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Abstract—Fuzzy programming approach has wide application 
in many fields such as project management, multi-attribute decision 
making, and comprehensive evaluation. Its solving methods have 
attracted many attentions. In this paper we present a new 
approach, based on the genetic algorithm, for dealing with a 
programming problem with fuzzy-valued objective function and 
constraints. Firstly, we propose the concept of generalized 
equilibrium value of fuzzy number, and analyze the properties, 
further give the operation rules; secondly, we establish a 
generalized equilibrium value-based fuzzy programming method 
combined with genetic algorithm; finally, we analyze the 
characteristic of the above mentioned method through a non-
linear fuzzy programming problems. 

Keywords—fuzzy programming; fuzzy number ranking; 
triangular fuzzy number; generalized equilibrium value; genetic 
algorithm 

I.  INTRODUCTION 

A. Review for fuzzy programming 
In classical programming problems, all the data are known 

precisely or given as crisp values. However, with the rapid 
development of information technology and internet of things, 
crisp data are inadequate or insufficient to model real-life 
decision problems. Many decisions in real life cannot be 
modeled easily in deterministic terms because of imprecision 
surrounding involved data. In this connection, the Physics 
Nobel laureate Feynman once wrote: “When dealing with a 
mathematical model, special attention should be paid to 
imprecision in data”. Zadeh’s incompatibility principle [1] 
stipulating that: “When the complexity of a system increases, 
our ability to formulate precise and yet meaningful statement 
on this system decreases up to a threshold beyond which 
precision and significance become mutually exclusive 
characteristics”, is also instructive in this regards. 

This stimulates us to study the programming problems 
with uncertainty. The uncertain information processing is the 
bottle neck of solving programming problems. The usual way 

is to transform uncertain information to a numerical value, 
based on it, further construct a decision making method. As 
probability theory is a matured segment we are familiar with, 
it is not a surprise that early works on mathematical 
programming under uncertainty was devoted to situations with 
randomness. In 1955, Dantzing proposed the expected value 
model of stochastic programming, aimed to get the maximum 
expected return; in 1959, Charnes and Cooper [2] proposed 
the chance constraint programming model; in 1970, Liu [3-4] 
et al. proposed chance-dependent programming model, and 
further gave the solving method based on stochastic 
simulation and genetic algorithm; Li and Wang [5] established 
the generalized expected value model based on the compound 
quantitative method of the expected value and variance. 
Nevertheless, uncertainty cannot be equated with randomness. 
As a matter of fact, there is another different type of 
uncertainty (fuzziness) which cannot be tackled with 
probabilistic theories [6]. In this case, the decision makers 
often apply the fuzziness to improve the chances of success of 
decision making. Zimmerman [7] first applied fuzzy set theory 
to conventional linear programming problems. Following this 
attempt, fuzzy programming has been developed and extended 
in many applications. Due to the dual nature of set and 
numerical value, fuzzy number has been widely applied in 
fuzzy programming problems. Among the different methods 
for solving fuzzy programming problems, the method based 
on the ranking and comparison of fuzzy numbers is one of the 
most convenient [8-10]. In 1970, Bellman and Zadeh [11] first 
proposed the basic fuzzy decision making model for multi-
objective decision making problems. In 1978, Zimmermann 
[12] established fuzzy linear programming model based on 
tolerance method. Zadeh [6] discussed the connection between 
fuzzy set and possibility measure, analyzed the feasibility of 
constructing the fuzzy decision making methods by possibility 
theory, and further gave the fuzzy expected value model. In 
1999, Liu [13] gave the concept of fuzzy variables and 
established fuzzy chance-dependent programming model 
based on possibility measure. In 2010, Li and Jin [14] 
systematically analyzed the characteristic of fuzzy decision 
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making and studied fuzzy programming theories and methods 
based on synthesis effect. 

According to the discussions in-above, fuzzy programming 
problems focus on the development of the quantitative way for 
fuzzy number. 

B. Ranking for fuzzy number 
Fuzzy number, as a tool describing and processing 

uncertain information, can closely reflect the reality. 
Consequently, it is very natural and important to introduce 
fuzzy numbers ranking methods. In 1976, Jain [15] first 
discussed the comparison of fuzzy numbers. In 1977, Baas and 
Kwakernaak [16] designed a ranking method based on fuzzy 
relation. Based on the reference of [15, 16], Baldwin and 
Guild [17] constructed fuzzy preference method in 1979. 
Thereafter, many researches gave various ranking methods 
combined with the structural characteristic of fuzzy set. In 
1985, Bortolan and Degani [18] discussed the ranking strategy 
of fuzzy number. Chen [19] proposed a ranking method based 
on the maximal and minimal fuzzy set. In 1988, Lee and Li 
[20] regarded fuzzy number as a possibility variable, and 
proposed a ranking method based on possibility measure. In 
1990, Kim and Park [21] proposed a combination ranking 
method based on optimization index. In 1992, Liou and Wang 
[22] established a ranking method based on integral combined 
with the function representation theory of fuzzy number. In 
1998, Cheng [23] established a ranking method based on 
distance by combining with a metric of fuzzy number space. 
Based on the interval decomposition theory of fuzzy number, 
in 2002, Liu et al. [24] took the convex combination of the 
interval end as the average value, and level importance 
function as the importance measure of level cuts, and 
established a concentralized quantitative method of fuzzy 
number using integral. In 2007, Asady and Zendehnam [25] 
proposed a ranking method based on distance minimization. In 
2009, Abbasbandy and Hajjari [26] proposed a ranking 
method for triangular fuzzy number, which overcome the 
disadvantages of that in [25]. In 2012, Li et al. [27] discussed 
the ranking criteria of fuzzy number based on numerical 
characteristic, and further gave the corresponding constructing 
strategy. 

