hardware implementation is
capable of controlling plants in real time with a fast response
and near perfect tracking.

REFERENCES

[1] H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers,” IEEE
Comput. Intell. Mag., vol. 2, no. 1, pp. 3044, Feb. 2007.

[2] M. Biglarbegian, W. W. Melek, and J. M. Mendel, “On the stability of
interval type-2 TSK fuzzy logic control systems,” IEEE Trans. Systems,
Man, Cybern. B, vol. 40, no. 3, pp. 798818, Jun. 2010.

[3] C.-F. Juang and C.-H. Hsu, “Reinforcement ant optimized fuzzy con-
troller for mobile-robot wall-following control,” IEEE Trans. Ind. Elec-
tron., vol. 56, no. 10, pp. 39313940, Oct. 2009.

[4] O. Castillo and P. Melin, “ A review on the design and optimization
of interval type-2 fuzzy controllers,” Applied Soft Computing, pp. 1267-
1278, 2012

[5] Y. Maldonado and O. Castillo, “Design and optimization of type-2 fuzzy
system in FPGAs,” World Automation Congress, pp. 24-28, 2010.

[6] Y. Maldonado, O. Castillo and P. Melin, “Optimal Design of Type-
2 Fuzzy Controllers with a Multiple Objective Genetic Algorithm for
FPGA Implementation,” North American Fuzzy Information Processing,
pp. 1-6, 2010

[7] Y. Maldonado, O. Castillo and P. Melin, “ Particle swarm optimization
of interval type-2 fuzzy systems for FPGA applications,” Applied Soft
Computing, pp. 496-508, 2013

[8] O. Linda and M. Manic, “Uncertainty-robust design of interval type-
2 fuzzy logic controller for delta parallel robot,” IEEE Trans. Ind.
Informat., vol. 7, no. 4, pp. 661671, Nov. 2011.

[9] X. T. Chen and W. W. Tan, “An adaptive type-2 fuzzy logic controller
for dynamic positioning, IEEE Int. Conf. on Fuzzy Syst., Taipei, Taiwan,
pp. 21472154, 2011.

[10] M. Karimi and B. Safarinejadian, “On-line control of the inverted
pendulum with type-2 fuzzy logic controller,” 2nd Int. Conf. on Control,
Instrumentation and Automation (ICCIA), Shiraz, Iran, pp. 429-433,
2011.

[11] M. A. Melgarejo R. and C. A. Peña-Reyes,“’Hardware architecture and
FPGA implementation of a type-2 fuzzy system.” Proc. 14th ACM Great
Lakes Symp. VLSI, pp. 458-461, 2004.

[12] H. C. Huang and C. C. Tsai, “FPGA Implementation of an Embedded
Robust Adaptive Controller for Autonomous Omnidirectional Mobile
Platform,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1604-1616,
May 2009.

[13] R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Embedding a high
speed interval type-2 fuzzy controller for a real plant into an FPGA,”
Applied Soft Computing 12, no. 3, pp. 988-998, 2012.

[14] L. Leottau, M. and Melgarejo, “A simple approach for designing a type-
2 fuzzy controller for a mobile robot application,” North American Fuzzy
Information Processing Society (NAFIPS), pp. 12-14, 2010.

[15] J. M Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, Upper Saddle River, NJ: Prentice-Hall, 2001.

[16] C. Lynch, H. Hagras and V. Callaghan, “Using uncertainty bounds in the
design of an embedded real-time type-2 neuro-fuzzy speed controller for
marine diesel engines”, IEEE International Conference Fuzzy Systems,
pp. 1446-1453, July 2006

[17] C. Lynch, H. Hagras and V. Callaghan, “Parallel type-2 fuzzy logic co-
processors for engine management,” Fuzzy Systems Conference, pp. 1-6,
July 2007.

[18] M. B. Begian, W. W. Melek, and J. M. Mendel, “Stability analysis of
type-2 fuzzy systems,” Proc. IEEE World Congress on Computational
Intelligence (WCCI08), Hong Kong, pp. 1305-1310, June 2008.

[19] Xilinx. (2013). What is a FPGA [Online]. Available:
http://www.xilinx.com/fpga/

[20] S. Chopra, R. Mitra, and V. Kumar, “Fuzzy controller: chossing an ap-
propiate and smallest rule set,” Int. Journal of Computational Cognition,
vol. 3, no. 4, pp. 73-79, 2005.

[21] G. B. Thomas, Calculas and Analytic Geometry, Reading, MA:
Addison-Wesley, 1962.

[22] M. J. Flynn, “On division by functional iteration,” IEEE Trans. on
Computers, vol. C-19, pp. 702-706, Aug. 1970.

[23] Xilinx. (2011, Oct. 25). Spartan-6 Fam-
ily Overview(v2.0) [Online]. Available:
http://www.xilinx.com/support/documentation/data sheets/ds160.pdf

[24] Digilent, Inc. Nexys3TM Spartan-6 Fam-
ily FPGA Board [Online]. Available:
http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS3

646

