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Abstract—Data dimensionality has become a pervasive prob-
lem in many areas that require the learning of interpretable
models. This has become particularly pronounced in recent years
with the seemingly relentless growth in the size of datasets.
Indeed, as the number of dimensions increases, the number of
data instances required in order to generate accurate models
increases exponentially. Feature selection has therefore become
not only a useful step in the process of model learning, but
rather an increasingly necessary one. Rough set and fuzzy-rough
set theory have been used as such dataset pre-processors with
much success, however the underlying time/space complexity of
the subset evaluation metric is an obstacle to the processing
of very large data. This paper proposes a general approach
to this problem that employs a novel feature grouping step in
order to alleviate the processing overhead for large datasets.
The approach is framed within the context of (and applied
to) fuzzy-rough sets, although it can be used with other subset
evaluation techniques. The experimental evaluation demonstrates
that considerable computational effort can be avoided, and as a
result efficiency can be improved considerably for larger datasets.

Index Terms—fuzzy-rough sets, feature selection, feature
grouping.

I. INTRODUCTION

The impact of data abundance now extends well beyond
the traditional areas of concern such as machine learning.
Indeed, in recent years, in fields and disciplines as varied as
science, sports, public health and even advertising, there is a
move toward data-driven knowledge discovery and decision-
making. However, this unrelenting drive towards quantification
and wealth of new data only encourages the further archiving
of enormous amounts of data. This seemingly vicious cycle is
the impetus for the development of many of the techniques
which aim to reduce the size of data to a form which is
more compact, more interpretable, and more computationally
tractable. Many real-world problems involve the specification
of high dimensional descriptions of input feature spaces.
It is not surprising therefore that much research has been
carried out in the area of dimensionality reduction and feature
selection [3]. However, much of that existing work tends to
destroy the underlying semantics of the features after reduction
or requires additional meta-information about the supplied data
for thresholding. A technique that can reduce dimensionality
using the information contained within the dataset only and
that simultaneously preserves the meaning of the features (i.e.

semantics-preserving) is clearly desirable. Rough set theory
(RST) can be used as such a tool to discover data dependencies
and to reduce the number of attributes contained in a dataset
using the data alone, requiring no additional information [14],
[15].

Over the past 15 years, RST has attracted much interest
from researchers and has been applied to many domains.
Given a dataset with discretized attribute values, it is possible
to find a subset (termed a reduct) of the original attributes
using RST that are the most informative; all other attributes
can be removed from the dataset with very little information
loss. Therefore, there has been much research in the area of
finding reducts, and this has since been extended to fuzzy-
rough feature selection in order to handle data with real-valued
features [12], [9]. Such approaches, whilst powerful, rely on
a subset evaluation metric which is relatively expensive from
a computational standpoint, and can become prohibitive for
larger datasets particularly when the data contains a large
number of features which are highly correlated with one
another.

When considering data of large dimensionality, much com-
putational time may be expended in examining features that
are strongly correlated with each other (i.e. have high levels of
redundancy), and hence carry similar information. Currently,
no mechanism exists in order to consider this type of situation
in the fuzzy-rough framework, which results in much wasted
computational effort. In order to combat this, an approach is
described here that groups correlated features, prior to the
feature selection phase as a pre-processing procedure. The
process of feature selection is then carried out on the basis
of the groups which have previously been formed. Such a
procedure not only reduces the amount time taken to process
large data but also has the potential to generate feature subsets
of better quality with lower levels of internal redundancy.

The remainder of this paper is structured as follows. Firstly,
the key concepts that underpin rough and fuzzy-rough set
theory are reviewed. Next, the new approach for feature
grouping in feature selection is presented with a simple worked
example in order to illustrate the overall process. The results
of an experimental evaluation based on some benchmark
problems are then presented, where the approach is compared
to some current state of the art techniques. Finally the paper
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is concluded and some conclusions are drawn.

