
 

 

 

  

Abstract—Recognition of complex dynamic texture is a 

challenging problem and captures the attention of the computer 

vision community for several decades. Essentially the dynamic 

texture recognition is a multi-class classification problem that 

has become a real challenge for computer vision and machine 

learning techniques. In this paper, we propose a new approach 

to tackle the dynamic texture recognition problem. First, we 

utilize the fuzzy clustering technology to design a fuzzy 

codebook, and then construct a soft assigned local fuzzy coding 

feature to represent the whole dynamic texture sequence. This 

new coding strategy preserves spatial and temporal 

characteristics of dynamic texture. Finally, by evaluating the 

proposed approach using with the DynTex dataset, we show the 

effectiveness of the proposed local fuzzy coding strategy. 

I. INTRODUCTION 

Dynamic textures (DT) are video sequences of non-rigid 

dynamical objects that constantly change their shape and 

appearance over time. Some examples of dynamic textures 

are video sequences of fire, smoke, crowds, and traffic. This 

class of video sequences is especially interesting since they 

are ubiquitous in our natural environment. Dynamic texture 

itself is very useful. It is widely used in texture synthesis [1], 

video registration [2], music modeling [3] and control 

education [4]. 

However, the classification of DT admits great challenging 

since DT include both spatial and temporal elements. To 

model DT, Ref. [1] developed a linear dynamic system (LDS) 

method. LDS can be used to model complex visual 

phenomena, such as smoke and waves in water, with a 

relatively low dimensional representation. The use of such a 

model allows for greater editing power, and the output 

sequences included images which are never a part of the 

original sequence. However, the outputs were blurry 

compared with those of non-procedural techniques. Moreover, 

the signal would rapidly decay and its intensity would 

become saturated. The work in [5] extended this work by 

introducing feedback control and modeled the system as a 

closed loop LDS. The feedback loop corrected the problem of 

signal decay. In [4], LDS was regarded as educational bridge 

to merge the gap between computer science and control 

engineering.  

A difficult problem to use LDS for classification lies in the 

fact that LDS does not lie in an Euclidean space, and therefore 

many classification which is based on Euclidean distance and 
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reconstruction cannot be utilized.  In [1], the Martin distance 

between LDS is adopted to compare the similarity between 

different DTs. Martin distance, which was developed by 

control scientist, is effective to evaluate the distance between 

LDS, but cannot be effectively used for video with multiple 

dynamic textures. Therefore, many works which utilize 

Martin distance are limited to investigate simple video with 

single DT.  

Very recently, Ref. [6] proposed to categorize DT using a 

novel Bag-Of-dynamic-Systems (BoS). It models each video 

sequence with a collection of LDSs, each one describing a 

small spatial-temporal patch extracted from the video. This 

BoS representation is analogous to the Bag-of-Words (BoW) 

representation for object recognition, except that it used LDSs 

as feature descriptors. This choice provides an effective 

strategy to deal with video sequences which are taken under 

different viewpoints or scales. 

Because BoS model is similar to BoW, it naturally inherits 

the disadvantages of BoW. It is well known that BoW model 

assign only one codebook element to a descriptor, and 

therefore the quantization error is large. This usually degrades 

the classification performance. In [7] and [8], the sparse 

coding and local coding methods are proposed to address 

such problem. In such frameworks, more than one codebook 

element will be assigned to a descriptor and form coding 

vector. Such strategy can obviously improve the classification 

performance since the quantization error is attenuated.  

Unfortunately, neither sparse coding nor local coding can 

be used for BoS. The intrinsic reason is that both methods 

depends on the linear subspace assumption and used the 

linear reconstruction error to design the object function. Since 

DT lies in non-Euclidean space, such reconstruction error 

cannot be adopted.  

