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Abstract—This paper reports on a new approach for automatic
learning of general type-2 fuzzy logic systems (GT2FLSs) using
simulated annealing (SA). The learning process in this work
starts without an initial interval type-2 fuzzy system and has
an objective to optimize all membership function parameters
involved in the general type-2 fuzzy set in two stages. This is
a novel methodology for learning GT2FLSs using the vertical-
slices representation. The methodology used here is based on
a proposed parameterization method presented in a previous
work to ease the design of GT2FLSs. Two models of GT2FLSs
have been applied using two different type-reduction techniques.
The first technique is the sampling method, which is non-
deterministic. The second technique is the vertical-slices centroid
type-reduction (VSCTR), which is deterministic. Both models as
well as an interval type-2 fuzzy logic system (IT2FLS) model have
been applied to predict a Mackey-Glass time series. A comparison
of the results of modeling these problems using the three models
showed more accurate modeling for the GT2FLSs when using
the VSCTR deterministic defuzzification method. It has also been
shown that a GT2FLS with VSCTR defuzzification is more able
to handle uncertainty than an IT2FLS, although the latter was
faster.

I. INTRODUCTION

Fuzzy logic systems (FLSs) are a well-known methodology
that has been applied in a wide number of problems in different
domains [1]. Type-2 FLSs are an extension of FLSs of type-
1 that aim to extend the FLSs’ ability to model uncertain
information. Type-2 fuzzy logic is a research area with a
history of successful implementation with applications [2].
However, almost all previous attempts to develop T2FLSs were
dependent on IT2FLSs with few exceptions. These exceptions
mainly depended on applying different representations of
general type-2 sets and systems. Examples include geometric
representation of T2FLS [3], alpha-planes representation [4],
alpha cuts representation [5] and Z-slices representation [6][7].
The reason behind the wide usage of IT2FLSs is the simplicity
of their computation compared to the general form. In fact, the
complexity of general type-2 sets comes with an important
feature in its third dimension. This is the extra degrees of
freedom brought by the third dimension over interval type-2
fuzzy sets [8]. One of the criticisms of interval type-2 sets
is that the uncertainty is spread equally across the footprint
of uncertainty in which variations of the uncertainty can
not be fully modeled [7]. In fact, an interval type-2 set is
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a simplified form of a general type-2 set restricted using
uniform secondary grades. The complication of GT2FLSs
comes from three areas which are the excessive computation
associated with meet operations and the type-reduction process
as well as lack of rational basis for the choice of secondary
memberships [9, p.302]. Regarding these issues, some good
research attempts have been conducted in the first two areas
such as proposed works conducted by [3][10][11][12][13][14].
The third area is still waiting for a solid basis for choosing
secondary membership grades to bring more information into
modeling.

One way to resolve the third area issue is to apply some
learning methodologies to design a GT2FLS. An attempt
to use survey data and device characteristics and zSlices
representation to design general type-2 sets automatically has
been described in [7]. In addition, an alpha-planes represen-
tation with a learning method has been proposed to tune
the secondary membership functions in the GT2FLS [4].
Neural networks have been used with GT2FLSs in works
like type-2 adaptive network-based fuzzy inference system
[15] and general type-2 fuzzy neural networks (GT2FNN)
[16]. However, no work has been proposed to exploit learning
techniques to GT2FLSs using the vertical-slice representation
other than the authors’ work in [17] where a new practical
parameterization mechanism of general type-2 set with a lower
computational burden has been presented.

The simulated annealing algorithm has been proposed to
optimize IT2FLS [18][19]. Also, it was recently used to design
a GT2FLS using an optimized IT2FLS that has been used
to initialize GT2FLS [17]. Simulated annealing was used in
that work to optimize interval type-2 fuzzy sets parameters in
the first step. Then, using the novel parametrization method
mentioned above, simulated annealing has been used to opti-
mize the secondary membership functions (SMFs) parameters
in general type-2 fuzzy sets.