II. THEORETICAL BACKGROUND

A. Rough set theory

At the very heart of the RST is the concept of indiscernibil-
ity [14]. Let I = (U,A) be an information system, where U is
a non-empty set of finite instances (the universe of discourse)
and A is a non-empty finite set of features so that a : U→ Va
for every a ∈ A. Va is the set of values that a can take.
For decision systems (the focus of the rest of this paper),
A = C ∪ D where C is the set of input features and D is
the set of decision features.

For any P ⊆ C, there exists an associated equivalence
relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition generated by IND(P ) is denoted U/P and
is calculated as follows:

U/P = ⊗{U/IND({a}) : a ∈ P} (2)

where,

S ⊗ T = {X ∩ Y : ∀X ∈ S,∀Y ∈ T,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P-
indiscernibility relation are denoted [x]P . Let X ⊆ U. X can
be approximated using only the information contained in P
by constructing the P-lower and P-upper approximations of
X:

PX = {x : [x]P ⊆ X} (4)
PX = {x : [x]P ∩X 6= ∅} (5)

The positive region can then be constructed, which contains
those objects for which the values of P allow to predict the
decision classes unequivocally:

POSP (D) =
⋃

X∈U/D

PX (6)

By employing this definition of the positive region it is
possible to calculate the rough set degree of dependency of
the decision attribute(s) D on a set of attributes P :

γP (D) =
|POSP (D)|
|U|

(7)

B. Fuzzy-rough set theory

Fuzzy-rough sets have been proposed in order to improve
the ability to deal with uncertainty and vagueness present in
data. A fuzzy-rough set [5] is defined by two fuzzy sets, fuzzy
lower and upper approximations, obtained by extending the
corresponding crisp rough set notions defined in (4) and (5)
previously. In the crisp case, elements that belong to the lower
approximation (i.e. have a membership of 1) are said to belong

to the approximated set with absolute certainty. In the fuzzy-
rough case, elements may have a membership in the range
[0,1], thus allowing greater flexibility in handling uncertainty.
Fuzzy-rough sets encapsulate the related but distinct concepts
of vagueness (for fuzzy sets) and indiscernibility (for rough
sets), both of which occur as a result of uncertainty in
knowledge.

Definitions for the fuzzy lower and upper approximations
can be found in [17], where a fuzzy indiscernibility relation
is used to approximate a fuzzy concept X:

µRPX(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (8)

µRPX(x) = sup
y∈U
T (µRP

(x, y), µX(y)) (9)

Here, I is a fuzzy implicator and T a t-norm. A fuzzy impli-
cator is any [0, 1]2 → [0, 1]-mapping I satisfying I(0, 0) =
1, I(1, x) = x for all x in [0, 1]. RP is the fuzzy similarity
relation induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa(x, y)} (10)

µRa(x, y) is the degree to which instances x and y are similar
for feature a, and may be defined in many ways, for example:

µRa
(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(11)

µRa
(x, y) = exp(− (a(x)− a(y))2

2σa2
) (12)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))
σa

,

((a(x) + σa)− a(y))
σa

, 0) (13)

where σa2 is the variance of feature a. The choice of relation
is largely determined by the intended application. For feature
selection, a relation such as (13) may be appropriate as this
permits only small differences between attribute values of
differing instances. For classification tasks, a more gradual
and inclusive relation such as (11) should be used.

In a similar way to the original crisp rough set approach,
the fuzzy positive region [12] can be defined as:

µPOSP (D)(x) = sup
X∈U/D

µRPX(x) (14)

An important issue in data analysis is discovering dependen-
cies between attributes. The fuzzy-rough degree of dependency
of D on the attribute subset P can be defined in the following
way:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(15)

A fuzzy-rough reduct R can be defined as a minimal subset
of features that preserves the dependency degree of the entire
dataset, i.e. γ′R(D) = γ′C(D). Based on this, a fuzzy-rough
greedy hill-climbing algorithm can be constructed that uses
equation (15) to gauge subset quality. In [12], it has been
shown that the dependency function is monotonic and that
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fuzzy discernibility matrices may also be used to discover
reducts.