Very recently, the fuzzy logic was used for adjusting 

weights of dynamic texture features in background 

subtraction [9], but their work are restricted to feature 

selection only. Motivated by the fuzzy logic, which allows 

multiple memberships [10-13], we design a new coding 

method which only depends on the Martin distance instead of 

the reconstruction error. Such strategy preserves the 

advantage that more than one codebook element can be 

assigned to a descriptor, and the fuzzy membership function 

naturally serves to design the coding vector. Please note the 

fuzzy codebook has been developed in [14] but the proposed 

local fuzzy coding strategy in DT classification is new.  In 

addition, we made extensive experiments on public dataset to 

show the advantages of the proposed method. 

The rest of this paper is organized as follows: In Section 2 

we give an overview of the proposed method. Section 3 gives 

a brief introduction about the DT and the Martin distance. 

Section 4 presents the details of the proposed method. Section 
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5 shows the experimental results. In Section 6 we give some 

conclusions. 

II. OVERVIEW 

In this section, we present an overview of the proposed 

dynamic texture recognition method. The basic methodology 

flow is shown in Fig.1. First, we utilize the dense sampling 

method to extract local spatial-temporal patch from the 

training video sequences. Each spatial-temporal patch is 

modeled with a LDS which will be illustrated in Section III. 

After that, a fuzzy k-Medoids clustering method is used to 

obtain the fuzzy codebook. Each patch can be represented as 

feature vector which is constructed by the fuzzy membership 

function. The whole video sequence can be represented as a 

feature vector by pooling all of the feature vectors of the 

patches in this video.  

After obtaining a feature vector, a classifier which is 

trained using the training data set can be used to obtain the 

label of the new video sequence. In this paper, a linear 

multi-class support vector machine is used to perform this 

task. The details can be found in Section IV.C. 

 

 
Fig.1: The overview of the proposed method. 

 

III. DYNAMIC TEXTURE MODELLING 

For self-containment, this section summarizes the key 

concepts in dynamic texture. According to [1], an LDS model 

can be used to fit a small spatial-temporal patch. Assume the 

short spatial-temporal patches includes τ  frames with 

resolution ×m n . The image frames are vectorized as vector 

( ) yn
k ∈y ℝ  for 1,2,...,k τ= , and 

y
n m n= × . 

The dynamic texture modeling can be seen as a system 

identification problem. The dynamic texture should obeys the 

standard state-space equation: 

0
( 1) ( ) ( ), ( ) ~ (0, ), (0)

( ) ( ) ( ), ( ) ~ (0, )

k k k k N

k k k k N

+ = + =


= +

x Ax u u Q x x

y Cx w w R

(1) 

where ( ) xn
k ∈x ℝ  is the hidden state variable vector, and 

( ) yn
k ∈y ℝ  is the data corresponding to the sequence of 

images, which are obtained by concatenating the image to 

column vectors. Usually 
xn  is much smaller than yn . 

x xn n×∈A ℝ , and 
y xn n×

∈C ℝ  are the parameter matrices. 

( ) xn
k ∈u ℝ and ( ) yn

k ∈w ℝ are the zero-mean normally 

distributed random variables, which are used to compensate 

the modeling error. x xn n×∈Q ℝ , and 
y yn n×

∈R ℝ  are the 

covariance matrices. This model is usually called the linear 

state-space model in the control community and LDS in the 

machine learning community. 

Then the problem can be formulated as: Given the 

observed image sequence (1), (2), , ( )τy y ... y  ( )xnτ > , 

estimate the values of A , C , Q , and ( )kx . 

Denote [ ]1: (1), (2), , ( ) yn τ

τ τ
×

= ∈Y y y ... y ℝ . It can be 

reformulated as 

[ ] [ ]1: (1), (2), , ( (1), (2), , ( ))τ τ τ= +C w w .Y x . ..x w.. x .(2) 

Since (1), , ( )τw ... w are used to compensate for the 

modeling error, this is expected to be negligible. Therefore 

the following approximation is derived: 

[ ]1: (1), (2), , ( )τ τ≈Y C x x ... x .     (3) 

Then the problem changes to a determination of the values of 

C  and [ ](1), (2), , ( )τx x ... x from the training data 
1:τY . 

