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Abstract—Genetic Fuzzy Systems have been successfully
applied to assess Engine Health Monitoring (EHM) data from
aeroengines, not only due to their robustness towards noisy
gas path measurements and engine-to-engine variability, but
also because of their capability to produce human-readable
expressions. These techniques can detect the presence of certain
types of abnormal events or specific engine conditions, where
a combination of the EHM signals only appears when these
occur. However, an engine that repeatedly operates under
unfavourable conditions will also have a reduced life. Smooth
deteriorations do no manifest themselves as combinations of the
EHM signals, the current existing techniques can therefore not
assess these. In this paper it is proposed to use distal learning
to build a model that indirectly identifies the deterioration
rate of an aeroengine. It will be shown that the integral of
the modelled rate is a prognostic indicator of the remaining
life of the engine to a selected end condition. The results are
subsequently tested on a representative sample of aeroengine
data.

Keywords: Engine Health Monitoring; Genetic Fuzzy
Systems; Distal Learning

I. INTRODUCTION

Equipment Health Monitoring (EHM) is the assessment
of engine instrumentation data over time in order to detect
substantial anomalies or incipient events. The application
of prognostics within an EHM management system are
intended to estimate the remaining life of an engine, antici-
pating certain events or findings and therefore reducing the
number or degree of engine refurbishments [6]. The assess-
ment of EHM data not only reviews the individual working
conditions but also the trend over time in order to identify
rapid levels of deterioration. Often, a comparison is made
of the engine data against those parameters identified to be
characteristic of known engine conditions or against design
limits [15]. However understanding the design limits for a
new engine or predicting the engine parameter deterioration
levels over time is complex and several methods have been
developed.

A. EHM assessment existing models

The most common EHM assessment methods are based
around Gas Path Analysis (GPA). The gas path components
are all air-washed parts within the engine gas path, the
compressors, the combustor and the turbines (see Figure 1).
The gas path components are susceptible to distinct different
issues, such as worn seals, excessive tip clearances, burning,
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Fig. 1. Typical two shaft high bypass ratio turbo fan.

cracking or missing parts or sections of parts, etc. (see
Figure 2). The purpose of GPA is to detect changes in the
internal working conditions of the engine as early as possible
through the observation of EHM parameters [15]. Standard
assessment methods which review the engine development
over time include deterioration modelling and probabilistic
simulation [9]. Recently, assessments have made use of
fuzzy logic and neural networks to develop new pattern
recognition methods to identify engine trends and step
changes [5][7][8].

The main objective of this type of assessments is to
determine the optimum engine maintenance interval and
assure appropriate levels of reliability for the fleet. The
introduction of maintenance contracts as Power-By-The-
Hour where the management of the engine maintenance is
the responsibility of the OEMs, has emphasized the need
for the early diagnosis of engine specific deterioration. This
is, further development in the assessment of EHM data
has been highlighted so that small shifts and trends in the
variables are identified, even when the values are still within
the appropriate reliability levels of the specific parameter.
This way, the level of engine deterioration at the time of
the engine maintenance may be determined in advance and
the prioritization within the fleet performed ahead of time
based not just on average fleet experience but on also on
each engines’ own specific level of deterioration.
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Figure 10 Shows the general deterioration over time of a turbine nozzle guide vane.  Clockwise it can be seen how the vane is still deemed to be in a serviceable 
condition (A),  it evolves to a repairable condition (B), however it is then deemed to be scrap (C) and ultimately it is considered to directly affect the engine working 
condition (D). 

 
This is, the average cost prediction for a “normal” HPC 

module, doesn’t consider all “normal” HPC modules.  The 
assessment only considers those “normal” HPC modules 
associated to a similar turbine level of deterioration.  This is a 
secondary additional improvement to current predictive 
methods used as it limits the variability of the prediction.  The 
levels of confidence and uncertainty are not specifically used at 
this time for these predictions. 

The associated EHM data for each of the engines was 
transformed through the filtering method described.  The 
visualization method was applied to each of the engine level 
combinations, to identify outliers within each class.  Module 
level of deterioration plots were also carried out.  Due to the 
subjective assessment of the shop visit reports, several module 
levels of deterioration were revised.   