III. FEATURE GROUPING-BASED SELECTION

One of the primary impediments associated with conven-
tional greedy hill-climbing approaches to discovering fuzzy-
rough reducts in large datasets is that much time is wasted
considering features that have strong correlation with each
other. The consideration of such features is somewhat super-
fluous as they contain very similar information. Ultimately,
evaluating all such features at each stage of the search offers
no advantage. Take for example, an extreme situation where a
particular dataset contains several hundred replicated features.
A hill-climbing type of search will consider the addition of
each of these features to the current subset candidate iteratively
at each stage of the search. Obviously, such computation
is completely unnecessary. Furthermore, the later addition
of any features to the subset candidate will often produce
only very small improvements in the overall fuzzy-rough
dependency metric [2]. The result of which is a super-reduct,
i.e. the resulting subset contains superfluous features that are
redundant and can be otherwise removed with no loss in
dependency.

The approach proposed here (abbreviated FRFG hereafter),
aims to group together similar features such that at each stage
of hill-climbing, only the most promising group representative
is considered for selection. This will reduce wasted computa-
tional effort, and also help to improve the final selected subset
quality.

A. Forming groups

An important component of the proposed approach is the
identification of related features and how groups of same are
formed appropriately. There are many measures that are useful
for this task. Here, the sample correlation coefficient is used:

corr(a, b) =

∑|U|
i=1(ai − a)(bi − b)√∑|U|

i=1(ai − a)2
∑|U|

i=1(bi − b)2
(16)

where a, b ∈ A, and a refers to the sample mean of a. This
measure can be used to evaluate the degree of correlation
between conditional features in order to determine groups. The
sample correlation coefficient ranges from -1 to +1. In this
work, the absolute value is used as a feature that is negatively
correlated with another feature can also be considered to be
redundant:

correlation(a, b) = |corr(a, b)| (17)

The same correlation measure can be used to evaluate the
correlation of conditional features with the class attribute in
order to rank features within these groups. The most relevant
features (according to the correlation measure) are ranked
highest in the groups. It is from these groups that the adapted
hill-climbing method will select features. Redundancy is there-
fore partly handled by employing groups of similar features,

and relevance is considered by ranking features within groups
based on their relatedness to the decision feature.

Having calculated the correlations values, groups can then
formed. Here, a threshold is used to determine group mem-
bership of features. This threshold could be either a user-
supplied (τ ), that must be exceeded for a pair of features to
be considered redundant, or could be estimated automatically:

τ = 0.8(max
a,b∈C

{correlation(a, b)}) (18)

Groups are formed in the following way. For each feature fi,
the correlation with every other feature fj is determined and
the threshold (τ ) applied such that if the correlation is greater
than the threshold, then the feature fj is added to the group
for fi, i.e. Fi ← Fi∪{fj}. Having considered all features, the
result is a set of groups F = {F1, F2, ..., F|C|}. Features can
be ordered within groups on the basis of their correlation with
the decision feature D, meaning that features that have greater
correlation with D are preferable. It is important to note that
as a result of this process, features can belong to more than
one group.

B. Subset search

Having formed the groups, the next phase of the FRFG
approach is to employ the groups and their respective internal
rankings in order to guide the search procedure in discovering
good subsets according to a given metric. In this paper, the
fuzzy-rough dependency measure is used to gauge subset
quality, however any measure can be used for this purpose
(including wrapper approaches). As mentioned previously,
an adapted hill-climbing algorithm is used here to find the
best subsets. Although there are some issues with greedy
approaches (e.g. see [13]), it is still a useful search mechanism
and often discovers reducts or superreducts that are usually
only slightly larger than optimal. The way in which the hill-
climbing search is formulated means that it is reasonably
straightforward to reconfigure it for a group-based strategy.
The full algorithm can be seen in Figure 1, including the
required initialization steps.

The purpose of the function preprocess(F ) is to perform
some initial pre-processing in order to investigate if there is
any perfect correlation between features, and to remove the
less relevant feature each time. This could be softened to use
another threshold to remove more features (i.e. for threshold
values less than 1), however this may remove useful features
and prevent the algorithm from finding an optimal reduct.