In this paper, we are interested in designing GT2FLSs using
the simulated annealing algorithm by learning all GT2FLS
parameters. The paper starts by a describing fuzzy sets and
systems of type-2 in section II followed by ideas to design
GT2FLSs in sections III and IV. An overview of the simulated
annealing algorithm is found in section V followed by the
methodology in section VI and the results in section VII.
Finally, the conclusions are drawn in section VIII.
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II. TYPE-2 FUZZY SETS

A type-2 fuzzy set Ã is an extension of a type-1 fuzzy
set defined using type-2 membership function µÃ(x, u) where
x ∈ X and u ∈ Jx ⊆ [0, 1] [8]. For instance:

Ã = {((x, u), µÃ(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

Where 0 ≤ µÃ(x, u) ≤ 1. It is known as an interval type-
2 fuzzy set if all secondary membership grades µÃ(x, u)
equal 1. Otherwise, it is known as a general type-2 fuzzy set.
Interval type-2 fuzzy sets are simpler and easier to compute
than the general form which explains the reason behind the
wide usage of the interval form. Interval type-2 fuzzy set
can be represented in a 2D representation known as footprint
of uncertainty (FOU) which is the union of all primary
memberships.The FOU is defined fully by a lower and upper
membership function. The most used operations on general
type-2 fuzzy sets are union (join) and intersection (meet)
that were defined using Zadeh extension principle [20][21].
A calculation methodology for meet and join operations when
using normal and convex secondary memberships has been
proposed by Karnik and Mendel [21]. In the case of non-
normal secondary membership functions, an extension to this
formula proposed by [3] can be used.

A. Representations of Type-2 Fuzzy Set

Research on general type-2 fuzzy sets can be described
using several representations including vertical-slice represen-
tation, wavy-slice representation, alpha-planes representation
[4], Z-slices representation [6], geometric [3] and alpha cuts
representations [5]. The first representation proposed was the
vertical-slice representation [8] where fuzzy sets are repre-
sented with secondary sets in a vertical-slice manner where
:

Ã = {(x, µÃ(x)) | ∀x ∈ X} (2)

The vertical-slice representation is said to be more useful for
computing purposes than wavy-slice representation which uses
a huge number of embedded type-2 sets [22].

B. Type-2 Fuzzy Logic Systems

A type-2 fuzzy logic system GT2FLS is a rule based system
that uses type-2 fuzzy sets. It is similar to a type-1 fuzzy
logic system but with an extra type-reduction stage before
defuzzification. The Mamdani type-2 fuzzy logic system is
composed of five components; fuzzifier, rules, inference en-
gine, type-reducer and defuzzifier. The type-reduction stage
aims to reduce output type-2 sets to type-1 sets followed
by the defuzzification stage which reduces them to crisp
outputs. The most expensive part in terms of computational
cost in GT2FLSs is the type-reduction stage which represents
a bottleneck stage.

III. A PRACTICAL FOEM FOR DESIGNING GENERAL
TYPE-2 FUZZY SYSTEMS

Previous work by the authors [17] has presented a practical
parameterization mechanism for general type-2 sets that have

Fig. 1. General type-2 set determined by its FOU (by using two piecewise
linear functions) and a triangular SMF (by using linear interpolation of apexes
factors). [17]

a lower computational burden. The idea is to use asymmetric,
convex and parameterized secondary membership functions
to allow some practical operations to work. Therefore, they
proposed a formula to normalize the FOU apex locations
within FOU(x) in the primary domain for each x by defining
a function for SMFapex(x) as following [17]:

SMFapex(x) = 1/(FOUlow(x) + g(x)×
(FOUup(x)− FOUlow(x)). 0 6 g 6 1. (3)