The resulting database therefore combines engine level 
EHM data transformed profiles, with module level 
classifications.  The neural network rules enable the 
classification of modules of in-service engines to specific levels 
of module deterioration.   
 
 
 

IV. METHOD VALIDATION  
The transformation method and classification was carried 

out on several in-service engines as a means of method 
validation.  The assessment of two of these engines is here 
outlined as validation overview. 

 
METHOD PREDICTION vs. FINDINGS 

The EHM data transformation and classification results for 
Engine 1, Figure 11 show that the engine was in a good overall 
condition, with the compressor showing a “good to normal” 
level of deterioration with high confidence and with a small 
level of uncertainty.  This is shown by the small green ellipse, 
close to the class. 

The turbine module is associated to a “good” level of 
deterioration, grey in color.  The confidence in the prediction is 
high based on the thin ellipse.  The length of the ellipse 
suggests a high level of uncertainty.  This is also confirmed by 
the location of the ellipse, suggesting higher levels of 
deterioration towards “good to normal” and even “normal”.   

Engine 1 was removed from the aircraft on the 16th Jun 
2010 and inducted as part of a planned shop visit on the 5th Jul 
2010 in order to replace the HPT stage 1 blades.  No other in 
service issues were reported. 

Fig. 2. General deterioration over time of a turbine nozzle guide vane.
Clockwise it can be seen how the vane is still deemed to be in a serviceable
condition (A), it evolves to a repairable condition (B), however it is then
deemed to be scrap (C) and ultimately it is considered to directly affect the
engine working condition (D)..

B. Uncertainty in EHM data

Flight conditions as well as the internal condition of each
individual engine influence gas path measurements. In order
to reduce some of the variability between engines, EHM data
is typically not expressed in absolute values. The managed
EHM data from an engine is estimated from the deltas
between the engine’s own measurements and those from a
known, baseline engine. In addition, different techniques are
available, which have been used to filter out the noise in the
EHM data [14].

Engine events or significant engine conditions are not
always associated to a combination of deltas. Recent works
are directed towards detecting trend shifts in the variables
[15]. Among them, some diagnostic methods are based on
the detection of signatures that are combinations of slope
changes in the EHM deltas known to be associated to
specific events or conditions [8]. The distances between
each of these signatures and a sequence of EHM values
measured on an engine constitutes a feature vector that can
be fed to a classifier in order to predict the deterioration
level of an engine. However, it was found that some defects
cannot be detected by a classifier operating under these
principles, especially in the cases where the deterioration
signatures are not yet known. This was resolved by using
an all-inclusive catalogue of signatures, in combination with
a sample of engines where all of the sought defects were
present. Feature selection techniques were subsequently ap-
plied in order to identify the most relevant signatures, or
alternatively a classifier could also be applied to implicitly
perform the required feature selection [7]. In particular, the
classifier in this last reference is a Fuzzy Rule-Based System
(FRBS) whose Knowledge Base (KB) comprises rules of the
following form:

IF TURBINE TEMPERATURE DECREASE
AND FUEL FLOW INCREASE THEN
COMPRESSOR HEALTH IS LOW

These techniques constitute an effective diagnosis system,

able to detect the presence of abnormal events or significant
engine conditions. However, the prediction of an engine’s
remaining life to a known condition (the prognosis prob-
lem previously mentioned) is a wider problem. An engine
that repeatedly operates under unfavourable conditions has
smooth levels of deterioration over time which inherently
shorten the engine’s life. Smooth deterioration trends do no
manifest themselves as combinations of EHM signals, as
a result the current existing techniques cannot be used to
identify these deterioration trends.

In this paper a solution to this problem is presented
which is based on a deterioration rate r(t) model of a com-
ponent as a function of the EHM variables. It is proposed
that r(t) is defined as the solution to the following integral
equation:

Remaining cycles(t) = Initial life �
Z

t

0
r(⌧)d⌧ (1)

For example, if the HPC has a constant deterioration rate
r(t) = 2, and the initial life is of 5000 cycles, then the
engine should undergo maintenance in 2500 cycles because
Remaining cycles(2500) = 0. Deterioration rates lower than
1 are also considered, for those engines which are flying in
above-average conditions. The cyclic or hourly remaing life
calculation is dependent on the actual data available.

