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Abstract—This paper investigates optimal feet forces distribution
and control of quadruped robots with uncertainties in both kine-
matics and dynamics. First, a constrained dynamics of quadruped
robots is established. The distribution of required forces and
moments on the supporting legs of a quadruped robot can be
formulated as a problem for minimizing an objective function
subject to form-closure constraints and balance constraints of
external force. The dynamics of recurrent neural network for real-
time force optimization are proposed. For the obtained optimized
tip-point force and the motion of legs, we propose the hybrid
motion/force control based on adaptive fuzzy system to compensate
for the external perturbation and the task-space tracking errors
in the environment. The proposed control can confront the un-
certainties including approximation task space error and external
perturbation. The verification of the proposed control is conducted
using the extensive simulations.

Keywords: quadruped robot, forces distribution, external
wrench, motion/force control

I. INTRODUCTION

A quadruped robot is with better mobility and able to
interact with the environment through multiple contacts to
maintain dynamic balance. The dynamic balance control for
the walking machines is particularly important. In this respect,
several research results have been reported [3], [4], [5], [6].

Force distribution problem is that each leg of walking
machine supporting the body applies a certain force on the
support point, which is balanced using an (equal and opposite)
reaction force of the ground. The geometry of the structure and
the position of the legs produce the distribution of forces and
moments on the legs. Since the physical constraints producing
the contact forces are only inequalities, therefore, the mathe-
matical solution is not unique, the optimization of the force
for the legs is required. Then, the force distribution problem
can be formulated as a nonlinear constrained programming
problem under nonlinear equality and inequality constraints.
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In the literature, several approaches and algorithms have
been proposed to find the optimal solution of force distribution
problem for legged robots. In [2], an analysis of energy
efficiency was presented with respect to structural parameters,
interaction forces, friction coefficient and duty factor of wave
gaits, based on a simplified model of a six-legged robot. In
[8], a method for optimal force distribution for the legs of a
quadruped robot was presented. In [9], an approach consisting
of the contact force feasibility (CFF) and the contact force
distribution (CFD) for the equilibrium of a multi-contact robot
was presented.

As we know, the contacts provide the required forces to
maintain a quadruped robot in balance even with existence of
the perturbation of external wrenches (forces and moments)
including the gravity force and the inertia wrench. Since each
foot is independently characterized by non-penetration and no-
slip constraint with the ground, and the external wrench is
usually time-varying. The contact forces must satisfy certain
constraints, i.e., the friction cone constraint, and can be solved
in real time to balance the varying external wrench. Therefore,
how to determine the existence of feasible contact forces to
resist an external wrench and maintain the systems equilibrium
needs to be studied. On the other hand, for a resistable external
wrench, there will be infinite solution to counterbalance it,
since there are many configurations. Then some optimization
criteria should be adopted in computing the contact forces,
usually to minimize their overall magnitude. To perform
dynamic balance control for the walking machines, the result
of contact-force optimization must be used in the control law,
and thus, the optimal force-distribution problem should be
solved in real time.

The previous works [2], [8], [9] on multi-legged robots
did not consider a detailed kinematics and dynamic behavior
of the leg and trunk body, although its contribution to gait
generation is significant. Most of the studies on walking robot
dynamics are conducted with simplified models of legs and
body. However, in order to have a better understanding of
its walking, dynamics and other important issues of walking,
such as dynamic stability, and its on-line control, kinematics
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Fig. 1: A quadruped robot

and dynamic models based on a walking robot design are
necessary. To the best of the authors knowledge, no significant
study is reported on integrating contact force optimization and
dynamic stability of a quadruped robot.