As the above literatures mentioned, they often 
characterized a fuzzy number as a real number, and then 
realized the comparison by the total ordering of real numbers. 

In this paper, we give the concept of generalized 
equilibrium value for fuzzy number, discuss the properties and 
operation rules; we then establish a generalized equilibrium 
value-based fuzzy programming method combined with genetic 
algorithm; finally, we analyze the characteristic of the above 
mentioned method through a non-linear fuzzy programming 
problems. 

II. PRELIMINARIES 
For the better understanding of this paper, let us briefly 

review some concepts and results on fuzzy numbers. In this 
paper, we use R to denote the family of all real numbers, I(R) 
the family of all interval numbers, and F(R) the family of all 
fuzzy sets. For A∈F(R), the membership function of A will be 

denoted by A(x), the λ-cut set by { | ( ) }A x A xλ λ= ≥ , the 
support set by sup p { | ( ) 0}A x A x= > , and the closure of 
suppA will be denoted by A0. 

Definition 1 [28] Suppose A∈F(R), if it satisfies the 
following conditions: 1)A1≠Φ; 2) for any λ∈(0, 1], Aλ∈I(R); 
3)suppA={x|A(x)>0} is bounded, then we call A a fuzzy 
number. The family of all fuzzy numbers can be called fuzzy 
space and denoted by R . In particular, ①  if there exist 
(a,[b1,b2],c) ∈R satisfying: i) A(x)=0 for x<a or x>c; ii) 
A(x)=(x-a)/(b1-a) for a≤x＜b1; iii) A(x)=1 for b1≤x≤b2; iv) 
A(x)=(x-c)/(b2-c) for b2＜x≤c, then we call A trapezoidal 
fuzzy number, simply denoted as A=(a,[b1,b2],c); ②  if 
b1=b2=b, then we call A=(a,[b, b],c) a triangular fuzzy number, 
simply denoted as A=(a, b, c). 

Obviously, if we take interval number [a, b] as a fuzzy set 
whose membership function is [a, b](x)=1 for any x∈[a, b], 
and [a, b](x)=0 for any [ , ]x a b∉ , and real number a as a fuzzy 
set whose membership function is a(x)=1, and a(x)=0 for any 
x≠a, then the interval numbers and real numbers are special 
fuzzy numbers, which shows that fuzzy numbers are the 
extension of the interval numbers and real numbers. 

Theorem 1 [29] Let A,B∈ R , k∈R, f(x, y) be a continuous 
binary function, Aλ, Bλ be the λ-cut sets of A and B. the f(A,B) 
∈ R , and (f(A, B))λ=f(Aλ, Bλ)={f(x, y)|x∈Aλ, y∈Bλ}. In 
particular, we have: 

1)   A+B=B+A, A•B=B•A, kBkABAk ±=± )( ; 

2)  ( ) [ ( ) ( ), ( ) ( )]A B a b a bλ λ λ λ λ+ = + + ,  

( ) [ ( ) ( ), ( ) ( )]A B a b a bλ λ λ λ λ− = − − ; 

3)  ( ) [ ( ) ( ), ( ) ( )]A B a b a bλ λ λ λ λ⋅ = × × , ( ) 0a λ ≥ ,  
( ) 0b λ ≥ ; 

4)  ( ) [ ( ) ( ), ( ) ( )]A B a b a bλ λ λ λ λ÷ = ÷ ÷ , ( ) 0a λ ≥ ,  
( ) 0b λ ≥ ; 

5)  If A=(a1,b1,c1), B=(a2,b2,c2), then 

         A+B=(a1+a2, b1+b2, c1+c2);  

A -B=(a1-a2, b1-b2, c1-c2). 

6)  For A=(a1,b1,c1), kA=(ka1, kb1, kc1) for any k≥0;  

         kA=(kc1, kb1, ka1) for any k<0; 

7)  If k≠0, then kA(x)=A(x/k), if k=0, then kA=0. 

Fuzzy numbers have many good analytical properties. For 
details, please see ref. [28]. 

