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Abstract—This paper presents an EEG-based interactive ge-
netic algorithm framework, with the goal of leveraging EEG
signals collected from a human expert involved in the evaluation
of interactive genetic algorithm as inputs for genetic parameter
control. We explain the framework of the system and our
cognitive model constructed based on a 19 channel EEG system.
An experiment has been performed to test the effectiveness of
our framework and our cognitive model. Our work is the first
attempt to combine brain-computer interaction with interactive
evolutionary computation and parameter control.

I. INTRODUCTION

Bio-inspired evolutionary algorithms have been successfully
applied to optimization and learning problems over the last
few decades so as to solve complex problems that are not
easily solved by classical analytical methods [1]. Among the
various types of evolutionary algorithms, genetic algorithm
(GA), introduced by Holland [2] which mimics natural se-
lection, is one of the most popular search methods used in
practice. Parameter control of the GA is a critical area in any
GA, because the success of the optimization process depends
largely on the design and selection of appropriate search
operators and parameters [3], which comes to be the balance
between two cornerstones of problem solving by search -
exploration and exploitation [4]. Exploration avoids getting
stuck in local optima, and exploitation helps to converge
quicker. In GA, exploration and exploitation are balanced by
two important genetic operators: crossover and mutation. To
obtain a balance of these two genetic operators is an important
issue in controlling the degree of exploration and exploitation
in problem solving. To ensure the effectiveness of GA for
a particular problem, parameter tuning before running of the
algorithm and parameter adaptation during the process of
problem solving are both common methods used for parameter
control [3]. With regard to the challenge of this balance, on-
line parameter control has drawn more attention because of
its adaptability under various conditions and in non-stationary
environments [3]. Human evaluation for the on-line parameter
control of interactive genetic algorithm is also suggested [5].

In this paper, we present a new way to model mental states
of a human subject as inputs for task controls based on EEG

signals. On-line parameter control in genetic algorithm (GA) is
selected as an example to demonstrate our work with regard
to Brain Computer Interfaces(BCI). The application of BCI
in GA parameter control is important for individuals and
families of individuals who have physical limitations to use
GA based applications. It is as well important in developing
future interfaces with better communication quality and larger
bandwidth between healthy individuals and machines.

Electroencephalography(EEG), which is an effective mea-
surement of the electrical functions of brains [6], has been
widely applied in Neuroscience and Brain-computer Interac-
tion. The source of EEG is the electrical signals which are
created when electrical charges move within the central neural
systems. The advantage is that it is low cost, compact, flexible
and more robust than other non-lesional brain imaging tech-
niques (e.g., PET, fMRI, etc.) [7]. It also provides a reasonable
spatial resolution (if sufficient number of electrodes are used)
and an excellent temporal resolution. These advantages have
led to a wide employment of EEG in non-invasive brain
functional mapping when continuous recording is needed [7],
or BCIs in virtual environments when real-time monitoring,
interpretation and feedback is required.

Real-time EEG has been recognized as a new communica-
tion channel between human brains and computer system by
human-computer interaction and virtual reality communities.
These EEG-based BCIs have been firstly researched in order
to help disabled persons in motor recovery and substitution,
for example, the control of a wheelchair [6]. More recently
this approach has been extended to create an immersive
experience for healthy users and have been tested in game
environments [8], from simple games like navigation in a
maze [9], Pacman [10], to more complex games including
flight simulators [11].

However, in classical BCI design, before successfully using
the system, the subject needs to learn how to regulate their
brain signals in a systematical manner by performing several
imaginary tasks. Some researches rely on the subjects’ own
ability to control their mu and central-beta rhythm by will so as
to (for instance) move cursors on screens [12]. Others rely on
machine learning algorithms to learn the subject-specific brain
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pattern before reliable control could be expected in BCIs [13].
This training stage may consist of several or more sessions.
Further, the training time varies among subjects, which can
last from several hours to many months [14]. The cost is high
and the resulting control scheme is always subject-dependent.

Clearly, cost of training is a significant challenge in moving
the current BCI research from lab experiments to real world
applications. We tackle the problem by 1) avoiding complex
mental tasks that require particular ‘skills’ of the subjects to
regulate their brain waves, but focusing on simple mental tasks
that would trigger certain brain wave patterns which have been
long addressed in Cognitive Science; 2) using baseline tasks
to overcome between-subject variability in performing these
tasks in order to build up a mathematical model. The exper-
iment of our system described herein proves the success of
this idea in reducing training time, as compared to traditional
approaches to BCIs design. Further, the technique can also be
applied in the application of BCIs for other purposes.