II. DYNAMICS OF A QUADRUPED ROBOT

A. Leg Dynamics

Consider ith 3-DOF leg of a quadruped robot shown in Fig.
1, the dynamics of the system can be expressed in the vector-
matrix form as given below

Mi(qi)q̈i + Ci(qi, q̇i) +Gi(qi) = τi − JT
giFgi + JT

eiFei (1)

where qi is the 3× 1 joint position vector, Mi(qi) is the 3× 3
mass matrix of the leg, Ci(qi, q̇i) is a 3×1 vector of centrifugal
and Coriolis terms, Gi(qi) is a 3× 1 vector of gravity terms,
τi is the 3 × 1 vector of joint torques, Jei is the Jacobian
matrix from the connect point of legs to the joint space, Fei

is the coupled force between the legs and the body, Jgi is
the Jacobian matrix related to the ground reaction forces, and
Fgi = [fix, fiy, fiz]

T is the 3 × 1 vector of ground reaction
forces of ith leg. During the leg’s swing phase, there is no foot-
terrain interaction, and Fgi becomes equal to zero. However,
during the support phase, the ground contact exists. For multi-
contact of the robot, Fgi becomes undetermined, which has to
be solved using an optimization criterion, e.g., optimal feet
forces’ distributions.

The dynamics of k legs can be expressed concisely as

M(q)q̈ + C(q, q̇)q̇ +G = τ − JT
g Fg + JT

e Fe (2)

where M(q) = block diag [M1(q1), . . . , Mk(qk)] ∈
R3k×3k; q = [q1, . . . , qk]

T ∈ R3k; τ = [τT1 , . . . , τTk ]T ∈
R3k; G = [GT

1 , . . . , GT
k ]

T ∈ R3k; Fe =
[FT

e1, . . . , FT
ek]

T ∈ R3k; Fg = [FT
g1, . . . , FT

gk]
T ∈ R3k;

C(q, q̇) = block diag [C1(q1, q̇1), . . . , Cm(qk, q̇k)] ∈
R3k×3k; JT

g = block diag [JT
g1, . . . , JT

gk]
T ∈ R3k×3k,

JT
e = block diag [JT

e1, . . . , JT
ek]

T ∈ R3k×3k.

B. Body Dynamics

Let xo ∈ Rno the position/orientation vector of the body,
the equation of motion of the quadruped robot body is written
by the resultant force vector Fo ∈ Rno acting on the center
of mass of the body, the symmetric positive definite inertial
matrix Mo(xo) ∈ Rno×no of the body, the Corioli and

centrifugal matrix Co(xo, ẋo) ∈ Rno×no , and the gravitational
force vector Go(xo) ∈ Rno as

Mo(xo)ẍo + Co(xo, ẋo)ẋo +Go(xo) = Fo (3)

Define Jo(xo) ∈ R3k×no as Jo(xo) =
[JT

1o(xo), . . . , JT
ko(xo)]

T with the Jacobian matrix Jio(xo)
from the body frame OoXoYoZo to the ith leg frame
OieXieYieZie. Then Fo can be written as Fo = −JT

o (xo)Fe.
Given the resultant force Fo, the leg support force Fe

can be represented by Fe = −(JT
o (xo))

+Fo, where
(JT

o (xo))
+ ∈ R3k×no is the pseudo-inverse matrix of

JT
o (xo). Substituting (3) into the above equation, we have

Fe = −(JT
o (xo))

+(Mo(xo)ẍo+Co(xo, ẋo)ẋo+Go(xo)) (4)

Let xie ∈ R6 denote the position vector and orientation
of the coupling point of the body and ith leg. Then xie is
related to q̇i and the Jacobian matrix Jgi(qi) in the following
way ẋie = Jie(qi)q̇i, and the relationship between ẋie and
ẋo is given by ẋie = Jio(xo)ẋo. After combining the above
equations, the following relationship between the joint velocity
of the ith leg and the velocity of the body is obtained
Jie(qi)q̇i = Jio(xo)ẋo. As it is assumed that the legs work in
a nonsingular region, thus the inverse of the Jacobian matrix
Jie(qi) exists. Considering all the legs acting on the body at
the same time yields

ẋo = J+
o (xo)Je(q)q̇ (5)

with q = [q1, . . . , qk]
T ∈ R3k. Differentiating (5) with

respect to time t leads to

ẍo = J+
o (xo)Je(q)q̈ +

d

dt
(J+

o (xo)Je(q))q̇ (6)