The parameter g is called the “apex factor” which is used
for changing apexes locations within the boundaries. This is
useful when applying learning or optimization processes to
GT2FLSs. To show how this idea can be applied consider
using a piecewise linear function to define g for all x values
where k1, k2, ......, kn are ordered points in the primary domain
x and g(k1), g(k2), ......, g(kn) are their apexes factors, then:

g(x) =


0.5, x < k1
g(ki) +

x−ki
ki+1−x

× (g(ki+1)− g(ki)), ki 6 x 6 ki+1

0.5, x > kn
(4)

In addition, the height of the apexes h(x) when non-normal
SMF can be determined by another similar function such as:

h(x) =


1, x < k1
h(ki) +

x−ki
ki+1−x

× (h(ki+1)− h(ki)), ki 6 x 6 ki+1

1, x > kn
(5)

This idea is not identical to the principal function presented in
[9, p.86] or the fuzzy truth numbers presented in [23] because
the SMF is more flexible and can be non-normal for each
x value. The (FOUlower and FOUupper) points for each x
can be defined using different functions similar to the way
in interval type-2 sets. An example of this methodology is
depicted in figure III while an example of learning the SMF
is depicted in figure III.
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Fig. 2. An example of adapting the apex locations for learning of SMF. [17]

IV. DESIGNING GENERAL TYPE-2 FUZZY LOGIC SYSTEM

Using the proposed parametrization methodology presented
above and first described in [17], we can design GT2FLS using
the following two stage procedure:

• The first step is to design the FOU of the general type-
2 set while fixing the secondary membership function.
This is done by defining a FOU using any function used
to define interval type-2 fuzzy sets. The lower and upper
membership functions that bound the FOU in interval
type-2 fuzzy sets can bound the FOU in general type-
2 fuzzy sets. To get a good FOU, automated learning as
well as expert opinions can be used exactly as in the case
when designing IT2FLS.

• Learning the secondary membership functions of general
type-2 sets is the second step. The SMF can be optimized
by fixing the found FOU and tuning the apex location
factors by a suitable value.

This two-stage method is based on the idea that the definition
of the uncertainty boundaries (mainly modeled by primary
memberships) should be defined before defining the secondary
membership grades (uncertainty distribution) that will be as-
signed to each primary membership value. The other choice
is to start by learning the primary and the secondary grades
together but this seems excessive, computationally expensive
and might be impossible to have a SMF without defining its
FOU.

V. SIMULATED ANNEALING ALGORITHM

Simulated annealing is a well-known simple and general
optimization algorithm that was proposed by Kirkpatrick et al
in [24]. The simulated annealing algorithm is used to search
for a global minima by imitating the atoms rearrangement
in a cooling metal [25, p.6][26, p.170]. Simulated annealing
searches for a global minima by picking one state from
neighboring states and calculating the difference between the
current and the new state costs. A new state is chosen as
the current state only if the new state has a better or equal
cost or if the probability of accepting the new state is greater

than or equal to a random value e−d/T > Rnd. T refers
to a control parameter called Temperature that is gradually
decreased during the search process to gradually decrease
the probability of accepting bad states. Accepting bad states
with probability aims to escape from local minima. A suitable
cooling schedule can be determined using adequate parameters
such as: cooling rate, initial temperature value, termination
temperature value and the length of homogeneous Markov
Chains that are used to model iterations [27]. Simulated an-
nealing does not require the existence of specific mathematical
properties such as differentiability, which allows the use of
different varieties of fuzzy structure components including
non-differentiable t-norms and non-differentiable membership
functions.

VI. METHODOLOGY

The whole experiment can be carried out in four stages :
preparing data, initializing interval and general T2FLSs, learn-
ing FOUs parameters and finally learning SMFs parameters.