To this end, the well-known SVD is performed on the matrix 

1:τY : 

1:

T

τ = ΣU VY ,         (4) 

where 
yn τ×

∈U ℝ ,
τ τ×∈V ℝ , 

T τ τ×∈V V I , and 

1 2{ , ,..., }diag τσ σ σΣ = , where 
1,2,...,{ }i i τσ =  are the 

singular values sorted in descending order. 

 For approximation and dimension reduction, the first 
xn  

singular values are selected to form the following matrix: 

1 2{ , , , }
xndiag σ σ σΣ = ⋯ .                   (5) 

In addition, the first 
xn  columns of U  are extracted to form 

a new matrix 
y xn n×

∈U ℝ  and the first 
xn  columns of V  

are extracted to form a new matrix xnτ ×∈V ℝ . Then the 

following approximation can be obtained: 

1:

T

τ ≈ ΣU VY .         (6) 

Note that 
T =U U I  and 

T =V V I  still hold true. 

Obviously, when 
xn  is equal to τ , then the perfect 

reconstruction can be achieved. In practice, however, the 
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value of 
xn  is expected to be as small as possible to reduce 

the complexity. Therefore the value of 
xn  should be selected 

to balance the approximation error and the model complexity. 

A straightforward comparison between Eq. (3) and Eq. (6) 

leads to the estimated solutions of C  as � =C U , and the 

k -th  column of 
TΣV  is used to get the estimation of 

( )kx , which is denoted as ( )kxɵ . 

The above derivation neglects the dynamics relationship 

between ( 1)k +x  and ( )kx , which can be captured as the 

following expression: 

( 1) ( ) ( )k k k+ = +x x vAɵ ɵ ɵ ,      (7) 

for 1,2,..., 1k τ= − . Similarly, ( )kvɵ  is used to 

compensate the modal error and is expected to be negligible. 

This yields 

( 1) ( )k k+ ≈x xAɵ ɵ ,        (8) 

for 1,2,..., 1k τ= − . Thus, the estimation of A  can be 

uniquely determined (assuming distinct singular values) in 

the Frobenius sense, by solving the following least squares 

problem: 

�
1

2

1

|| ( 1) ( ) ||argmin
k

k k
τ −

=

= + −∑ ɵ ɵ

A

xAA x ,  (9) 

Remark 3.1: It is obvious that Eq. (9) only provides a rough 

estimation of A . Many other advanced identification 

technologies can be used to obtain a more precise estimation,. 

 Finally, the sample input noise covariance Q can be 

estimated from 

�
1

1

1
( ) ( )

1

T

k

k k
τ

τ

−

=

=
−
∑Q v vɵ ɵ ,      (10) 

where �( ) ( 1) ( )k k k= + −ɵ ɵ ɵv x Ax . Then the system’s 

output can be estimated as 

�( ) ( )k k= Cy xɵ ɵ ,        (11) 

and the corresponding image can be reconstructed from the 

vector ( )kɵy . Please note that the time index k  can be taken 

as any desired positive integral number but not necessarily 

limited to the interval [1, ]τ . Once the approximation model 

is obtained, the dynamic texture can be continually 

synthesized by setting the values of k . From the 

abovementioned equations, it can be shown that the core of 

dynamic texture is the representation of an image ( )ky  as a 

linear combination of some template images that are stored in 

the matrix �C , while the linear combination coefficients 

( )kxɵ  follow an intrinsic evolutionary relation which is 

characterized by the LDS. 

By modeling dynamic textures, we can descript a dynamic 

texture patch using the tuple ( ),=M A C . As a feature 

descriptor, the tuple need to be compared with each other. It 

means that the distance between different models has to be 

defined. One such family of distance between two models is 

based on principal angles between specific subspaces derived 

from the models, namely the observability subspaces[15]. 

The observability subspaces is the range of the extended 

observability denoted by 

2
( ) , ( ) , ( ) ,... x

T nT T T
O

∞×

∞
 = ∈ M C CA CA ℝ . 