Using equations (5) and (6), the dynamics of quadruped
robot are then given by

Mo(xo)J
+
o (xo)Je(q)q̈ + (Mo(xo)

d

dt
(J+

o (xo)Je(q))

+Go(xo) + Co(xo, ẋo)J
+
o (xo)Je(q))q̇ = Fo (7)

M(q)q̈ + C(q)q̇ +G(q) + JT
e (JT

o (xo))
+Fo

= τ − JT
g Fg (8)

Combining (8) with (7) and multiplying both sides of (8)
by JT

o (xo)J
T
e (q), the dynamics are given by

Mq̈ + Cq̇ + G = τ − JT
g Fg (9)

where L = J+
o (xo)Je(q), M = M(q) + LTMo(xo)L, C =

C(q, q̇) + LT (MoL̇+ Co(xo, ẋo)L), G = G(q) + LTGo(xo).
The dynamic equation (9) has following structure properties,

which can be exploited to facilitate the control system design.

III. FORMULATION OF FEET FORCES’ DISTRIBUTIONS

To compute feet forces’ distribution, the following assump-
tions are made:

Assumption III.1. The legs are assumed to support the trunk
body without any slippage at the foot-terrain contact point.
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Assumption III.2. The contacts of the tips of the leg with
ground can be modeled as a shard point contacts with friction,
which indicates that the interaction between the tip of the leg
and ground is limited to three components of force: one normal
and two tangential to the surface.

For the statically stable walk of a quadruped robot, there are
two kinds of supporting phases: three-leg supporting phase and
four-leg supporting phase shown in Fig. 1, the quadruped robot
in a 3-D workspace with i point contacts between the ground
and the legs, fixed with a right-handed coordinate frame.
Assume that each leg contacts the ground with Coulomb
friction. Let ni, oi, and ti be the unit inward normal and
two unit tangent vectors at contact i, where ni = oi × ti.
The contact force fi can be expressed in the local coordinate
frame ni, oi, ti by fi = [fin, fio, fit]

T , where fin, fio, and
fit are the components of fi along ni, oi, and ti, respectively.

A contact force fi is applied by each leg on the ground to
hold the quadruped without slippage and tip-over and balance
with any external forces. To ensure no slipping at a contact
point, with the contact normal along z direction and directed
outward and a Coulomb friction coefficient μi at contact
i, the contact force fin must satisfy the contact constraint√
f2
io + f2

it ≤ μfin, where μ is the static friction coefficient
of the substrate. The friction constraint can be geometrically
represented as a cone with its axis orthogonal with respect
to the support surface and with an “opening angle” equal to
α = arctan(μ).

In order to overcome the nonlinearities induced by the fric-
tion cone equations, it is possible to substitute the friction cone
with an inscribed pyramid (see Fig. 1). Hence we have a more
restrictive constraint, expressed by ‖fio‖ ≤ μpfin, ‖fit‖ ≤
μpfin, where μp = μ/

√
2.

Concerning the adhesion constraint, it can be satisfied if the
absolute value of the sum of the distributed forces is less than
the maximum allowable friction force, so fio − μpfin ≤ 0,
−fio −μpfin ≤ 0, fit −μpfin ≤ 0, −fit −μpfin ≤ 0, which
gives a conservative but linear set of constraints describing a
friction pyramid inscribed within the desired friction cone. It
is noted that fin ≥ 0. The friction force constraints may be
rewritten as⎡

⎢⎢⎣
1 0 −μp

−1 0 −μp

0 1 −μp

0 −1 −μp

⎤
⎥⎥⎦
⎡
⎣ fio

fit
fin

⎤
⎦ ≤

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ (10)

We can rewrite the above equation as

Sifi ≤ 0 (11)

where Si is the matrix coefficients of the friction constraints
for the ith foot.