C. Distal learning of FRBS

Modelling the prognostic indicator through the integral
of the instantaneous deterioration rate of an engine enables
the identification of not only sudden events but also of
smooth levels of deterioration, as previously mentioned. The
simplest version of the estimator for the remaining cycles
is obtained by assuming that the last known deterioration
speed is constant throughout the remaining future cycles
and solving Eq. 1 to determine the value T0 for which
Remaining cycles(T0) = 0. This and other estimators are
discussed in Section III-D.

An FRBS is used to link EHM data to deterioration rates.
Learning the KB of an FRBS requires a training dataset with
samples of the input and output variables. In this problem,
this set would typically consist of a sample of engine
measurements which would link the EHM variables to the
specific known deterioration rates. However, deterioration
rate is not an observable parameter and as such this sample
dataset cannot be compiled. The KB must therefore be
indirectly learnt from the available information, this is

1) The sequence of EHM variables considered are those
measured in the time lapse between two shop visits.

2) The remaining life is based on the condition of each
component at the end of the sequence, which is deter-
mined through the inspections carried out at the engine
shop visit.

3) An estimation of the release life of each component at
the beginning of the sequence can be made after the
first shop visit.

This indirect learning task can be deemed to be a type
of supervised learning problems known as “Distal Learning”
[4]. In this kind of problems (see Figure 3), target values
are available for the distal variables (the “outcomes”) but
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Fig. 3. Overview of the distal supervised learning problem. Target
values are available for the distal variables (the “outcomes”) but not for
the proximal variables (the “actions”) [4]. The target values are the life
expectations measured at the shop visit. The proximal variables are the
deterioration rates that are related to the distal variables through an ageing
model. The ageing model has memory thus the outcome depends on the
history of the actions.

not for the proximal variables (the “actions”). In the engine
prognosis problem, the target values are the life expectations.
The proximal variables are the deterioration rates, which
are related to the distal variables through an ageing model
of the engine. The ageing model has memory, thus the
outcome depends on the history of the actions, i.e. the age
of the engine depends on the sequence of deterioration rates.
The learner, which in this case is the FRBS, previously
mentioned, is adjusted so that the output of the ageing model
at the end of an EHM data sequence matches the measured
level of deterioration of the engine.

The proposed rule learning process is based on a Pitts
Genetic Fuzzy System [2] where the fitness function is mod-
ified in order to include the ageing model. Distal learning
has not been associated with Genetic Fuzzy Systems before,
as far as we know, and as such additional details about
the implementation of this specific combination are given
in Section III.

The proposed KB comprises rules that map combinations
of slope changes in EHM deltas and deterioration rates, in
the following form:

IF TURBINE TEMPERATURE DECREASE
AND FUEL FLOW INCREASE THEN

DETERIORATION RATE OF THE HPC IS LOW.

The main purpose the learnt FRBS is estimating the remain-
ing cycles of the engine in combination with the ageing
model mentioned. In this respect, the FRBS is a by-product
of the learning task. However, in this particular application
the FRBS is in itself a model of the instantaneous deteri-
oration rate as a function of the EHM signals, which can
in addition be used to gain an insight of the relationship
between the values of the EHM variables and the engine’s
operating conditions. This will be discussed further in Sec-
tion IV.

In short, this paper is structured as follows: the diagnosis
problem is introduced in Section II. The proposed method
is defined in Section III. Section IV contains a numerical
analysis of the proposed algorithm against other alternatives.

Section V concludes the work and discusses possible future
research in the field.

II. EHM-BASED DIAGNOSIS OF AEROENGINES

A typical two shaft high bypass ratio turbo fan is
depicted in Figure 1. In this type of engine, the thrust is
performed by the air compressed by the fan blades and
pushed through the engine bypass. The air pushed through
the core of the engine is solely used to turn the fan. This
is, the air is compressed by the high pressure compressor
(HPC) so that the optimum conditions are reached within the
combustion chamber to subsequently turn the high pressure
turbine (HPT) to maintain the high pressure (HP) system
and subsequently turn the low pressure turbine (LPT) which
turns the fan and produces the engine thrust.