Our work is the first attempt to link the EEG-based BCI
research and GA parameter control to balance the trade-off of
exploration and exploitation in evolutionary computation. This
proof of concept opens the doors to extend the work to other
applications that require real-time control.

Real-time EEG signals are collected from a human expert
as inputs to control parameters in GA, when solving a bench-
mark problem. We show the results of how the mental tasks
performed by the human expert change the crossover and the
mutation rate, so as to drive the evolutionary process. The aims
of our study are to discover:
• if a framework of using EEG brain signals as inputs to

control genetic parameters is feasible;
• if the technique of using baseline tasks in order to reduce

training time is applicable in our framework.
The paper is structured as follows: Section 2 presents the

methodology of the proposed interactive GA framework, the
designed mental tasks, the EEG signal processing, and the
parameter control; Section 3 shows the experimental design
and procedures; The test results are discussed in section 4,
and section 5 concludes our current research with proposals
for future work.

II. METHODOLOGY

A. Framework

The framework has a human expert involved in the system.
The human expert observe/evaluate the problem and control
the parameters of the genetic algorithm on-line during the
process of problem solving. The system by itself takes care of
the GA, the EEG recording and the mental states identification
as parameter control inputs. The framework of our purposed
system is illustrated in Figure 1.

As shown in Figure 1, the system is composed of 5 main
components: the GA, the EEG collection, signal processing,
mental states identification and the mapping of mental states
to the changes in genetic parameters. We collect EEG signals
from the human expert after he/she has evaluated the problem

EEG

Capturing

EEG Signal

Processing

Mental States

Identification

Parameter

Control

Genetic

Algorithm
Human Expert

Control Data Collection

Fig. 1. The Framework of the Interactive Evolutionary System with Parameter
Control

and made a decision for parameter control, process the signal
to extract features, identify mental states in real-time using
these features, and at last map the mental states to parameter
control functions. The functions feedback to the GA main
program to process and to display results again for the human
expert to evaluate. This loop continues until the GA has
provided a satisfactory result.

This framework of the interactive genetic algorithm system
is processed in real-time so as to obtain instant control
messages. Besides a quick baseline session that takes just
several minutes, no training stage are required as in clas-
sical BCIs design. This design makes the framework nei-
ther algorithm-dependent in choosing genetic algorithms, nor
subject-dependent in choosing the human experts as subjects.

B. Genetic Algorithm and EEG Controlled Parameters

A detailed explanation of the designed interactive GA
system is shown in flow-chart 2. The system consists of
a standard GA with Roulette wheel selection and an EEG
parameter control component.

When EEG parameter control is enabled, the system will
collect EEG data, calculate mental states, and control the
crossover and mutation rate accordingly by the resulting
control functions. If not enabled, the GA will follow the stan-
dard way of evaluation, selection, reproduction and mutation
without changing parameters.

C. Mental Tasks Design

The mental tasks are designed such that the human expert
completing the mental tasks results in the corresponding
control changes in the GA - changes of crossover and mutation
rate during the problem solving. The control functions are
determined by features extracted from EEG signals captured
during the tasks. In order to avoid the tedious process of
BCI training, these tasks need to be designed to be simple
enough for the human expert to identify and remember, but
also diverse enough to generate distinguishable brain signal
patterns that could be identified by our constructed cognitive
model.

We design the mental tasks by reviewing studies on EEG
signal patterns under various thinking tasks. The increasing
frequency of information transmissions between neurons is
an electro-physiological indicator of excitement and activation
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Fig. 2. The Implementation Diagram of Genetic Algorithm with EEG
Parameter Control

of the corresponding cerebral functional area. Conversely,
decreasing frequency is an index of attenuation and inhibition
of the cerebral functional area. This implies the correlation
between spontaneous brain activities, which could be shown
as relative EEG power, and its corresponding underlying brain
functions.