The wrench in the global coordinate frame produced by fi
is

Wi = Gifi (12)

where Gi ∈ R4×3 is the balance matrix for contact i

Gi =

[
ni oi ti

ri × ni ri × oi ri × ti

]
(13)

Let Wext denote the “dynamic” external wrench on the
quadruped. For equilibrium, the resultant wrench Wi applied
by the feet should always conform to

W =
m∑
i=1

Wi =
m∑
i=1

Gifi = −Wext (14)

In real-time control of the balance of the quadruped, Wext

is sampled at a sequence of instants with sufficiently small
intervals.

Besides the form-closure constraints, to balance any ex-
ternal wrench Wext and maintain a stable balance, we also
consider the quadratic objective function of contact forces.
So, the optimal contact force with holding the balance can be
formulated as the following optimization problem with linear
and nonlinear constraints:

minimize J(F d
g ) =

1

2
F dT
g QF d

g + bTF d
g (15)

subject to GF d
g = W (16)

Φ(F ) = SF d
g ≤ 0 (17)

F d
g = [f1, . . . , fk]

T (18)

where F d
g is the contact force vector for three-leg support or

four-leg support, b is constant, and Q is the symmetric and
positive definite matrix with appropriate dimension. The above
quadratic object function represents the minimum weighted
norm of contact force when b = 0.

Considering the Lagrangian function of (15), we obtain

L(F d
g , μ, λ) = F dT

g QF d
g + bTF d

g

+ μTΦ(F d
g )− λT (GF d

g −W ) (19)

where λ is the Lagrangian multiplier, Φ(F d
g ) =

[Φ1(fi), . . . ,Φk(fi)]
T , and Φi(fi) =

√
f2
io + f2

it−μpfin. Let

Ψ(F d
g ) = F dT

g QF d
g + bTF d

g + μ∗TΦ(F d
g ) (20)

− λ∗T (GF d
g −W ) (21)

Inspired by [13], we utilize a recurrent neural network,
whose dynamics can be given by⎡
⎣ Ḟ d

g

μ̇

λ̇

⎤
⎦ = Λ

⎡
⎣ −2QF d

g − b−∇Φ(F d
g )μ+GTλ

max(0, (μ+Φ(F d
g ))− μ

−GF d
g +W

⎤
⎦ (22)

where F d
g ∈ R3k, μ ∈ R4k, λ ∈ Rr, and Λ is a scaling

parameter.

IV. FUZZY-BASED MOTION/FORCE CONTROL

In order to balance the quadruped under external wrench,
and avoid the slipping or slippage and tip-over, we can obtain
the ground applied constraints force to a desired value F d

g from
(22). Therefore, the constraint force errors Fg − F d

g should
be to be within a small neighborhood of zero, i.e., ‖Fg −
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F d
g ‖ ≤ ς . The second control objective is to design a position

control such that the tracking errors of q and q̇ from their
respective desired trajectories qd and q̇d to be within a small
neighborhood of zero, i.e., ‖q− qd‖ ≤ ε1, and ‖q̇− q̇d‖ ≤ ε2.
The desired reference trajectory qd is assumed to be bounded
and uniformly continuous, and has bounded and uniformly
continuous derivatives up to the second order.

Let xi ∈ Rm be the generalized end-effector position vector
of the i-th leg, whose relation with the joint configuration
variable can be written as xi = Φi(qi), where Φi : R

κ → R
l

is the nonlinear mapping from joint space to task space. The
differential kinematics of the i-th leg is

ẋi = Jgi(qi)q̇i (23)

Then, we have the following property.

Property IV.1. [12] The kinematics (23) is linear with respect
to a constant kinematic parameter vector θi ẋi = Jgi(qi)q̇i =
Zi(qi, q̇i)θi, where Zi(qi, q̇i) is the kinematic regressor matrix.
For x = [x1, . . . , xi, . . . , xk]

T , it is easy to have ẋ = Jg q̇ =
Zθ, where Jq = diag[Jgi], and θ = [θ1, . . . , θi, . . . , θk]

T .