For each group of features, the representative top-ranked
feature is chosen and assessed by temporarily adding it to the
current reduct candidate and evaluating this new subset via
the metric M . In this paper, the focus is fuzzy-rough feature
selection, and hence the measure used for M is the fuzzy-
rough dependency degree. Once a feature has been evaluated,
its group members are then added to the Avoids set to ensure
that these features are not evaluated in this iteration. The
feature that produces the greatest increase in the metric is
then added to the current subset and the process iterates until
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the stopping criterion is fulfilled. This may involve stopping
when the maximum value for the measure has been reached,
or to degree α, or indeed if there is no change in the measure
following two successive iterations. In the fuzzy-rough case,
the maximum value for a dataset can be determined prior to
selection and then used as a stopping criterion.

Line (14) provides an optional further reduction in compu-
tational effort (set by the Boolean flag ‘moreAvoids’) by
removing all other features which appear in the group of that
newly selected feature from consideration. The rationale for
this step is that once a feature has been selected, the addition
of any of its group members at this stage will not benefit
the overall subset. There may be some utility in allowing the
possibility of correlated group members to be added [7], but
it is unlikely to have great impact on the evaluation metric.
However, for flexibility, the addition of other group members
of previously selected features can be permitted if this flag is
set to false. In this work, the default setting is true.

In the extreme case, by setting the threshold τ=0, the
algorithm then acts as a ranking approach that adds features
to the reduct candidate linearly on the basis of their relevance,
until the subset evaluation measure has been maximized.
However, if moreAvoids is set to true, this behaviour will
not be exhibited; instead, only the first, most relevant, feature
will be chosen and then the algorithm will terminate (all other
features appear in its group and are therefore removed from
consideration).

FRFG(C, D, M ,τ ,moreAvoids).
C, the set of conditional features;
D, the set of decision features;
M , subset evaluation measure;
τ , the group-forming threshold;
moreAvoids, Boolean variable

(1) R← ∅; F ← formGroups(C, τ )
(2) F ← rankWithinGroups(D,F)
(3) preprocess(F ); F ← order(F ); AlwaysAv ← ∅
(4) while (stopping criterion not met)
(5) Avoids← AlwaysAv
(6) bestF ← ∅; bestEval = 0
(7) foreach a ∈ (C−R−Avoids)
(8) a← highestRankedFeature(Fa)
(9) T ← R ∪ {a}
(10) if (M(T ) >bestEval)
(11) bestF = a; bestEval = M(T )
(12) Avoids← Avoids ∪ Fa

(13) R← R ∪ bestF
(14) if (moreAvoids)
(15) AlwaysAv ← AlwaysAv ∪ FbestF

(16) output R

Fig. 1: The feature grouping algorithm

The function order(F ) orders the considered feature groups
on the basis of their top-ranked features (i.e. most relevant),

so the most promising groups are considered first. Without
this, the algorithm may favour earlier features in an arbitrary
fashion.

Once a feature has been added to the current subset, its
group members are removed from consideration at this level.
However, this does not prevent consideration of this group
in future iterations. The search will stop when the stopping
criterion is met. For many filter measures, a known maximum
is attainable and therefore this is used to judge when to
terminate the algorithm. For other measures, search can be
halted when there is little or no perceived improvement in
the subset quality. Also, it may be useful to stop the search
somewhat prematurely by using a threshold, α, that indicates
when a subset is good enough.

C. Worked Example

To illustrate the FRFG approach, an artificial example is
described here. Consider a dataset with six features, some of
which are highly correlated. After the initialization steps of
the algorithm, the groups formed are:

F1 = {f4, f3, f1}
F2 = {f2}
F3 = {f3, f1}
F4 = {f4, f1, f5}
F5 = {f4, f5}
F6 = {f6}

Here, features within the groups have been ordered according
to their relevance, so the left-most features are more relevant
to the decision and thus are preferable to those on the right.
Groups F2 and F6 have only one member, which indicates
that features f2 and f6 are not strongly correlated with other
features.