The mean power level of EEG alpha band has long been
recognized as an important measure of resting-state arousal
under eyes-closed and eyes-open conditions. Recently, the
topographic changes between eye-close and eye-open states
has also been studied and identified [15]. During eye-close and
relaxation stage, the temporal-occipital region is activated with
an attenuation of the frontal region. Attenuation of temporal-
occipital region and activation of pre-frontal region are ob-
served during eye-open relaxation mode. The dorsolateral
prefrontal cortex (DLPFC) is the neural basis of the brain’s
central executive control function in most of the working
memory models. It is one of the cortical association areas
in the brain which has neural connections with all parts of
cortex. Research has proven the activation of the DLPFC
region while doing computational tasks. The function of the
DLPFC is to summarize all information for activity planning,
to coordinate cerebral motor cortex, and to control and accom-
plish complex tasks. The more information needed to retained
and to processed in working memory, the higher the activities
levels observed from DLPFC region will be [16]. Counting

backwards is used as a simple and effective method for mental
arithmetic in the former research [17] as computational tasks
to activate DLPFC region.

We designed 4 mental tasks for the human subject to control
genetic parameters, as listed in Table I, based on the EEG
features and the brain functions explained above. The tasks
are labelled as EC, EO, ECC and EOC.The corresponding
genetic parameter changes are also shown. The computational
task is to count backwards from 100 at a step of 3.

TABLE I
FOUR HUMAN MENTAL TASKS

Mode Eye Status Relaxation
/Compu-
tation

Period
(Sec.)

Parameters

EC Closed Relaxation 15 Increase Crossover
Rate by 10%

EO Open Relaxation 15 Decrease Crossover
Rate by 10%

ECC Closed Computation 15 Increase Mutation
Rate by 2%

EOC Open Computation 15 Decrease Mutation
Rate by 2%

Before leveraging these mental tasks for parameter control,
EEG baseline information needs to be first collected from the
targeted subject to overcome individual differences in EEG
signals. We also designed 4 baseline tasks to be the same as
the 4 control mental tasks with the same durations. The 4
baseline tasks should be performed thoroughly by the subject
before the control session starts. The EEG signals collected
from the 4 baseline tasks are processed to generate EEG signal
patterns from each brain functional region to setup baselines
for the control tasks.

D. EEG Signal Collection

The EEG signals are collected using a 19-channel EEG
Nexus32 system. 21 electrodes (including 2 reference chan-
nels) are integrated in an EEG cap following the interna-
tional 10-20 system. The recordings of the EEG signal are
continuous during the baseline session and the control tasks.
The recordings are sent to the cognitive model for EEG
data processing once the baseline tasks or control tasks has
completed. The data is sent as a 19-channel EEG data stream
at the sample rate of 2048Hz.

E. EEG Signal Processing and Cognitive Model

Our designed cognitive model receives and processes the
recorded EEG data stream after the subject completed each
baseline or control mental task. The model is explained in
this section.

First, in order to find the EEG voltage readings which
represent the pure electrical activity at the targeted electrode
positions on the scalp, the recorded EEG data stream, which
is usually called the raw EEG data, needs to be re-referenced
to obtain the relative measure between the targeted position
and a reference position. We are using the common average
referencing method to provide a dereferencing solution for
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EEG data analysis, based on the assumption that the same elec-
trical activities across all the sites spreading up the entire head
could be considered as artifacts [18]. While we acknowledge
that on a theoretical basis this referencing system is suitable
for a large number of electrodes, our test demonstrate that
it was adequate enough for our task. The common average
reference is mathematically represented by subtracting the
mean of recordings from all electrodes in each channel.

The EEG signal is then filtered into 8 frequency bands as
in Table II by using spectral analysis. An FFT transformation
is performed on the re-referenced EEG signals to change the
time-domain signal into frequency domain using Equation 1.
The relative EEG amplitude Af ′ and power Pf ′ are also calcu-
lated by dividing those at the overall band as Equation 2 and 3.
Note that the frequency bands of the signal below 1Hz and
higher than 42Hz are filtered out. The process is specifically
explained in Algorithm 1, in which amp is the absolute EEG
amplitude, Amplitude and Power are relative amplitude and
power, DeltaAmp and DeltaPower are relative amplitude
and power in Delta band.

X[m] =
N−1∑
n=0

x[n]e
−imn2π

N (1)

where, m = 0, 1, ..., N − 1, n = 0, 1, ..., N − 1, x[n] is the
nth input sample, and X[m] is the mth harmonic.