Let θi  be the i-th  principal angles between the spaces, 

The Martin distance between 1M  and 2M  is defined as 

2

1 2

1

( , ) ln cos
n

M i

i

d θ
=

= − ∏M M .    (12) 

It can be calculated by first solving for P  from the 

Lyapunov equation 
T T− = −A PA P C C ,       (13) 

where
11 12 2 2

21 22

x xn n× 
= ∈ 
 

P P
P

P P
ℝ ,

1 2 2

2

0

0
x xn n× 

= ∈ 
 

A
A

A
ℝ , [ ] 2

1 2
y xn n×

= ∈C C C ℝ . 

Then the cosine of the subspace angles θi  is calculated as 

2 1 1

11 12 22 21cos i iθ − −= P P P P-th eigenvalue( ) . 

IV. CLASSIFICATION USING FUZZY CODEBOOK 

A. Fuzzy Codebook Generation   

The codebook is needed for coding the DT patches. With 

the codebook, the fuzzy coding feature can be generated in 

the next subsection. 

 

1 1 1

2 2 2

( , )

( , )

( , )n n n

= 
 

=  
 
 
 

=  

M A C

M A C

...

...

M A C { }1 2, , , k=V v v ... v

 
Fig.2: The process of the Fuzzy codebook generation. 

 

The process of the Fuzzy codebook generation is shown in 

Fig.2. In the first stage, the videos used for training are 

divided into small patches. As the whole video is complicated 

and hard to be analyzed, we use the non-overlapped patches 

which are densely sampled from the videos to analyze and 

compute the DT models of all the patches[16]. After 

obtaining the spatial-temporal patches, the fuzzy codebook is 

generated from all the patch models. The method we use to 

generate the codebook is based on fuzzy k-Medoids 

clustering algorithm[17][18]. The details are illustrated as 

follows: 

Let 1{ ,..., }= MP p p  be the set of all the patches models, 
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and 
×∈ M MRD  be the dissimilarity matrix, of which 

element ( , )i jD  is the Martin distance between ip and jp . 

The fuzzy k-Medoids clustering algorithm tries to find fuzzy 

prototypes 1{ ,..., }K=V v v  and the corresponding 

membership degree { }µ= ikU  which minimizes a criterion: 

1 1

( , ) ( ) ( , )µ
= =

=∑∑
K M

m

ik M i k

k i

J dU V p v ,

1

. . 1µ
=

=∑
K

ik

k

s t (14) 

where 1>m  is a parameter to control the fuzziness. In the 

experiment we set 2=m .  

The algorithm sets initial data of clusters and alternates two 

steps until convergence. One step is to find the best 

prototypes by fixing U . The other step is to compute the new 

U  matrix when the V is fixed. The details are described as 

follows: 

 (1) Initialization. 

Set the number of clusters K which satisfies 2 ≤ K N≪ ; 

and the maximum iteration number T . 

Set iteration number 1=t ; 

Randomly select K prototypes 
( ) ∈0
kv P ( 1,...,=k K ); 

Compute 
( )µ 0
ik  for every ip  and 

( )0
kv . 

1
1/( 1)

( )
( )

( )
1

( , )

( , )
µ

−−

=

  
 =  
   
∑

0
0

0

m
K

M i k
ik

h M i h

d

d

p v

p v
    (15) 

(2) Fix { }( 1) ( 1)µ− −=
ik

t t
U  and find the best prototypes 

( )t

kv  

by finding lp  satisfy   

1 1

arg min ( ) ( , )µ
≤ ≤ =

= ∑
n

m

ik M i h
h n i

l d p p     (16) 

and set 
( )

 =t

k lv p . 

(3) Fix 
( ) ( ) ( )

1{ ,..., }=t t t

kV v v  and update the new U  

matrix according to 
1

1/( 1)
( )

( )

( )
1

( , )

( , )
µ

−−

=

  
 =  
   
∑

t
t

t

m
K

M i k
ik

h M i h

d

d

p v

p v
    (17) 

(4) Compute criterion
( )tJ  

( ) ( )

1 1

( ) ( , )µ
= =

=∑∑
K M

t m t

ik M i k

k i

J d p v      (18) 

If  >t T , then terminate the iteration; Otherwise we set t 

= t + 1 and go to Step (2). 