First, let us define a task-space sliding variable Si ∈ Rm as
Si = ėi + Λei, where Λ > 0, and ei = xi − xd

i . Next, define
a joint-space reference velocity q̇ri ∈ Rn−m as

q̇ri = Ĵ−1
gi (qi)(ẋ

d
i − Λei) (24)

where Ĵgi is the estimation of Jgi. Let q̇r = [q̇r1, . . . , q̇
r
k]

T ,
a joint-space sliding vector sjh ∈ Rn can be defined as si =
q̇i − q̇ri , so, the relation between Si and si can be described
as

Si = Ĵgisi −Ziθ̃i (25)

where θ̃i = θ̂i − θi. Let S = [S1, . . . , Sk]
T , and s =

[s1, . . . , sk]
T , integrating (9), the closed-loop dynamics can

be presented as

Mṡ+ Cs = τ − Ξ− JT
g Fg (26)

where Ξ = Mq̈r + Cq̇r + G.
According to the universal approximation theorem, it can

be approximated by a multiple-input-multiple-output (MIMO)
fuzzy logic system Ξ̂(q̈r, q̇r, q|Θ), which can be described as
Ξ̂(q̈r, q̇r, q|Θ) = [Ξ̂1(q̈

r
1, q̇

r
1, q1|Θ1), · · · , Ξ̂k, · · · ,

Ξ̂(3k(q̈
r
3k, q̇

r
3k, q3k)|Θ3k)]

T , where Ξ̂j(q̈
r
j , q̇

r
j , qj |Θj) =

ΘT
j ξj(xj), the vector ξj(xj) is known as the fuzzy

basis function vector, and the input vector to the FLS is
xj = [q̈rj , q̇

r
j , qj ]

T and Θj is the jth column of matrix Θj .
Note that the input vector xj is composed of 3 elements, the
total number of fuzzy rules, in the FLS of each robot is 3ν .
It is usually a very large number and would consume a great
amount of computational resources.

To reduce the total number of fuzzy rules required even
further, we adopt a decomposition procedure to partition the
function into three different functions. Nominally

Ξj(q̈
r
j , q̇

r
j , qj) = Ξ1

j (q̈
r
j , qj) + Ξ2

j (q̇
r
j , qj) (27)

Similarly, its approximated value generated by the MIMO-
FLS is expressed as

Ξ̂j = Ξ̂1
j + Ξ̂2

j (28)

where Θ̂j = [Θ̂1T
j , Θ̂2T

j ]T is the estimation of Θj ,
Ξ̂1
j (q̈

r
j , qj |Θ1

j ) = (Θ̂1
j )

T ξ1j (q̈
r
j , qj), Ξ̂2

j (q̇
r
j , qj |Θ2

j ) =

(Θ̂2
j )

T ξ2j (q̇
r
j , qj).

Then, we can define the consequent parameter matrices
adaptation for the three fuzzy logic components of the FLS as

˙̂
Θ1

j = (Γ1
j )ξ

1
j (q̈

r
j , qj)s

T
j (29)

˙̂
Θ2

j = (Γ2
j )ξ

2
j (q̇

r
j , qj)s

T
j (30)

where Γ1
j , Γ2

j are positive definite gains. Through this fuzzy
rule reduction technique, the total number of rules drops
down to 3(ν)2ν , which need be fired by the three fuzzy logic
components of the FLS at each robot. This is a significant
decrease of computational consume compared to the original
number, which would facilitate its real-world implementation.

Since the foot tip is constrained by environment, the force
Fg is exerted to the foot tip at the contact point, a new concept
of Jacobian estimation can be introduced as force projection
error

eJ = J̃T
g (q)Fg = ĴT

g Fg − JT
g (q)Fg (31)

which is also a measure of mismatch between Ĵg and Jg and
it can be calculated from measurements. The force projection
error is measured through using force signal, which indicates
that for identification of constraining surface geometry, force
signal is more informative.