A. Stations in a turbofan

The main stations depicted in Figure 1 follow the most
commonly used numbering convention. Although single
digits are used to define the main stations, double digits are
used to define interim positions. The first digit defines the
main station whilst the second, defines an interim position.

• Station 2: Due to the design of the engine intake the
temperatures and pressure at station 2 are different
to those of station 0 and are more representative of
the actual engine intake conditions which will be
used as reference by the controls system. The main
variables at this station are P2 and T2.

• Station 25: This is the entry to the HPC. Depending
on the engine design a booster or an Intermediate
Pressure Compressor (IPC) may also be associated
to the low pressure (LP) system. As such station 25
is therefore defined as the entry to the HPC and not
the exit of the fan.

• Station 3: This is the HPC exit and the entry into
the combustion system. The conditions at this point
are key for the correct functioning of the engine.
The main variables measured at this station are P30
and T30.

• Station 4: This is the combustion chamber exit
and HPT entry. The temperature at this point is
one of the main engine parameters. T4, may also
be known as Turbine Gas Temperature (TGT) or
Internal Turbine Temperature (ITT)

• Station 5: This is the LPT exit. The main variable
at this station is P50. This pressure is used to define
EPR, which is subsequently used to determine the
overall engine thrust. EPR is the relation of P50 to
P20.

The LP system is the combination of the fan and the LPT.
The speed at which the LP system turns is defined as N1.
The HP system is the combination of the HPC and the HPT.
The speed at which the HP system turns is known as N2.
In addition, the amount of fuel consumed is also monitored
through fuel flow (FF).

1947



B. Engine deterioration

One of the main types of engine events or causes of
deterioration is mechanical. Mechanical faults may be identi-
fied through overall engine deterioration and the assessment
of EHM data. Independently of the system or component
that is being assessed there are several stages or levels
of deterioration throughout which the effect and associated
costs and risk of continuous operation varies (recall the
example in Figure 2). This is, any component or system
will deteriorate over time solely due to its use, however
if subject to an early inspection it could be identified to
be good for further operation without maintenance. Further
operation will deteriorate any component or system to a
point at which if inspected would require the component or
system to be repaired. Ultimately the level of deterioration
of a component or system will reach a point where it will
no longer be repairable. This unknown condition prior to
the shop visit is in many cases is still safe for continuous
operation. In many cases operational and maintenance costs
will increase as the component or system is deteriorated and
additional parts need to be replaced at the maintenance shop
visit. In some cases, the system may deteriorate even further
reaching an engine condition which could be deemed to be
unreliable. In some cases material could also be released. In
these cases high operational disruption and high maintenance
costs would incurred as not only would the initial component
be replaced but all of the secondary damaged components
would also need to be repaired or replaced. In addition,
the removal and maintenance of the engine would also
need to be accommodated outside of their planned schedule.
However the main issue in these situations is customer
dissatisfaction and company reputation.

The main sections of any engine prone to significant
events and deterioration are the high pressure compressor
and turbine. This is where the air is compressed to the
exact pressures required so that the fuel combustion can
be optimized for improved efficiency and reduced pollution,
with the turbine generating the work to keep the system
running. As a consequence of this, these two engine systems
or modules are the areas where the main maintenance costs
are incurred. High Pressure Compressor or HPC deterio-
ration is mainly driven by increased tip clearances, which
in turn reduce the working line of the system, or by actual
material release of a blade or a vane. Increased tip clearances
may be induced by liner loss or by reduced blade height,
either way increased clearances are a sign of deterioration
[3]. High Pressure Turbine and Combustor deterioration may
be due to the actual combustor been deteriorated, the fuel
burn not been appropriate or actual blade or vane damage.
Combustor deterioration is mainly time driven and is not
typically identified through EHM methods due to its slow
rate of deterioration. Turbine blade deterioration is mainly
driven by reduced cooling or actual aerofoil cracking [11]
which is either seen as an efficiency improved turbine or not
actually visible through EHM signatures.