The hill-climbing algorithm first orders the group, say
F = {F4, F3, F1, F5, F2, F6} and begins the search at the
first level. The first group to be considered is F4; feature
f4 is preferable over others and is therefore added to the
current (initially empty) subset R . This is then evaluated:
M(R ∪ {f4}) and if it results in a better score than the
current best evaluation, then feature f4 is stored and the
current best evaluation is set to M(R ∪ {f4}). The set of
features which appears in group F4 is then added to the set
Avoids so that other group members are not evaluated in this
iteration. In other words, once the main group representative
has been selected, other highly correlated group members do
not need to be considered. Therefore, Avoids = {f1, f4, f5}
and the next feature group is considered that does not appear
in Avoids, F3. The highest ranked feature, f3, is then added
to the current subset and evaluated, M(R ∪ {f3}). If this
value is greater than M(R ∪ {f4}), then feature f3 replaces
f4. The set Avoids is then updated with the members of F3,
Avoids = {f1, f3, f4, f5}.

The next feature groups F1 and F5 both appear in Avoids
and so are not considered. This means that the next considered
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group is F2 (which consists of a single feature) is evaluated.
Finally, the single remaining group F6 is considered and eval-
uated. Having completed this, the best representative feature
in this iteration is then added to the reduct candidate R and
the process iterates once more (unless the stopping criterion
is not met). The Avoids list is reset at this level.

From this small example, it can be seen that considerable
computational effort has been avoided since features f1 and
f5 did not need to be evaluated. Note that the level of
computational effort saved is governed by the group sizes,
which in turn is decided by the thresholding which is used
in order to form the groups. Hence, a balance must be
maintained between lower thresholds (which produce larger
groups, greater time saving, but potentially group fewer corre-
lated features together) and higher thresholds (which produce
smaller groups, less time saving, but features within groups
are more highly correlated). In the extreme case where the
threshold is set to 1, the algorithm becomes a standard hill-
climber where each feature appears in exactly one group,
and no time saving is made during execution. The worst-case
complexity of this is O(|C|2). In the other extreme, where the
threshold is set to 0, all features are grouped together in ranked
order and the selection process simply selects features based
upon their ranking (derived form the correlation metric) until
the stopping criterion is met. The worst-case complexity in this
situation is linear in the number of features, O(|C|). Depending
on the threshold value employed therefore, the actual worst-
case complexity will lie somewhere between quadratic and
linear for a given dataset.

IV. EXPERIMENTAL EVALUATION

This section details the experiments conducted and the
results obtained for the novel FRFG approach. In a series of
experiments, the proposed approach was applied to 10 datasets
of different sizes, and compared with three other search meth-
ods for discovering fuzzy-rough reducts. The results presented
here relate to performance in terms of quality of subsets
obtained: classification accuracy and subset size, as well as
execution times, and the effect of a range of threshold values
for τ on the results for the FRFG approach.

1) Experimental Setup: The experimentation employed a
total of 10 different datasets, which are detailed in table
I. Eight of these datasets are drawn from [6], whilst the
remaining two are real-world mammographic risk-assessment
tasks which are related to data derived from [19] and [8] and
features extracted/decision class labelling schemes from the
work in [10].

For the purposes of comparison, three approaches for feature
selection are also included. All of of these use the fuzzy-
rough subset evaluation metric as described in [12], along with
three different reduct search methods: greedy hill-climbing
(GHC), GA search, and PSO search. In addition, five different
experiments are carried out for the novel FRFG approach by
imposing different values for the threshold τ : 0.0, 0.2, 0.4,
0.6, 0.8 and 0.9. Note that for the experimentation with τ=0,
moreAvoids is set to false; in this case, the algorithm

Dataset Features Instances
MIAS 281 322

DDSM 281 832
web 2557 149

cleveland 13 297
glass 9 214
heart 13 270
olitos 25 120

water2 39 390
water3 39 390

wine 13 178

TABLE I: Benchmark data

will add features in order of rank to the reduct candidate until
the fuzzy-rough dependency has reached its maximal value.