A. Data
1) Mackey-Glass Time Series : A well known chaotic time

series presented in [28]. It is based on the following non-linear
equation :

dx(t)

dt
=

a ∗ x(t− τ)
1 + xn(t− τ)

− b ∗ x(t) (6)

Where a, b and n are constant numbers, t refers to the current
time and τ shows the delay between the current and the
previous time t − τ . The generation of the time series is
carried out with the following values; a = 0.2 , b = 0.1
, τ = 17 and n = 10. Then, the previous equation is
discretized using the Fourth-Order Runge-Kutta method with
a time step of 0.1 and an initial value of x(0) = 1.2
where x(t) = 0 for t < 0. The chosen configuration is the
same as [29]. The step size is 6 causing the input-output
training and testing data samples to be extracted in the form
x(t − 18), x(t − 12), x(t − 6) and x(t) where t = 118 to
t = 417. A sample of the generated time series is shown
in figure 3. The target is to predict the output from the fuzzy
system x(t+6) while x(t− 18), x(t− 12), x(t− 6) and x(t)
values represent fuzzy logic system inputs. Initial input values
for x(114) and x(115) and x(116) and x(117) are used to
initialize the training. 400 samples were generated where 200
samples were used in the training phase and the remaining
200 samples were used in the testing phase.

B. The initial and optimized interval type-2 fuzzy logic systems
The IT2FLS is composed of four rules that encapsulate a

number of independent input fuzzy sets for each input and one
independent output fuzzy set for each rule output. The number
of rules was chosen with an intention to reduce the system’s
computations. Interval type-2 fuzzy sets are determined using
Gaussian primary membership functions with uncertain means
which represents each set using two means values m1,m2 and
one standard deviation σ as described in [9, p.91] as follows:

f̃(x) = exp−( x−m
2σ )2 m ∈ {m1,m2} (7)
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The upper µÃ(x) and lower µ
Ã
(x) membership functions are

determined by the following functions [9, p.91]:

µÃ(x) =


exp−(

x−m1
2σ )2 if x < m1

1 if m1 ≤ x ≤ m2

exp−(
x−m2

2σ )2 if x > m2

(8)

µ
Ã
(x) =

{
exp−(

x−m2
2σ )2 if x ≤ m1+m2

2

exp−(
x−m1

2σ )2 if x > m1+m2

2

(9)

The upper membership functions µÃ(x) and the lower mem-
bership functions µ

Ã
(x) in these equations will be used later to

define FOUlower and FOUupper for general type-2 sets. The
parameters of each interval type-2 fuzzy sets are the means
and standard deviations. These parameters were initialized for
antecedent fuzzy sets randomly within input variables space.
Differently, output fuzzy sets are initialized randomly with
values around the average values of outputs. The minimum
t-norm is used as the operator in the fuzzification stage. The
type-reduction was based on the collapsing method proposed
by [30] to calculate the center of area values for the output
interval type-2 sets. The form of collapsing used is the
composite outward right-left as described in [31].

The optimization procedure in the training stage aims to
search for the best antecedent and the consequent parts pa-
rameters for each rule. Then, these parameters are used in the
testing stage. The number of all parameters in the IT2FLS is
4 ∗ 4 ∗ 3 + 4 ∗ 3 = 60. Hence, only the FOU’s parameters are
optimized in interval type-2 fuzzy sets.

C. The initial general type-2 fuzzy logic system

To construct the initial GT2FLSs, two methods are used
together. The first is the parameterization formula proposed
in [17] and described in section III to parameterize general
type-2 fuzzy sets. The second is the FLSs construction stages
presented in section IV. The fuzzy model consists of the
same number of rules and fuzzy sets used with IT2FLSs. The
number of rules was chosen as four with an intention to reduce
the system’s complexity and computations. The work in this
paper requires more computations than previous work in [17]
as all FOU and SMF parameters will be optimized. Therefore,

we reduced the rules number to four instead of eight in [17].
The system is constructed from scratch rather than starting
from optimized type-1 or interval type-2 fuzzy sets to initialize
general type-2 fuzzy sets.