As a result, deterioration of HPC and HPT modules is
expected to influence EHM data. A prognostic indicator
of HPC and HPT remaining life through an EHM data
assessment is therefore proposed in this paper. The main
purpose of this indicator proposed is to determine the num-
ber of remaining flight cycles for the compressor and turbine

modules respectively up to an agreed module condition
which optimizes both engine time on-wing and maintenance
costs.. The EHM subset of parameters considered in this
study consists of the following five variables:

1) FF: Fuel flow
2) N2: Speed of the high pressure system
3) P30: High pressure compressor exit pressure
4) T30: High pressure compressor exit temperature
5) TGT: Turbine gas temperature

III. PROPOSED METHOD

An algorithm which is used to learn the expression of
a prognostic indicator using Genetic Fuzzy Systems (GFSs)
is proposed in this section. The training data consists of
historical EHM data from sampled engines from the same
fleet but from different operators and regions ie. from
different flight conditions.

The method proposal is exposed four parts, detailing

• the procedures for cleaning, discretizing and trans-
forming the uncertain input data into a sequence of
fuzzy numbers

• the structure of the FRBS that is learnt

• the fitness function that the Genetic Algorithm (GA)
is required to optimize including the definition of
the ageing model

• the definition of the prognostic indicator in terms of
the learnt FRBS.

An overview schematic of the process is shown in Figure 4.

A. Cleaning, discretizing and transforming input data

EHM data is very noisy and is not expressed in absolute
values. The state of an engine is estimated from the deltas
between an engine’s own measurements and those from a
known baseline engine, as previously discussed. It will be
assumed that the deterioration rate depends on the speed of
change of the EHM signals, as such the deterioration rate
model will in turn be fed with the derivative of these signals.

Estimating the derivative of a noisy signal requires the
use of low-pass filters that remove the high frequency
content. In particular, it is proposed that the derivatives of
the EHM signals are approximated by locally fitting straight
lines to the smoothed EHM data. The smoothing will in
turn be carried out with a kernel filter. For instance, let the
temperature of the turbine TGT be the signal considered for
this assessment. The smoothed value of this signal is given
by the convolution of TGT with a Gaussian kernel function
K, whose bandwidth � is related to the cut-off frequency
of the filter:

[TGT(t) =
⌧0X

⌧=�⌧0

TGT(t+ ⌧) ·K(⌧,�). (2)

Estimating the derivative of TGT is carried through the slope
of a line locally fitted to [TGT. This line can be determined
by weighted least squares. Given the values of time t and

1948



EHM DATA(t)

FILTER BW1

FILTER BW2

FILTER BW3

FILTER BWN

DERIVATIVE 1

DERIVATIVE 2

DERIVATIVE 3

DERIVATIVE N

STATE-ID 1

STATE-ID 2

STATE-ID 3

STATE-ID N

COMBINE!
STATE-IDS

AGING MODEL
r(t)±ε

INITIAL LIFE

REMAINING!
CYCLES(t)

ESTIMATED AGE(t)

FU
ZZ

Y 
ST

AT
E-

ID
(t

)

RULE!
BASED!
DETERIORATION!
MODEL

-

+

Fig. 4. Block diagram of the proposed method for estimating the remaining cycles of an aeroengine with EHM data

bandwidth �, the slope a and the y-intercept b of the best-fit
line are at the minimum of the following function:

err(a, b) =
⌧0X

⌧=�⌧0

[TGT(t+ ⌧)� (a⌧ + b))2 ·K(⌧,�). (3)

The sequence of slopes a(t) is therefore an estimate of the
derivative dTGT/dt in this particular example, or the deriva-
tive of an arbitrary health. In this paper five derivatives are
considered through this means: dTGT/dt, dFF/dt, dP30/dt,
dT30/dt, and dN2/dt. In the following, the values of these
five derivatives will be referred to as the state of the engine.

Since a rule-based model is to be used, the state must
be discretized and a finite set of combinations defined. Each
numerical value of a derivative will therefore be replaced by
a label. The linguistic labels defined will be either “DOWN”,
“SAME” or “UP”. A soft discretization is performed: if
the state is x0, and L is a linguistic label, the degree of
truth of the assert “x0 is L” is understood as a possibility
⇧

L

(x0) = µ

L

(x0). Observe that this possibilistic setup is
also valid for the uncertain EHM signal measurements; the
degree of truth of the assert “x0 ± ✏ is L” is ⇧

L

(x0 ± ✏) =
sup

x2[x0�✏,x0+✏] µL

(x). For instance, the following is a
valid discrete value of TGT:

TGT = {UP/0.8,SAME/0.3} (4)

As a corollary of this kind of uncertainty representation,
missing values have membership 1 to all labels.