The GA-based search has an initial population size of 200,
the maximum number of generations was set to 40, with the
crossover probability set to 0.6 and mutation probability set
to 0.033. The number of generations in the case of the PSO-
based search was also set to 40, whilst the number of particles
was set to 200, with acceleration constants c1 = 1 and c2 = 2.

For the fuzzy-rough subset evaluation metric, the
Łukasiewicz t-norm (max(x+ y− 1, 0)) and the Łukasiewicz
fuzzy implicator (min(1−x+y, 1)) are adopted to implement
the fuzzy connectives in (8) and (9).

For the generation of classification results, three different
classifier learners have been employed: J48 which is based on
ID3 [16]; JRip, a rule-based classifier [1]; and IBk, a nearest-
neighbour classifier (with k = 3). Five stratified randomisations
of 10-fold crossvalidation were employed in generating the
classification results. It is important to point out here that
feature selection is performed as part of the crossvalidation
and each fold results in a new selection of features. Finally
for the comparison of FRFG with the other approaches in
terms of classification accuracy, a statistical significance test
was performed using a corrected paired t-test (significance
value: 0.05) in order to ensure that the results obtained were
statistically significant.

2) Results: The results of the experimental evaluation are
shown in tables II - VI. Tables II – IV detail the classification
results for the J48, JRip and IBk classifier learners respectively.
GHC (greedy hill-climbing), GA (genetic algorithm) and PSO
(particle swarm optimisation) refer to the search technique
employed in each case. Examining these results, it is clear
that regardless of the value of τ , FRFG returns very similar
results to GHC. Indeed, when a paired t-test is employed to
examine the statistical significance of the results generated for
FRFG, only those results for the wine dataset where τ=0.2
and 0.4 are statistically inferior to those for GHC. It is worth
noting from table V however, that the average subset size for
these values of τ , is much smaller than for GHC indicating
a trade-off between compactness of representation and model
accuracy.

When FRFG is compared with the GA-based search, a
similar pattern emerges. However, in this case, FRFG does
not return any results which are statistically inferior. It is the
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Dataset Unred. GHC FRFG GA PSO
τ =

0.0 0.2 0.4 0.6 0.8 0.9
MIAS 66.72 60.11 57.22 61.98 62.99 61.42 61.63 59.26 61.88 52.67

DDSM 50.16 46.40 44.24 50.69 46.86 47.20 45.48 46.43 48.71 47.39
web 56.32 50.32 55.70 51.43 51.30 51.40 51.69 50.74 56.49 50.17

cleveland 54.03 51.61 54.96 54.03 52.35 51.54 51.54 51.54 52.68 53.31
glass 67.54 67.54 67.54 62.25 66.87 66.31 66.02 67.54 67.44 67.44
heart 75.56 74.74 76.74 77.11 77.11 74.15 74.15 74.15 75.48 76.37
olitos 66.67 60.67 60.50 63.00 62.00 61.83 60.67 60.67 57.67 65.67

water2 82.56 83.49 83.44 81.95 81.74 82.10 82.41 83.69 81.18 81.44
water3 82.67 80.92 81.28 81.13 79.59 81.08 79.79 80.62 76.82 77.95

wine 93.82 95.39 93.82 79.54 87.29 91.39 95.05 95.27 88.73 90.86

TABLE II: Classification results (%) using the J48 classifier learner

Dataset Unred. GHC FRFG GA PSO
τ =

0.0 0.2 0.4 0.6 0.8 0.9
MIAS 63.74 60.94 57.09 63.10 60.84 61.74 61.19 60.26 64.41 53.34

DDSM 5278 49.22 48.88 51.14 50.21 49.65 47.77 48.73 51.79 50.69
web 54.74 49.68 55.94 51.40 51.57 50.22 52.66 51.96 61.45 50.70

cleveland 54.23 54.48 55.22 53.22 54.41 54.48 54.48 54.48 54.02 54.09
glass 67.17 67.17 67.17 60.56 66.68 65.05 64.95 67.17 65.25 65.25
heart 72.96 74.15 74.15 74.44 74.96 73.93 73.93 73.93 72.30 73.85
olitos 68.50 62.83 60.00 61.67 59.00 59.50 59.67 59.67 59.33 61.17