1) The General type-2 Sets: The general type-2 sets are
defined using their FOU ′s and SMF ′s functions as follows:

1) FOU : The same membership functions that are used
to define interval type-2 fuzzy sets upper and lower
membership functions in subsection (VI-B) are used to
define FOU parameters. The upper membership func-
tions µÃ(x) and the lower membership functions µ

Ã
(x)

in this equation are used to define FOUupper FOUlower.
The means and standard deviations values that define
each FOU are initialized by the same procedure de-
scribed in subsection (VI-B).

2) SMF : SMFs are defined using a triangular SMF
with a normal apex value in the middle between
(FOUlower and FOUupper) values for the ordered
points k1, k2, ...kn where (n = 9). This is done by
assigning a value of 0.5 to all apexes factors g(k1) =
g(k2) = ...... = g(kn) = 0.5. Then the apexes
factors values for other x points are extracted using
the linear interpolation function described in section III.
This method to parameterize the general type-2 set is
shown in figure III.

2) The initial GT2FLS components: The configurations of
IT2FLS and GT2FLS used in this experiment are detailed in
Table I. The initial GT2FLS configurations of fuzzification,
implication and defuzzification are chosen as described in
[17]. However, the type-reduction stage is different where
two methods for type-reduction were used. Theses methods
are the embedded sets based sampling method [12] and the
vertical slice centroid type-reducer (VSCTR). The (VSCTR)
which was initially proposed by [32] then detailed by [33] does
not calculate the union for all the embedded sets involved in
the general type-2 fuzzy sets. Although, this method does not
depend on the concept of embedded sets, it is a good approach
for practical usage. [33]. Therefore, this is an approximation of
the centroid as long as the operation of union of all embedded
type-2 fuzzy sets involved in the general type-2 fuzzy set
has not been carried out. In sampling method, we used 100
embedded sets samples. The rationale for using two type-
reduction methods is to test the true effects of learning SMF
in general type-2 fuzzy sets without being distracted by the
stochastic evaluation using sampling.

D. Learning of FOU parameters

The training process attempts to find the optimal parameters
of FOUs for all fuzzy sets to use them later in the testing phase.
Therefore, the number of FOUs parameters in the system will
be 4∗4∗3+4∗3 = 60. The learning process is conducted by
modifying one parameter at a time and evaluating the cost of
the new cost function using Root Mean Square Error (RMSE)
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TABLE I
THE INTERVAL AND GENERAL TYPE-2 FUZZY LOGIC SYSTEMS

CONFIGURATIONS

Stage IT2FLS GT2FLS
Membership Function Gaussian Gaussian + triangular SMF
Number of parameters 60 60+180=240
Fuzzification singleton fuzzification singleton fuzzification
Antecedent combination minimum t-norm Coupland’s meet
Implication minimum t-norm Coupland’s meet
Join maximum t-conorm Coupland’s join
SMF discretized points none 9
Type-reduction centroid collapsing method sampling and VSCTR
Defuzzification centroid centroid
Y Discretization points 101 101

defined as follows:

RMSE =

√√√√ 1

n

n∑
s=1

[f(s)− f(s∗)]2 (10)

There is one constraint to the parameters in the optimization
problem which requires proposed values of standard deviations
to be ≥ 0. Simulated annealing is started with these parameter
settings:

• The new states are obtained randomly by adding a small
step size to one chosen parameter at a time. Step size
values are linked to the input space boundaries of each
variable and = max-min/25 with a random direction.

• An initial temperature value is chosen as described by
[34]. Therefore, this value is equal to the standard devia-
tion of the average values of 1000 trial runs RMSE’s of
training samples.

• The cooling schedule of the temperature is calculated
using a static cooling rate of 0.9 updated in the beginning
of each Markov chain.

• The Markov chain length is dependent on the number of
variables in the problem search space. It is chosen to be
5 times the number of total parameters.