Af ′ =
Af∑42
j=1Aj

(2)

Pf ′ =
Pf∑42
j=1 Pj

(3)

where, f = 1, 2, ..., 42, Af and Aj represent the absolute
amplitude, Pf and Pj represent the absolute power.

TABLE II
THE 8 FREQUENCY BANDS OF THE EEG SIGNALS

EEG Bands Frequencies(Hz)
Delta 1-4
Theta 4-8
Alpha 8-12
low Beta 12-15
Beta 13-21
High Beta 20-32
Gamma 38-42

EEG rhythmic activities can be classified within the bounds
of each frequency band that has a particular biological sig-
nificance. We chiefly focus on the theta/beta ratio (TBR)
which has long been studied in the Neurofeedback domain
as an indicator of the attention deficit hyperactivity disor-
der(ADHD) [19] and were used successfully in our research
group for an air traffic control context [20], which mani-
fests as hyperactivity and inattention. There is consensus that
the elevation of absolute and relative theta activity, together
with suppression of beta activity, are likely associated with
ADHD [21]. However, for healthy task subjects who do not

Algorithm 1 FFT Implementation, the Calculation of Absolute
and Relative EEG Amplitude and Power
1: F ⇐ SamplingRate

2
2: Initial an array: amp[C][T ][F ] {C is the number of channels, T is the duration

of the mental task}
3: Initial an array: Amplitude[C][T ][F ]
4: Initial an array: Power[C][T ][F ]
5: Get realFFT and imgFFT by Fast Fourier Transform with the input of EEG

signals according to Equation 1
6: amp⇐

√
realFFT 2 + imgFFT 2

7: for each channel c of EEG channels C do
8: for each second t of the task duration T do
9: sum⇐

∑42
f=1 amp[c][t][f ]

10: for frequency f = 1 to F do
11: {Normalize the amplitude calculated at each frequency by dividing

amplitude at overall band}
12: Amplitude[c][t][f ]⇐ amp[c][t][f]

sum
13: Power[c[t][f ]⇐ Amplitude[c][t][f ]× Amplitude[c][t][f ]
14: end for
15: Calculate amplitude for each EEG band according to Table II {e.g.

DeltaAmp[c][t]⇐
∑4
f=1 Amplitude[c][t][f ]}

16: Calculate power for each EEG band according to Table II {e.g.
DeltaPower[c][t]⇐

∑4
f=1 Power[c][t][f ]}

17: end for
18: end for

TABLE III
THE COGNITIVE MODEL

Indicators Brain Functional
Region

Electrodes’ Positions
in EEG Recording

Attention Pre-frontal Cortex Fp1 Fp2
Planning Frontal Cortex F7 F3 Fz F4 F8
Situation
Awareness

Parietal Lobe P3 Pz P4

Language Wernicke’s Area T5 T6
Emotion Limbic System T3 T4
Visual Occipital Lobe O1 O2
Motor Motor Cortex C3 Cz C4
Flexibility Precentral Gyrus,

Central Sulcus and
Postcentral Gyrus

Fz Cz Pz

have ADHD, the TBR value corresponds to high mental
activities in the corresponding brain region. The TBR is
calculated by dividing activities of the theta band and the beta
band. EEG band activity is represented by band power, which
is computed by accumulating power spectrum density within
the given frequency range.

The cognitive model is constructed as the averaged TBR
value calculated within the given time period in the particular
brain functional region, which is shown in Table III. The
implementation process is explained in Algorithm 2, in which
TBR represents the theta/beta ratio.

The EEG Topographic heat maps - which show relative
activity by regions of the brain - are computed based on the
interpolation of EEG power calculated from each channel. We
first present the topographic maps focused on the temporal
changes. After detrending, we select topographic maps com-
puted at 5 seconds, 10 seconds, 15 seconds and 20 seconds of
each baseline task from one of the conducted experiments, as
shown in Figure 3. The results in the figure show that during
EC baseline, the visual cortex was shutdown as high power
in O1 and O2 positions. During EO baseline, the power at
O1 and O2 positions attenuated, while the frontal, prefrontal
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Algorithm 2 TBR Model
1: for each channel c in channels do
2: for each second t in the task duration of T do
3: TBR[c][t]⇐ ThetaAmp[c][t]

BetaAmp[c][t]