Each set of 5 linguistic labels will be assigned a number.
This number will be called the “State-Id”. In this case,
with three possible slopes and considering the five variables
above, there are 243 different possible State-Ids (three to the
power of five). A base-3 numbering scheme is used, where
the digits down=0, same=1, up=2 are respectively assigned
to each label. For instance, the set of labels (down, same, up,
up, down) would be assigned in base-3 the number 01220,
whose corresponding State-Id is 51 in base 10.

Observe that each combination of EHM variables is not
assigned a precise State-Id but a fuzzy subset of all the

possible Ids as a result of the soft discretization. In turn,
this subset is also dependent upon the selected bandwidth. In
this respect, it was decided not to choose an arbitrary value
for the bandwidth but to sweep a range of bandwidths and
combine their corresponding fuzzy State-Ids into a discrete
sequence that is to be subsequently fed to the deterioration
rate model.

The numerical procedure for sweeping the range of
bandwidths is based on a Monte-Carlo simulation with
multiple repetitions of the whole filtering and discretization
process, for different values of �. The set of values obtained
are combined into a single fuzzy set, whose membership
defines a possibility distribution over the set of State-Ids,
following the procedure defined in [8]. After this, the EHM
data of an engine is reduced to a chain of fuzzy numbers

ŜtateId(t) = (µ1(t), µ2(t), . . . , µ243(t)) (5)

This chain is the input to the rule-based model used to
predict the specific HPC and HPT deterioration rate.

B. Structure of the FRBS modelling the deterioration rate

Two different FRBSs have to be learnt, to model the
HPC and HPT respectively. Each of them has five inputs,
dTGT/dt, dFF/dt, dP30/dt, dT30/dt, and dN2/dt. As dis-
cussed before, each input is discretized into the linguistic
labels “down”, “same” and ‘up”. Mamdani-type rules are
used, for instance:

IF dTGT/dt=SAME AND dFF/dt=UP AND dP30/dt=UP
AND dT30/dt=DOWN AND dN2/dt=UP THEN
DETERIORATION RATE OF THE HPC IS LOW

WITH CONFIDENCE FACTOR 0.8

which is the same as

IF STATE-ID=12202(3 THEN
DETERIORATION RATE OF THE HPC IS LOW

WITH CONFIDENCE FACTOR 0.8
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Observe that neither fuzzyfication nor defuzzification inter-
faces are needed in the proposed system. The degree of
truth of the k-th antecedent is the membership value µ

k

(t)

in the input chain of fuzzy numbers ŜtateId(t) previously
described.

The output of each FRBS is not a number but an
interval r(t) = [r�(t), r+(t)] because the input is not
crisp. Given that the fuzzy State-Id was given a possibilistic
interpretation, this output interval ranges the possible outputs
of the FRBS when the degrees of truth of the rules in the KB
are the probability distributions dominated by the possibility
distribution of State-Ids,

r(t) =

(
243X

k=1

p

k

· !
k

·R
k

|

243X

k=1

p

k

= 1, 0  p

k

 µ

k

(t)

)
(6)

where R

k

and !

k

are the modal point of the linguistic
label in the k-th consequent and the weight of the rule
whose antececent refers to the k-th State-Id, respectively.
This interval of values is passed on to the ageing model in
order to compute the fitness function.