Finally, the fuzzy codebook 
* *

1{ ,..., }= K

*
V v v is 

generated. Each element of 
*V is a DT model which is 

selected from the training video.  

B. Fuzzy Coding Feature Design 

What remains in choosing video representation is a method 

to effectively code the local descriptors. The coding stage 

partitions the local descriptor space into informative regions 

whose internal structure can be disregarded. These regions 

are also called visual words and a collection of visual words 

are called a visual vocabulary. A popular method for coding is 

vector quantization which searches the nearest neighbor to 

represent the descriptor. Such a representation is called BoW. 

BoW provides an effective way of treating a video as a 

collection of local DT descriptors, from which it quantizes 

into discrete “visual words”, and then computes a compact 

histogram representation for video classification. One 

disadvantage of BoW is that it introduces significant 

quantization errors since only one element of the codebook is 

selected to represent the descriptor. To remedy this, a 

nonlinear SVM is normally designed as the classifier in an 

attempt to compensate for the quantization errors. However, 

since it uses nonlinear kernels, the SVM has a high training 

cost, including computation and storage. This means that it is 

difficult to scale up the algorithm. 

To reduce the quantization error, Yang et al.[7] proposed to 

use the Sparse Coding (SC) to select several most significant 

elements of the codebook to represent the descriptor. Very 

recently, Wang et al. pointed out that the sparse coding 

approach proposed in [7] neglected the relationship among 

codebook elements. Since locality is more essential than 

sparsity[8], they proposed a Locality-constrained Linear 

Coding (LLC) method. LLC incorporates a locality constraint 

instead of the sparsity constraint, and produces several 

favorable properties. However, both SC and LLC method 

used linear subspace assumption and the linear reconstruction 

error is used to design coding vector. Since DT lies in 

non-Euclidean space, both SC and LLC cannot be effectively 

utilized. To tackle the above problems, we propose a new 

local fuzzy coding approach that preserves the locality of the 

selected codebook atoms. 

Given a spatial-temporal patch which is denoted as p, the 

corresponding feature vector is constructed as 1{ }µ =

K

k k . In 

this representation, µk  is fuzzy membership value of sample 

p  to the cluster identified by the center 
*

kv  . It can be 

obtained by solving the following optimization problem: 

*

1

min ( ) ( ) ( , )
K

m
F k k M k

k

J dµ µ
=

=∑ p v    

1

. . 1µ
=

=∑
K

k

k

s t (19) 

In this case since 
*

kv  are known, the memberships can be 

easily obtained by 

1
1/( 1)

*

*
1

( , )

( , )

m
K

M k
k

h M h

d

d
µ

−−

=

  
 =  
   
∑

p v

p v
.    (20) 

An important difference between Eqs.(17) and (20) lies in 

the fact that Eq.(17) is used twistedly with Eq.(16) to 

simultaneously obtain the cluster prototypes and 

memberships, while Eq.(20) is solely used to get the 
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memberships for a new sample. That is to say, the 

sophisticated fuzzy clustering procedure is used only in the 

training stage and the obtained cluster prototypes V
* 
is fixed 

as a fuzzy codebook. 

Since fuzzy technology assigns all codebook elements to 

the descriptor with the corresponding membership values, the 

obtained feature vector 1{ }
K

k kµ =  will be dense but not sparse. 

Motivated by the intuition that locality is more important [8], 

we construct a local fuzzy coding technology which modifies 

the above membership degree as 
*if  is the k - nearest neighood of  

0 Otherwise

 µ
µ


= 


vk k

k

p
  

 (21) 

where the value of k reflects the locality range. When k is 

selected to be large enough, then  µk
 will be equal to µk

 for 

any k. Please note that 1{ }µ =

K

k k  should be normalized to 

satisfy 

1

1µ
=

=∑
K

k

k

. 

The coding vector for the patch p is then obtained as

1 2[ , ,..., ]µ µ µ= ∈T K

K Rc . 