• The search is terminated after 40 Markov chains.
The new state cost is then calculated using the RMSE’s of the
training samples. After terminating the search process, the test
sample results are calculated using RMSE.

E. The learning of the secondary membership functions

This stage is concerned with finding the optimal locations of
apexes (apexes factors) for all triangular secondary member-
ship functions. This is carried out by fixing the two boundaries
for each triangular SMF. Therefore, optimized parameters
in this stage are the apexes factors g(k1), g(k2), ......, g(kn).
A simulated annealing algorithm is used for optimization
using the same configurations described above with these
differences:

1) The first is related to the constraints of apexes fac-
tors g(ki) values which are constrained by their
(FOUlower(ki) and FOUupper(ki)) points.

2) The new step size values must be between [0, 1] and
should be large enough to optimize the results. The step
size is chosen to be 0.225.

3) Each Markov chain length is chosen to be 5 times the
number of parameters in the problem search space.

4) The search process terminated after 10 Markov chains.
These choices are designed to reduce the experiment’s
time.

The number of parameters optimized in this stage is n =
9 for each fuzzy set. Therefore, a total of 4 ∗ 5 ∗ 9 = 180
parameters are optimized during this stage. The experiment
has been carried out 20 times.

VII. RESULTS AND DISCUSSION

The experiments were repeated 20 times. The results of
learning Mackey-Glass time series are detailed in table II
where the average RMSEs curves and the acceptance ratios
during search are depicted in figures 4 and 5 respectively. The
main observations are :

1) The best average RMSE in the testing samples was
obtained by GT2FLS with VSCTR defuzzification
(GT2FLS-VSCTR) followed by IT2FLS (IT2FLS).

2) The best average RMSE in the training samples was
obtained by GT2FLS with VSCTR defuzzification fol-
lowed by IT2FLS.

3) The average RMSEs curves when learning FOUs (train-
ing samples) have exhibited similar performances by
the three models. However, IT2FLS obtained the best
average RMSEs in testing phase followed by GT2FLS-
VSCTR which was the best in training phase followed
by IT2FLS.

4) The learning of SMFs using GT2FLS-VSCTR adds
about 11.7% to the average testing RMSEs and about
17.7% to the average training RMSEs over the FOU’s
learning best results. The learning of SMFs using
GT2FLS-Sampling adds about 0.86% to the training
RMSEs but worsened the testing RMSEs by about
−0.059.

5) The learning curves of SMFs showed a clear difference
in performance between GT2FLS-VSCTR and GT2FLS-
Sampling models. GT2FLS-VSCTR shows continuous
improvements compared to very small improvements
obtained by GT2FLS-Sampling.

6) The acceptance ratio curves when learning FOUs
show similar behaviors between GT2FLS-VSCTR and
IT2FLS, which are better than the narrower acceptance
behavior obtained by GT2FLS-Sampling. The last one
shows undesirable behavior where it converges to values
close to 0% quickly in less than 30 Markov chains which
means no improvements were observed in the rest of
iterations.

7) The acceptance ratio curves when learning SMFs show a
clear difference in behaviors between GT2FLS-VSCTR
and GT2FLS-Sampling models. The GT2FLS-Sampling
shows a very narrow acceptance behavior compared
to GT2FLS-VSCTR. Interestingly, the acceptance ratios
curves of the GT2FLS-Sampling model show narrower
behavior when learning SMFs from its behavior with
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Fig. 4. The average convergence of the three models for noise-free Mackey-
Glass time series problem when learning FOU (left) and SMF (right).