4: end for
5: end for
6: {Calculate indicators according to the channel position showing in Table III}
7: Attention⇐

∑T
t=1(TBR[Fp1][t] + TBR[Fp2][t])/2

8: Planning ⇐
∑T
t=1(TBR[F7][t] + TBR[F3][t] + TBR[Fz][t])

9: +
∑T
t=1(TBR[F4][t] + TBR[F8][t])/5

10: SA⇐
∑T
t=1(TBR[P3][t] + TBR[Pz][t] + TBR[P4][t]))/3

11: Language⇐
∑T
t=1(TBR[T5][t] + TBR[T6][t])/2

12: Emotion⇐
∑T
t=1(TBR[T3][t] + TBR[T4][t])/2

13: V isual⇐
∑T
t=1(TBR[O1][t] + TBR[O2][t])/2

14: Motor ⇐
∑T
t=1(TBR[C3][t] + TBR[Cz][t] + TBR[C4][t])/3

15: Flexibility ⇐
∑T
t=1(TBR[Fz][t] + TBR[Cz][t] + TBR[Pz][t])/3

cortex and parietal lobe (which is associated with attention,
planing and situation awareness) began to activate. During
ECC baseline, the activation of the frontal cortex was not
as much as what we see during EO and EOC baseline, also
the visual cortex was activated, but not as strong as in EC
baseline. Finally during EOC baseline, the mainly activated
areas were pre-frontal and frontal cortex, which indicates high
engagement and planning. The results show that the four
cognitive tasks are differentiable on the basis of the extracted
features.

Fig. 3. EEG Topographic Maps Computed on 4 Baseline Tasks

The topographic maps of power at each frequency band are
also shown in Figure 4, which are calculated by averaging
the EEG power in the frequency bands across the duration
of the tasks. The color map is scaled to the data range of
each topographic map. The first column shows the total EEG
power from 1 to 42Hz. The Delta and Theta Band power are
attenuated during eye closed tasks (EC and ECC). During EC

task, the visual cortex was activated as high power at O1 and
O2 from Alpha to Gamma Bands. During ECC task, the visual
cortex was activated as what happened at the EC task, and
frontal cortex was also activated as an indicator of the attention
and planning during computational tasks. During the eye open
tasks (EO and EOC), the EEG power were showing more slow-
wave activities compared to eye close tasks, and higher EEG
power at frontal cortex was shown during EOC task compared
to EO task, which is in accordance with eye close tasks.

Fig. 4. EEG Topographic Maps During 4 Baseline Tasks

F. Parameter Control

The Euclidean distances of features between a control task
and a baseline mode is calculated and then the minimum is
found, which shows the maximum similarity between these
two tasks. The mental state during the control task is classified
the same as the baseline task with the minimum distance.
The distance coefficients are calculated as Equation 4 for each
baseline task.

DM,T =

8∑
b=1

√
(Ib −BM,b)2 (4)

where, DM,T is the distance coefficient between a mental
task T and a given base line of mode M , Ib is the task indicator
of band b, and BM,b is the baseline of band b in mode M , as
listed in Table I.

III. EXPERIMENTAL DESIGN

A. Experiment Protocol

The experiments are conducted on a voluntary basis, with
each participant completing their experiment, before another
begins. A background knowledge of genetic algorithms and
parameter control are needed for the participants to take part
in this experiment.

Before the experiment starts, the researcher briefs each
participant on the procedure of the experiment, the baseline
tasks and the control tasks. The participant will be given
a printed table from the researcher during this stage which
shows the relationship between mental tasks and the parameter
control results as in the table I, so that he or she does not
need to memorize. The EEG sensor setup will be done after
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the subject briefing. The baseline session would be started if
the EEG signal quality is satisfactory after sensor set up.

The baseline session consists of 4 baseline tasks (EC, EO,
ECC, and EOC) which need to be performed one by one in
sequence. The participant was required to be fully focused on
the tasks during this stage. 20 seconds EEG recording were
taken from the participant doing each baseline tasks, with 5
seconds for stabilization and 15 seconds used for input to
calculate features by cognitive model. The EEG recordings
during warm up period is preserved but not calculated. The
researcher monitors the process and notifies the participant of
which task needs to be performed, the duration and the end
of each baseline task. This session takes 2 minutes.