water2 82.15 83.28 82.87 82.15 82.05 82.21 82.97 83.69 82.00 81.90
water3 82.72 81.23 82.56 81.18 80.36 81.28 80.87 81.74 78.82 78.00

wine 93.54 91.46 92.69 76.61 86.72 90.33 93.25 93.38 86.60 90.41

TABLE III: Classification results (%) using the JRip classifier learner

Dataset Unred. GHC FRFG GA PSO
τ =

0.0 0.2 0.4 0.6 0.8 0.9
MIAS 69.57 63.29 58.72 63.38 62.64 63.16 61.38 58.61 65.40 53.48

DDSM 51.55 45.85 45.34 46.97 47.63 45.39 45.85 46.00 52.13 46.71
web 37.98 44.11 39.20 48.83 45.08 45.32 42.77 41.07 46.72 36.65

cleveland 56.98 52.96 56.91 50.79 54.77 52.96 52.96 52.96 53.89 53.83
glass 69.24 69.24 69.24 59.87 63.28 68.23 68.52 69.24 68.51 68.51
heart 80.96 78.15 81.11 75.85 79.85 77.56 77.56 77.56 78.15 76.96
olitos 81.00 65.67 65.67 66.33 67.67 65.67 66.83 66.83 66.50 72.33

water2 85.33 84.56 87.08 84.97 82.21 83.49 84.77 85.33 78.26 80.10
water3 82.97 81.23 86.36 80.92 81.54 82.51 80.36 80.92 77.44 77.23

wine 95.97 96.42 96.96 73.75 90.21 92.59 95.15 95.05 91.82 94.71

TABLE IV: Classification results (%) using the IBk (kNN) classifier learner (k=3)

same also for PSO, but the FRFG approach actually offers
results which are statistically better than PSO for five of the
datasets, most notably wine and MIAS. When considering
the unreduced data, the classification results are statistically
equivalent, indicating that good features are selected using the
FRFG approach.

Considering the average subset size as shown in table V,
the FRFG approach returns a range of results which seem
to be similar to, or better than those of GHC. varying the
value of τ generally tends to result in larger or smaller average
subset size, depending on the dataset. For this comparison,
the results for τ=0 are ignored as it is essentially a ranking of
features, followed by the linear addition to the reduct candidate

as they appear in the ranked list. For the olitos, heart, water2
and water3 datasets in particular, the average subset size does
not seem to change significantly when τ ≥ 0.6. In terms of
GA and PSO, the FRFG approach demonstrates a significant
improvement in performance for the larger datasets: MIAS,
DDSM and web. For the smaller datasets, the pattern seems to
be that of equivalent or better performance (disregarding any
particular value of τ ).

One of the primary motivations behind the development of
the FRFG approach was that of a reduction in computational
overhead. Many of the fuzzy-rough metrics suffer in this
respect when applied to large datasets and using existing
search methods. It is clear from table VI, that FRFG has
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Dataset GHC FRFG GA PSO
τ =

0.0 0.2 0.4 0.6 0.8 0.9
MIAS 6.08 19.02 4.50 6.40 6.28 6.24 6.22 9.0 7.70

DDSM 7.12 34.26 4.94 7.44 7.32 7.10 7.16 10.96 9.56
web 19.02 496.40 28.42 22.00 19.64 19.40 19.06 186.00 141.20

cleveland 7.64 12.08 5.52 6.40 6.28 7.64 6.22 9.0 7.70
glass 9.00 9.00 3.16 5.02 8.00 8.12 9.00 8.36 8.36
heart 7.06 11.00 5.24 8.06 7.06 7.06 7.06 7.00 7.38
olitos 5.00 6.38 5.52 5.04 5.00 5.00 5.00 5.24 5.00

water2 6.00 6.98 6.86 6.10 6.04 6.00 6.00 6.96 6.44
water3 6.08 7.80 6.76 6.16 6.04 6.00 6.00 7.00 6.50