FOUs. However, as mentioned above, the initial tem-
peratures were set separately in each stage to be pro-
portional to the objective function differences brought
by these moves in the two parameters groups (FOU
and SMF). This is important to avoid starting with
very large or very small initial temperatures and to
have acceptable curves of best results and acceptance
ratios. In other words, the observed acceptance behaviors
for GT2FLS-Sampling model are not related to the
settings of simulated annealing. This behavior can be
easily explained by the effects of the defuzzification
method which is the only difference between the two
models of GT2FLS. The effects of the stochastic ob-
jective function when using the sampling method can
be ignored when moves from state to state can bring
relatively large differences compared to the random
noise but this noise can deteriorate the search when
moves bring improvements comparable to that noise.
In other words, when learning FOU, the differences
brought by moves are large enough to accept very small
errors of approximated objective functions due to the
larger contributions of FOU parameters to the objective
functions compared to the SMF contributions. Hence, we
do not expect a large contribution from learning SMF
parameters compared to learning the FOU parameters
due to the fact that SMF is dependent on FOU and
bounded by its endpoints. This behavior of acceptance
ratios when using GT2FLS-Sampling has been observed
with other problems examined by the author and will be
presented in the near future.

8) The time taken by IT2FLS was the shortest. It was 5.8
times faster than GT2FLS-VSCTR and 21.8 times faster
than GT2FLS-Sampling. Therefore, IT2FLS is preferred
in terms of speed.

TABLE II
MACKEY-GLASS TIME SERIES FORECASTING RESULTS (RMSE)

Stage MeanRMSE StdRMSE MinimumRMSE

IT2FLS
Training 0.04980955 0.0200348 0.026242
Testing 0.0433439 0.010239 0.027117
Time 332.55 21.027488 295

GT2FLS with Sampling Defuzzification
After FOU’s Learning

Training 0.0553228125 0.01243 0.03761027
Testing 0.0518645455 0.0107249 0.03617023

After SMF’s Learning
Training 0.0548446 0.0119293 0.0372725
Improvement by SMF 0.86% - -
Testing 0.051895285 0.010721 0.0362123
Improvement by SMF -0.059269 % - -
Time 7,259.9 992.126 5,724

GT2FLS with VSCTR Defuzzification
After FOU’s Learning

Training 0.0483079765 0.01089 0.03428513
Testing 0.0446682685 0.0121448 0.02823214

After SMF’s Learning
Training 0.03975027 0.0115896 0.0240021
Improvement by SMF 17.7% - -
Testing 0.03943346 0.0116557 0.024325
Improvement by SMF 11.7% - -
Time 1,945.45 368.392 1,217
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Fig. 5. The average acceptance ratios of the three models when learning
FOU (left) and SMF (right) for noise-free Mackey-Glass time series problem.

VIII. CONCLUSION

The learning of GT2FLSs using simulated annealing has
been described and discussed. The learning to configure
all GT2FLSs parameters in two stages has been applied
in both primary and secondary membership functions (FOU
and SMF). The learning process starts from scratch rather
than using optimized IT2FLSs to initialize GT2FLSs. The
novel parameterization approach has been used to design two
models of GT2FLSs. These two models use two type reduction
techniques: the sampling method is non-deterministic while
the VSCTR method is deterministic. The rationale for using
the two type-reduction techniques has been described. Both
models, as well as IT2FLS, have been applied to model the
four problems presented in previous chapters. The question
of whether GT2FLSs can provide greater ability to handle
uncertainty has been tackled. The stochastic defuzzification
method of sampling embedded sets affected the learning
performance in both FOU and SMF learning stages. The
best results achieved in all problems have been accredited
to GT2FLSs with VSCTR defuzzification. In terms of speed,
IT2FLS was the best followed by GT2FLSs with VSCTR. The
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results showed that when using the deterministic defuzzifica-
tion method (VSCTR), the learning of GT2FLSs can provide
extra capabilities to handle more information and uncertainties
than IT2FLSs that use uniform SMFs. Although, the use of
VSCTR is not based on the concept of using embedded sets to
calculate the exact centroids of type-2 sets, the method allows
the learning process to be carried out in a practical manner.
This achievement opens the door to using other learning
methods to get more modeling capabilities from the GT2FLSs
in real-world applications.
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