C. Ageing model and fitness function

The most simple form of the ageing model consists in
integrating the deterioration rate over time. The number of
remaining cycles is

Cycles(t) = Initial Life � Estimated Age(t) (7)

Given that r(t) ⇢ [0,1), the following holds:
Z

t0

0
r

�(⌧) d⌧  Estimated Age(t) 
Z

t0

0
r

+(⌧) d⌧ (8)

In practical cases, the ageing model must also take into
account engine events (which may cause a sudden change
to the estimated age) or even an on-wing maintenance
operation. The discrete form of the ageing model is therefore

Cycles(k) = Initial Life +

+
kX

⌧=0

(maintenance(⌧)� events(⌧))

� 1

2

kX

⌧=0

(r+(⌧) + r

�(⌧))

± 1

2

kX

⌧=0

(r+(⌧)� r

�(⌧)) (9)

Therefore, given a sample of N aeroengines whose
expected life was f

i

when inspected after c

i

cycles, the
fitness of the FRBS may be evaluated by means of an
interval-valued function, as follows:

fit =

(
NX

i=1

|t
i

� f

i

| : t
i

2 Cycles(c
i

)

)
(10)

With respect to the encoding mechanism in the GA, and
given that each of the KBs is made up by a maximum of

243 rules, all parameters can be jointly encoded in the same
genotype (Pitts-style GFS) with a reasonable computational
efficiency. However, it is remarked that a nonstandard GA is
required in order to optimize Eq. 10 and determine the pa-
rameters which define the KB. This is because the proposed
fitness function is not numerical but interval-valued. The
algorithm proposed in [12], [13] was used. Lastly, observe
that it was decided not to tune the membership functions of
the labels “UP”, “SAME” and “DOWN” but to weight the
fuzzy rules instead.

D. Definition of the prognostic indicator

The prognosis indicator is intended to estimate the
remaining life of an engine, through a prediction of its
deterioration rate. Extrapolating these rates is deemed will
allow to dynamically re-schedule the maintenance checks
of engines with higher and lower than normal deterioration
rates, anticipating certain events or costly findings thus
reducing the number or degree of unforeseen engine shop
visits.

For an extrapolated rate br(⌧) for ⌧ > t, it is proposed
that the prediction at time t of the useful life T (t) of an
engine is the solution to the following integral equation:

Initial life �
Z

t

0
r(⌧)d⌧ �

Z
T

t

br(⌧)d⌧ = 0 (11)

In this work a 0-th order prognosis indicator T0(t) was
used. This considers a constant rate of deterioration rate
br(⌧) = r0 for ⌧ > t, thus

T0(t) = t+
Initial life �

R
t

0 r(⌧)d⌧

r0
. (12)

Different strategies can be used for assigning a value to r0:
the last known rate r(t), the average deterioration r0 = 1/t ·R
y

0 r(t)dt or the unity value, to name a few. Higher order
prognosis models can be defined by using time series models
to extrapolate r(t) or the EHM variables, however it was
found that the accuracy of the higher order models does not
significantly improve the 0-th order model with extrapolated
unity deterioration rate.

IV. NUMERICAL RESULTS AND DISCUSSION

The level of deterioration of an engine is determined
through the inspections carried out at the engine shop visit.
The cycles at which certain events or findings occur are
not all known, thus a training sample made up of only of
engines with smooth levels of deterioration is not possible.
As a consequence of this, a training dataset comprising
43 engines without a detectable signature was compiled.
The experimental design in this section is therefore guided
to compare the results of a state-of-the-art signature-based
regression model against the proposed approach. It will be
shown that the regression model is not better in this sample
than a purely periodical maintenance schedule, but there is
a statistically significant difference favouring Genetic Distal
Learning. This result will be used to assess those types of
deterioration which are not detectable though existing EHM
signatures as well as establish that the proposed algorithm
can successfully diagnose most levels of deteriorations.
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A. Compared results

The procedure described in [7], except for the clas-
sification stage, has been applied first to the sample of
43 engines as previously described. The aforementioned
classification stage was replaced by a regression module that
approximates the expected life of either the HPC or the HPT.
The input variables are the same feature vector used in the
removed classification stage. Random forests were used for
the regression task [1]. It is also highlighted that the results
from the analysis of the dispersion of the classification which
was studied in this last reference, have not been carried to the
regression model defined, and only make use of the centroids
of the mentioned feature vector.

As a reference of the quality of the prognosis models, a
naive model has also been considered where the deteriora-
tion rate was determined to be constant and equal to 1. In
other words, the expected life of the engine is considered
as the difference between the initial life of the module and
the number of cycles the engine has flown. It is remarked
that this is the standard procedure based on average service
experience typically used to schedule maintenance checks.