wine 5.00 5.40 1.80 4.88 4.94 4.98 5.00 4.70 4.92

TABLE V: Average subset sizes

Dataset GHC FRFG GA PSO
τ =

0.0 0.2 0.4 0.6 0.8 0.9
MIAS 12.04 0.96 0.57 0.8 1.09 1.61 2.76 3.11 22.60

DDSM 110.44 4.17 2.32 4.32 8.26 12.85 25.09 23.94 173.93
web 98.42 11.60 13.29 18.53 37.21 67.24 81.57 3.51 24.07

cleveland 0.39 0.13 0.14 0.40 0.45 0.43 0.45 16.20 3.83
glass 0.14 0.07 0.05 0.08 0.15 0.15 0.19 1.55 1.08
heart 0.30 0.11 0.11 0.31 0.36 0.34 0.35 14.48 3.46
olitos 0.11 0.05 0.06 0.09 0.12 0.14 0.15 2.36 1.26

water2 2.16 0.18 0.40 0.69 0.98 1.48 1.87 20.14 19.71
water3 2.17 0.20 0.41 0.75 1.03 1.5 1.87 19.57 17.25

wine 0.11 0.04 0.04 0.08 0.12 0.13 0.16 7.55 1.29

TABLE VI: Average execution times per fold (sec.)

much to offer in addressing this problem particularly when
the larger datasets in this work are considered. Ostensibly,
it would appear that GA-based search performs well for the
web dataset, however if the corresponding results in table V
are considered, it can be seen that the average subset size is
over 6.5 times that of the worst case for FRFG. The ability of
FRFG to return more compact or similar sized subsets for large
data whilst doing so in a much reduced execution time are
encouraging. It seems that whilst FRFG offers some advantage
for the smaller datasets, this varies with respect to the value
of τ . This is most likely related to the process of formation of
the groups. For datasets of smaller dimensionality, it may not
be realistic to form reasonable groups based on higher values
of τ as there may be lower levels of overall redundancy.

V. CONCLUSION

This paper has presented a new approach to feature selection
based on feature grouping in order to reduce computational
effort. The approach is a modified hill-climber based around
the grouping of similar features together using a measure of
relatedness, prior to the final selection phase. The internal
ranking of these groups is then used in order to guide the
search and selection of representative features from each
group. For the work described here a fuzzy-rough subset
evaluation is employed as a metric in order to determine the
goodness of the subset candidate. The experimental evaluation
has demonstrated that the approach is particularly useful for

larger datasets and that in terms of classification performance,
it is at the very least comparable to GHC. When compared to
the nature inspired/stochastic approaches (GA and PSO), the
proposed approach easily outperforms these in terms of time
taken and subset quality.

The approach and ideas described in this paper offer some
new directions for further development. In particular, (and
as mentioned previously) the FRFG algorithm is a general
approach, and it is not limited to the use of the fuzzy-rough
set subset evaluator and indeed any metric can be used for
this purpose. As such, it would be interesting to investigate the
advantages for other metrics, particularly those which perform
well but may not scale-up for larger datasets. One of the
other aspects that may provide some additional potential for
the approach is an in-depth investigation of the effects of the
choice of value for the parameter τ . This may provide some
insight into how the value can be selected automatically or
indeed derived from the data.

Another important factor is how groups are formed; in the
present approach, the sample correlation is used as the basis
for group membership. Although this means that the number
of groups is initially the same as the number of features, the
impact of this is reduced by the use of moreAvoids and
the appropriate choice of parameter value for τ . This may
still pose a problem for very large datasets, however, so an
alternative feature clustering scheme could be adopted in order
to ensure quick clustering and small group sizes. One such
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clustering mechanism is presented in [11], which employs a
rough set discernibility-based attribute similarity measure for
identifying interchangeable groups of attributes. This could
be extended to fuzzy-rough discernibility and utilised in the
present work, resulting in a true fuzzy-rough approach to
group-based feature selection.

Although the experimental evaluation in this paper features
at least three large datasets, the application of FRFG to data
(particularly real-world data) in the order of thousands of
features and objects would also form the basis for a series
of future investigations.
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