Define the tracking control ˙̂e = ˙̂x − ẋd and Ŝ = ˙̂e + Λe.
Then, we proposed the following adaptive cooperative tracking
control to compensate the dynamical uncertainties, which are
defined as follows:

τ = −Ĵg
T
(q)KxŜ − sgn(s)Ξ̂ + ĴT

g (q)F d
g

−ĴT
g (q)ef +KfeJ (32)

where sgn(s) = [sgn(s1), . . . , sgn(sj), . . . , sgn(sn)], and
sgn(sj) =

sj
‖sj‖ , ef = F d

g − Fg , and Kx and Kf are positive
diagonal and satisfying Kx > 1

2 .

In the adaptive control law (32), the first term −Ĵg
T
(q)KxŜ

is an approximate transpose Jacobian feedback of the task
space velocities and position errors, the second term is an
estimated dynamic compensation, and the third term is the
estimated Jacobian error term through the force control. Up-
dating the estimated dynamic parameters θ̂j using (29) and
(30), the closed-loop dynamics can be obtained by substituting
(32) into (26):

Mṡ+ Cs = −Ĵg
T
(q)KxŜ − sgn(s)Ξ̂

−Ξ + J̃T
g Fg +KfeJ (33)

where Θ̃ = Θ̂−Θ is the dynamic parameter estimation error
and J̃g = Ĵg(q)− Jg(q). Multiplying both sides of the above
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equation using sT , we get

sT [Mṡ+ Cs] = −sT Ĵg
T
(q)KxŜ − sT sgn(s)Ξ̂

−sTΞ + sT J̃T
g Fg + sTKfeJ (34)

Define the Lyapunov function candidate as

V =
1

2
sTMs+

1

2
Θ̃TΓ−1Θ̃ +

1

2
θ̃TΩ−1θ̃ (35)

where Θ̃ = Θ̂−Θ, and θ̃ = θ̂ − θ, and Γ = diag[Γ1,Γ2].
Consider the derivative of V as

V̇ =
1

2
sT (2Mṡ+ Ṁs) + Θ̃TΓ−1 ˙̃Θ

+θ̃TΩ−1 ˙̃θ (36)

Using the skew symmetry of sT (Ṁ−2C)s = 0, we can obtain
the derivative of V̇ as

V̇ = −sT sgn(s)Ξ̂− sT ĴT
g (q)KxŜ − sTΞ + sT J̃T

g Fg

+sTKfeJ + Θ̃TΓ−1 ˙̃Θ + θ̃TΩ−1 ˙̃θ (37)

Then, we have

V̇ ≤ −
3k∑
j=1

(‖sj‖(Θ̃1
j )

T ξ1j (q̈
r
j , qj) + ‖sj‖(Θ̃2

j )
T ξ2j (q̈

r
j , qj))

−sT ĴT
g (q)KxŜ + sT J̃T

g Fg + sTKfeJ + θ̃TΩ−1 ˙̃θ

+Θ̃TΓ−1 ˙̃Θ (38)

Considering (25), we have

Ĵgs = S + Z θ̃ (39)

moreover Ŝ = Z θ̃ + S. Therefore, we have Ĵgs = Ŝ.
Integrating (29) and (30), substituting (39) into (38), we have

V̇ ≤ −ŜTKxŜ + sT θ̃TZTFg + sTKfZ θ̃Fg

+θ̃TΩ−1 ˙̃θ (40)

We choose the following adaptive law as

˙̃
θi = −ωiZT

i (Kf + 1)Fgs (41)

where ωi > 0. Integrating (41) into (40) we have

V̇ ≤ −ŜTKxŜ ≤ 0 (42)

Theorem IV.1. Consider the dynamics of quadruped robot
(1), and furthermore the approximate Jacobian Ĵgi(qi) is non-
singular, the adaptive controller (32) combining the adaptive
law (29), (30) and (41) will ensure both the convergence of
the task-space tracking errors, namely, xi → xd

i , ẋi → ẋd
i ,

and Fg → F d
g as t → ∞.