Such a coding strategy preserves the intrinsic locality and 

attenuates the quantization error. In Fig.3 we give a 

illustrative comparison among the three coding methods.  

 

  
Fig.3: An illustrative comparison among the three coding methods. The 
empty circles are the descriptors and the colored circles are the codebook 

elements. 

 

For a single video sequence, if we extract N local DT 

descriptors, then we can get the codes 

1[ ,..., ] ×= ∈ K N

N RC c c which are the results of applying 

the local fuzzy coding approach introduced in the above. 

Since the number of DT patches extracted from different 

video sequences may differ, we need an operator to pool all 

codes in a video into a single vector ∈ KRu . This operation 

is defined as 

( )=u CP          (22) 

where the pooling function P is defined for each column of 

C. Each column of u corresponds to the responses of all the 

local descriptors in the specific video. Therefore, different 

pooling functions construct different image statistics. In this 

study, we select the sum operator. Such a strategy results in 

1

( ) | ( , ) |
=

=∑
N

j

i i ju C ,       (23) 

where  ( )iu  is the i-th element of u  and ( , )i jC  is the 

matrix element in the i-th row and j-th column of C. 

Remark: Although max-pooling is more preferred in Ref.[7-8]  

which used the reconstruction error to design the coding 

vector, it is not suitable in our case. The main reason is that 

we directly use the distance to design the coding vector, and 

therefore if max-pooling is used, the nearest atom will 

dominate other atoms. In our experiments, the max-pooling 

strategy always leads lower accuracy (about 30%) and we 

will not report the corresponding results. 

C. Classification 

The final stage is to design a classifier for recognition. Here 

the linear multi-class SVM [7] is used to predict the label of 

dynamic texture due to its advantages in speed and good 

performance for the fuzzy coding features. In the case of 

multiple classes, the training data are labeled ( ){ }
1

,
=

TN

i i i
lu ,  

where iu  is the feature vector, il  is the label and NT is the 

number of the training samples. According to [7], the SVM 

aims to learn L  linear functions { }|ω ψ∈T

c cu , where ωc  

is the weight vector. We use a one-versus-all strategy to train 

L  binary linear SVMs, each solving the following 

unconstrained convex optimization problem 

2

2
1

min ( ) ( ; , )
ω

ω ω ω
=

 
= + 

 
∑

T

c

N
c

c c c i i

i

J C l uℓ   (24) 

where C  is a parameter which is determined by the 

cross-validation. A larger C  corresponds to the assignment 

of higher penalties to errors. The SVM constructs a 

hyperplane to classify the data and the weight vector ωc  

serves as the normal vector to the hyperplane. 

For multi-class classification, we set 1=c

il  if =il c , 

otherwise, 1= −c

il ,while ( ; , )ω c

c i il uℓ  is a hinge loss 

function which is defined as[7]: 
2

( ; , ) max(0, 1)ω ω = ⋅ − f fc T c

c i i c il lℓ    (25) 

For a test sample feature u, its class label is predicted by 

max
ψ

ω
∈

= T

c
c

l u ,         (26) 

Linear SVMs have become popular for solving 

classification tasks owing to their fast and simple online 

application to large scale data sets. However, many problems 

are not linearly separable. For these problems, kernel-based 

SVMs are often used, but unlike their linear variant they 

suffer from various drawbacks in terms of computational and 

memory efficiency. Thus, a more discriminant representation 

is required. Fortunately, the nonlinear SVM is not needed in 

this work. 
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V. EXPERIMENTAL RESULTS  

In this section, we present experimental results that 

validate the proposed algorithm in terms of DT recognition. 

As indicated by [19], some existing DT data sets have a 

number of drawbacks such as the resolution is quite low 

(especially temporally); there is only a single occurrence per 

class, and not enough classes are available for practical 

classification purposes. To tackle this problem, Ref. [19] 

developed the DynTex dataset, which aims to serve as a 

reference database for dynamic texture research by providing 

a large and diverse database of high-quality dynamic textures 

that can be used for a wide variety of research and testing 

purposes. The DynTex database, which includes more than 

650 sequences, is a diverse collection of high-quality 

dynamic texture videos. In [20], a subset of DynTex, which is 

named as DynTex++, was developed. DynTex++ eliminates 

sequences that contained more than one DT, or contained 

dynamic background. In addition, the samples in DynTex++ 

are cropped from the sample in DynTex.  