After going through all 4 baseline tasks, the main session
starts. The participant is required to observe a test problem
with unknown functions but its global maximum position is
shown on the screen. After identifying the problem, the GA
starts with the generation of an initial population and the first
10 generations by the default crossover and mutation rate. The
resulting values are plotted on the screen as colored dots on
the contour map of the task problem. The fitness function is
also shown on the screen to help the participant to evaluate
the problem.

After each 10 generations, the GA stops for the participant
to decide if the genetic parameters needs to be changed
(increase or decrease). The participant needs to first observe
the current state of the problem solving process, evaluate
the problem, make a decision (change the parameter or not,
which parameter to change, increase or decrease), refer to the
corresponding mental control task, clear their mind and relax
for 20 seconds, and then start the selected control task for
20 seconds. The researcher will inform the participant of the
procedure above during this stage. If the participant decides
not to change any parameters, both the relaxation and the
control tasks stage would be skipped.

The control tasks are processed as the same as the baseline
tasks - the system takes a 20 second EEG recording, also
identifies the first 5 seconds as warm up and the next 15
seconds to obtain features in real-time from our cognitive
model. The features derived are then compared with the
baseline features using similarity metrics, a control decision
is made, the genetic parameter of GA is changed accordingly,
and the results of the following 10 generations generated
under the changed parameters are shown on the screen for
the participant to evaluate. If the participant decides not to
change any parameters and the above control task stage has
been skipped, the GA will take the former parameters and
generate 10 generations under the former designated parameter
value. The system will be operated in real-time exactly after
the participant has finished the control task stage and the EEG
recordings have been received.

Once the results of the following 10 generations have been
shown, the participant can repeat the process of observe,
evaluate, decide, relax and then start of the control tasks. This
process could be repeated as many times as needed. In this
experiment, we repeat this process 9 times, resulting in a total

of 100 generations (the first 10 generations are generated on
default value of parameters).

B. Test Problem

We chose a single-objective function as the test problem.
The function uses sin to create several local maximum and
a global maximum. The definition of the fitness function is
described in Equation 5. And the landscape of the fitness is
shown in Figure 5.

f(x, y) = (15xy(1− x)(1− y) sin(3πx) sin(3πy))2
x ∈ [0, 1], y ∈ [0, 1]

(5)

Fig. 5. Experiment Protocol

There are four local optima surrounding the global max-
imum (f = 0.8789) at point [0.5, 0.5]. It is a suitable
example function in order to investigate the balance between
exploration and exploitation in GA by changing parameters.

Figure 6 shows the results of GA evolutions with a fixed
seed but different crossover and mutation rates. As shown in
the figure, when the mutation rate is low (0.01), the solutions
are stuck at the local optimal.

C. Experiment Setup and Procedure

The experiment was conducted by strictly applying the
experiment protocol. The first author participated in the ex-
periment as the subject, and the experimental procedure was
controlled by the second author.

The experiment conducted consisted of about 45-minute test
procedure. During the experiment, the subject was required to
remain seated on a comfortable chair in a closed, bright, and
quiet lab environment. The EEG signal was captured using the
Nexus-32 EEG system produced by the Mind Media.

IV. RESULTS AND DISCUSSION

In our experiment, we have run the GA functions 10
times, with each function including 100 generations and 9
parameter control mental tasks. The first 10 generations were
generated by the default crossover and mutation rate set before
the experiment(Crossover Rate (CR) =0.6, the Mutation Rate
(MR)=0.01). The mental tasks were performed at the step of 10
generations. The subject did not use the skip function during
the experiment. Therefore, a total of 90 mental tasks (10 runs
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Fig. 6. Fitness Values of the Genetic Algorithm Populations, under EEG
Controlled Parameters

TABLE IV
EXPERIMENTAL RESULTS

Tasks Number Accuracy Numbers of Mapped Tasks
EC EO ECC EOC

EC 22 81.82% 18 3 1 0
EO 22 77.27% 3 17 2 0
ECC 24 66.67% 3 4 16 1
EOC 22 95.45% 0 0 1 21
Total 90 82.22%

by 9 opportunities per run to alter a parameter) were processed
and identified, and the results are shown in Table IV.

One of the GA processes is shown in Figure 7 and Table V.
In this example, the identification of control mental tasks was
performed with 100% accuracy.