Proof: Since V̇ ≤ 0, V must be bounded, resulting in the
boundedness of si, Θ̃, θ̃i. From Eq. (24), we have qri ∈ L∞
since the approximate Jacobian Jgi(qi) has full rank. Thus
q̇i = si + q̇ri ∈ L∞, implying that ẋi ∈ L∞. Therefore, we
obtain ˙̂

θi ∈ L∞ based on (41). From the closed-loop dynamics
(26), we obtain ṡi ∈ L∞ and thus q̈i ∈ L∞, ẍi ∈ L∞. Based

on the result (42), we conclude that V is uniformly continuous.
Using Barbalats Lemma [11], we derive the result that V̇ → 0
as t → ∞, which gives rise to the result that si → 0, Ŝ → 0
and θ̃ → 0, then xi → xd

i , ẋi → ẋd
i , and Fg → F d

g as t → ∞.

V. SIMULATION STUDIES

In the simulation, the system parameters are chosen
as m1 = 0.45kg,L1 = 0.4m, m2 = 1.74kg, L2 = 1m,
m3 = 1.3kg, L3 = 1m, g = 9.8m/s2, I1zz = 0.018kgm2,
I2zz = 0.735kgm2, I3zz = 0.549kgm2, I2xx = 0.435kgm2,
I3xx = 0.325kgm2. We assume the lower limit and the
upper limit of each foot friction fi = [fio, fit, fin]

T

is [−30,−30,−100]T and [30, 30, 100]T separately, and
Q = diag[1.0], b = 0. The friction coefficient of each
leg is μ = 0.6. The external forward perturbation force
is fext = 15 sin(2πt)N at d = 1m height of the
middle body-platform rear, as shown in Fig. 1. Some
matrices going to be used in the simulation are set as G =⎡
⎢⎢⎣

1 0 0 −1 0 0 1 0 0 −1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0.25 0 0 0.25 0 0 0.25 0 0 0.25

⎤
⎥⎥⎦,

Si =

⎡
⎢⎢⎣

1 0 −0.424
−1 0 −0.424
0 1 −0.424
0 −1 −0.424

⎤
⎥⎥⎦, f =

[f1o, f1t, f1n, f2o, f2t, f2n, f3o, f3t, f3n, f4o, f4t, f4n]
T , W =

[0, fext, Gq, fextd]
T , where Si is the matrix coefficients

of the friction constraints for ith foot, Gq is the gravity
of the quadruped robot. The fuzzy logic control without
any knowledge of system dynamics is employed as below.
The adaptive update parameters are chosen as Γ1 = 100,
Γ2 = 100 and Ω = diag[10]. Other parameters are defined
as, Kf = diag[10], Kx = diag[150] and Λ = 100.

The simulation results of the quadruped are shown in
Figs. 2–9. Figs. 2–3 show the optimized decomposed forces of
the four legs. The solid lines represent the computed tangential
and inward components (fo,ft,fn), and the dotted lines rep-
resent the measured components (fo, ft, fn) correspondingly.
Figs. 4–5 show the tracking errors of the joint positions of all
the four legs. Figs. 6–7 show the velocities for all the four legs.
The input torques for all the four legs are shown in Figs. 8–
9. As illustrated by the simulation results, that the trajectory
tracking errors and force tracking errors are bounded within
a small value, which validate the effectiveness of the control
law in Theorem IV.1.

VI. CONCLUSIONS

In this paper, the dynamic balance optimization and control
of quadruped robots have been investigated under external
disturbances. A gradient neural network is adopted to mini-
mize this quadratic objective function with respect to linear
equality and inequality constraints. Then, hybrid motion/force
control based on adaptive neural network is proposed to
compensate for the external perturbation in the environment
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Fig. 2: Decomposed forces for 1st and 2nd legs
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Fig. 3: Decomposed forces for 3rd and 4th legs
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Fig. 4: Joint angle trajectories of 1st and 2nd legs
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Fig. 5: Joint angle trajectories of 3rd and 4th legs
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Fig. 6: Joint angle velocities of 1st and 2nd legs
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Fig. 7: Joint angle velocities of 3rd and 4th legs
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Fig. 8: Torque inputs for 1st and 2nd legs
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Fig. 9: Torque inputs for 3rd and 4th legs

and approximate feedforward force and impedance of the leg
joints on line.
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