Lastly, the Genetic Distal Learning of a FRBS was
combined with a 0-th order prognosis indicator and a unity
extrapolated deterioration rate. A 10-cv validation was used
in all comparisons. The compared results are shown in
Table I. Observe that Distal Learning is the best alternative
for both HPC and HPT, however the accuracy gain of the
method with respect to the standard scheduling is better for
compressors (20% on average) than for turbines (4%).

TABLE I. AVERAGE ACCURACY (10-CV) FOR HPC AND HPT
USING A DISTAL LEARNING, A SIGNATURE-BASED RANDOM FOREST

REGRESSION MODEL AND THE STANDARD PROCEDURE

Method HPC HPT

Distal 1330 1541
Signature 1426 1558
Standard 1651 1579

The relevance of the differences between the methods
are illustrated in Figures 5, 6 and 7. Figure 5 shows three
boxplots with the dispersion of the 10-cv test results with the
absolute differences between the HPC predicted life and the
measured values for Distal, Signature-based and Standard
techniques in HPC. The same boxplots are shown for the
HPT in Figure 6.

The p-values of the paired differences between the stan-
dard method and the proposed algorithm are negligible for
both HPC and HPT, although the percent gain is much higher
for compressors, as mentioned. A boxplot with these paired
differences is shown in Figure 7. This figure serves also as
a justification of the p-value found in the statistical tests
about the difference of the mean accuracy of both algo-
rithms; observe that all differences are lower or equal than
zero, meaning that Distal Learning improved the standard
scheduled maintenance for all folds in the validation test.

In addition, in Figure 8 the unfiltered EHM signals are
shown, along with their filtered derivatives for a particular
bandwidth, as well as the the outputs of the deterioration
rate models and the outputs of the prognostic indicators. The
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Fig. 5. Dispersion of the 10-cv test results with the absolute differences
between the predicted life and the measured values for Distal, Signature-
based and Standard techniques in HPC
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Fig. 6. Dispersion of the 10-cv test results with the absolute differences
between the predicted life and the measured values for Distal, Signature-
based and Standard techniques in HPT
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Fig. 7. Boxplot of the paired differences between Standard and Distal
algorithms, showing that the proposed algorithm improved the standard
maintenance schedule for all folds in the validation.
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Fig. 8. From upper to lower: EHM signals, slopes of the filtered EHM
signals for a given bandwidth, HPC and HPT deterioration rates and
prognostic indicators. Green curves in the last two plots are the deterioration
rates, red curves are the expected life of the components.

green curves in the two plots in the lower part of the figure
are the outputs of the deterioration rate model. Observe that
the combination of EHM signals around sample 1500 show
a particularly harsh set of conditions for the compressor, and
that generally speaking the fast deteriorations of compressor
and turbine alternate in time. The red curves are the integral
of the deterioration, assuming that the initial life of HPC
and HPT was 5000 cycles. The circles at the end of the red
curves are the measured life of these elements as observed
at the shop visit. The difference between the height of these
circles and the red curves are the centerpoint of the fitness
function defined in the preceding section.

V. CONCLUDING REMARKS

This work shows potential to predict the remaining life
of an engine through the use of EHM data applying Genetic
Distal Learning techniques. Generally speaking, most of the
engines can be diagnosed with existing techniques, but there
are certain types of defects that do not manifest themselves
as a change in the slope of the EHM data but as a smooth
deterioration that cannot be detected.

The supervised learning with a distal teacher paradigm,
adapted for uncertain data and genetic algorithms, has been
used to learn FRBS from sequences composed of fuzzy
discretizations of the different EHM variables. These FRBS
are used to predict the deterioration rate of HPC or HPT
in an aeroengine. An ageing model that integrates these
instantaneous deteriorations is devised which produces an
online estimation of the remaining life of the engine. As
a by-product of the learning process, the FRBS shows
the combinations of EHM values that are associated with
an increased level of deterioration for HPC or HPT and

therefore detects the cycles where the deterioration was
higher. The opposite is also true for those cases where
reduced level of deterioration are incurred. The results have
been tested with a representative sample of planes. It was
determined that the results of previous prognostic methods
can be improved by including the new algorithm in the
existing available catalogue of assessment techniques.
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