TABLE V
THE MENTAL TASKS AND CONTROL ACTIONS

Se-
quence

Mental
Tasks

Control Actions Parameter Values
after Operation

0 Initialize Default CR=0.6 MR=0.01
1 EO Increase CR by 0.1 CR=0.7 MR=0.01
2 EO Increase CR by 0.1 CR=0.8 MR=0.01
3 EO Increase CR by 0.1 CR=0.9 MR=0.01
4 EC Decrease CR by 0.1 CR=0.8 MR=0.01
5 EOC Increase MR by 0.02 CR=0.8 MR=0.03
6 EOC Increase MR by 0.02 CR=0.8 MR=0.05
7 EOC Increase MR by 0.02 CR=0.8 MR=0.07
8 ECC Decrease MR by 0.02 CR=0.8 MR=0.05
9 EO Increase CR by 0.1 CR=0.9 MR=0.05

The member values (x,y) for the test problem from gener-
ation 1 to 100 are shown in Figure 8. The global optimal is
at (0.5,0.5) and the color of the scatter map is drawn based
on the fitness value of each member in the population. The
member values are drawn at the step of 10 generations after
each mental task. The figure shows a convergent result for our
EEG-based interactive GA system.

As in the example, the test problem is a single-objective
easy function, so the best, mean and median fitness increased
quickly during the first 10 generations under the default
value CR=0.6, MR=0.01. The CR value increased up to 0.9

Fig. 7. The Best, Worst, Mean and Median Fitness Value With On-line
EEG-based Parameter Control.

Fig. 8. The Member Values for the Test Problem

to generate the next 30 generations, and the fitness value
increased steadily to try to reach the global maximum 0.8789.
After 50 generations, the median fitness was close to the
maximum. The increase of MR in the following stages added
more variations to the population, so that the mean and median
fitness value of each population generally decreased until the
MR decreased at the end of 80 generations. There were sharp
decreases of all the best, mean and median fitness values from
generation 80 to 90 after the mutation rate decreased. That
was probably because after the global maximum was almost
reached, the mutation process in the population deteriorated
the results. After increasing the CR at the end, the fitness
value started to increase again.

All experiment results with mental task parameter control
are shown in Table IV. The overall identification accuracy
of the 90 control mental tasks is 82.22%, with 74 of them
correctly identified by the system developed. Among these,
the EOC task has the best identification rate (95.45%), which
is probably because during the performance of EOC task, most
of the brain areas are activated especially the pre-frontal and
frontal cortex. The resulting action, planning and situation
awareness indicators have significantly higher values than
those computed during EC, EO and ECC tasks. In contrast,
the ECC task has the worst identification rate of 66.67%, with
the mis-identified (confusion) result falling into all the other

2408



three categories. There are probably 2 reasons that lead to this
results: 1) the ECC task (counting backwards in steps of 3
during eye closed) is hard to control for both the researcher
and the participant. For the research it is hard to identify
from observation if the participant is faithfully doing the
computational tasks or not. And the participant may find it
hard to focus when their eyes are closed; 2) The ECC task
is hard to classify especially when using the indicator of
attention, since the participant is both mentally engaged in
computational tasks as well relaxed because of the eyes being
closed.

To obtain a better identification rate, one of possible im-
provement of the methodology is to perform a thorough study
on the most appropriate duration of the mental tasks, and the
ratio of the warm-up stage to the EEG recording stage. A
longer time duration of EEG recording during mental tasks
will likely provide more robust results. Further obtaining more
than one baseline sample of each task would likely lead to
an improvement. Similarly, more sophisticated classification
algorithms (than Euclidean distance to a single reference
sample) could be used. This is one area that will receive work
in the coming year.

V. CONCLUSION

This paper focused on developing the new concept of an
EEG based interactive genetic algorithm. To sum up, we have
first presented the framework of our system is based on,
but not limit to, the current progress in both brain-computer
interaction and evolutionary computation. The system has been
implemented and a thorough experimental protocol has been
designed to conduct the experiment. A preliminary experiment
has been conducted and the classification accuracy is satis-
factory. This shows the effectiveness of the concept and the
implemented system.

We will be doing more experiments to prove the effective-
ness of our system with detailed discussions for our future
research. Further, the EEG signals that has been collected
during the experiments will be used for detailed off-line
studies.
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