 

 
Fig.4: Some representative dynamic texture samples from the DynTex 
dataset. 

 

In this paper, we used the original data from DynTex for 

evaluation. Specially speaking, we use the subset of Beta and 

Gamma dataset which was provided by the DynTex website 

for classification evaluation. This dataset is composed of 290 

dynamic textures divided into 12 classes. In Fig.4, we show 

some representative dynamic texture examples. For 

comparison, we list some samples of DynTex++ in Fig.5. It is 

obvious that they include simple texture only, while the 

original dataset is more complicated. 

 

 
Fig.5: Samples of DynTex++ (the first row) and the videos (the second row) 
where they are cropped from.  

 

We picked about half of the videos in every class as 

training data, and used the other videos for test. The numbers 

of videos for training or test in each class are listed in Table I. 

All video frames are transformed to be 320x240 gray scale 

images.  

 
TABLE I 

NUMBER OF EACH VIDEO GROUP 

Class name 
The number of the 

training videos 

The number of the 

testing video 

Calm water 15 15 

Escalator 4 3 

Flags 16 15 

Flowers 15 14 

Foliage 18 17 
Fountains 19 18 

Grass 12 11 

Naked trees 13 12 
Rotation 5 5 

Sea 19 19 

Smoke 8 8 
Traffic 5 4 

All 149 141 

 

In the experiment, we generate the codebook using the 

fuzzy k-Medoids algorithm and the size of the fuzzy 

codebook is empirically set to 64=K . To investigate how 

the parameter k in local fuzzy coding influences the 

classification performance, we list the classification accuracy 

versus the value of k in Fig.6. From this figure we find that 

when k is larger than 10, the performance always superior to 

the case when k = 64, which corresponds to the conventional 

fuzzy coding. Especially, when k is about 50, the 

classification obtains the best results. In fact, when k=54, the 

accuracy reaches 81.56%. 

 

 
Fig.6: Classification performance depending on the k. 

 

To show the advantages of the local fuzzy coding 

compared with BoS model, we design a baseline method 

which regards the whole video sequence as a single DT and a 

LDS model is used to fit it. With such a model the Martin 

distance is used to design the nearest neighbor (NN) classifier. 

In Table II we list the comparison results for those methods. 

In this table, BoS method corresponds to the method in [6]. 

We find that it is worse than the proposed method. In addition, 

the nearest neighbor (NN) classifier obtains the best results 

when the number of nearest neighbor is set to 1, i.e., the 1-NN 

classifier. Nevertheless, all of those NN classifiers perform 
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rather poor on this dataset. 

 
TABLE II 

ACCURACY OF DIFFERENT METHODS 

Method Accuracy 

Our method(when k = 54) 81.56% 

BoS 68.79% 
1-NN 60.28% 

3-NN 56.03% 

5-NN 46.81% 

 

Finally, we list the confusion matrix corresponding to our 

best results in Fig.7. The proposed method performs very well 

on the class Flowers, Fountains and Sea. However, for the 

classes of Rotation and Smoke, the performance is still weak. 

This remains our future work. 

  

 
Fig.7: Confusion matrix of our method. 

 

VI. CONCLUSIONS 

In this paper, we propose a new approach to tackle the 

dynamic texture recognition problem. First, we utilize the 

fuzzy clustering technology to design a fuzzy codebook, and 

then construct a soft assigned fuzzy coding feature to 

represent the whole dynamic texture sequence. This new 

coding strategy preserves spatial and temporal characteristics 

of dynamic texture. Finally, by evaluating the proposed 

approach using the DynTex dataset, we show the 

effectiveness of the proposed local fuzzy coding strategy. 
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