III.  THE GENERALIZED EQUILIBRIUM VALUE OF FUZZY 
NUMBER 

Balance state is a quantitative index widely concerned by 
all kinds of uncertain decision making. In random 
environment, we can use the frequency of event happening 
(i.e., the average number of events happening in each test) to 
describe the probability of the event, and use the mathematical 

1220



expectation to describe the average values of random variable. 
In physics, we can use the center of gravity to describe the 
equilibrium position of a particle system. In game theory, we 
can make specific countermeasures through the balance of 
interests. In fuzzy decision making problems, fuzzy numbers 
were the most commonly used quantitative fuzzy information 
description method. Although it has many good operation and 
analytical properties, there does not exist generally accepted 
ranking model, which cause it was difficult to make the right 
decision. Therefore, how to establish the fuzzy number 
ranking method with good interpretability and operability has 
important theoretical and practical significance. If fuzzy 
number A is seen as a variable with membership limitation, 
A(x) is understood as the support degree of element x 
belonging to A. Similar to the calculation method of center of 
gravity of a object, we can construct fuzzy number average 
value [30] measure model as follow (Here, a is a real number),  

             

( )
,

( ) ( )

,

xA x dx
A a

E A A x dx

a A a

+∞

−∞
+∞

−∞

⎧
⎪ ≠⎪= ⎨
⎪
⎪ =⎩

∫
∫                             (1)                         

Because fuzzy number has fuzziness, so in the process of 
fuzzy decision making, it tends to reflect fuzzy preference of 
people, therefore, if we merge fuzzy processing preference 
into decision making, so (1) can be perfect as the following: 

( ) (1 ) ( ),
( )

,
L R

G

E A E A A a
E A

a A a
α α+ − ≠⎧

= ⎨ =⎩
                  (2) 

We call EG(A) a generalized equilibrium value of A (Here, 
a is a real number, EL(A) expresses the left uncertainty, ER(A) 
expresses the right uncertainty). 

Theorem 2 let A R∈ , k∈R, we have:  
1)  EG(kA)=k EG(A); 2) EG(k+A)=k+ EG(A)  
Proof: 1) if k=0, then kA=0, we have EG(kA(x))=k 

EG(A(x))=0. If A=a, then kA=ka, we have EG(kA)=ka= 
kEG(A)  . 

If k≠0, A≠a, according to the extension principles, we 
have: 

2

(( )( )) ( / )
( )

(( )( )) ( / )

( ) ( )
( )

( ) ( )

x kA x dx xA x k dx
E kA

kA x dx A x k dx

k uA u du uA u du
k kE A

kA u du A u du

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

= =

= = =

∫ ∫
∫ ∫
∫ ∫
∫ ∫

 

So we have EL(kA)=kEL(A), and ER(kA)=kER(A), 
( ) ( ) (1 ) ( )

( ) (1 ) ( )
[ ( ) (1 ) ( )] ( )

G L R

L R

L R G

E kA E kA E kA
kE A kE A

k E A E A kE A

α α
α α

α α

= + −
= + −
= + − =

 

2)  If A=a, then E(k+A)=k+E(A), if A≠a, then  

  

(( )( )) ( )
( )

(( )( )) ( )

( ) ( ) ( )
( )

( ) ( )

x k A x dx xA x k dx
E k A

k A x dx A x k dx

k u A u du uA u du
k k E A

A u du A u du

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

+ −
+ = =

+ −

+
= = + = +

∫ ∫
∫ ∫
∫ ∫
∫ ∫

 

So we have EL(k+A)=k+EL(A), andER(k+A)=k+ER(A), therefore,  

( ) ( ) (1 ) ( )
( ( )) (1 )( ( ))

[ (1 ) ] [ ( ) (1 ) ( )]
( )

G L R

L R

L R

G

E k A E k A E k A
k E A k E A
k k E A E A

k E A

α α
α α
α α α α

+ = + + − +
= + + − +
= + − + + −
= +

 

Theorem 3 For a triangular fuzzy number A=(a,b,c), we 
have 

(2 ) (1 )(2 ) 2 ( )( )
3 3 3G
b a b c b c a cE A α α α+ − + + + −= + =  

Proof: 1) when a=b=c, the conclusion is obviously true. 
2)  If a<c, then  

2( ) ( )( ) 23 2( ( ))
3

2

b

a
L b

a

x a b a a b ax dx b ab aE A x
x a b adx
b a

− − −+ +−= = =
− −
−

∫

∫
 

2( ) ( )( ) 23 2( ( ))
3

2

c

b
R c

b

x c b c c b cx dx b cb cE A x
x c b cdx
b c

− − −− − +−= = =
− −−
−

∫

∫
 

So 
( ) ( ) (1 ) ( )

(2 ) (1 )(2 ) 2 ( )
3 3 3

G L RE A E A E A
b a b c b c a c

α α
α α α

= + −
+ − + + + −= + =

 

Corollary 1  If A=(a1,b1,c1), B=(a2,b2,c2), k, l ∈R, then we 
have:  

1) EG(A+B)=EG(A+ B),  
2) EG(kA+lB)=kEG(A)+kEG(A). 

Proof: 1) From A+B=( a1+a2, b1+b2, c1+c2) and Theorem 2, 
we can get 

1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 1 1 1 2 2 2 2

[2( ) ( )] (1 )[2( ) ( )]
( )

3 3
(2 ) (2 ) 1 (2 ) 1 (2 )

3 3 3 3
(2 ) 1 (2 ) (2 ) 1 (2 )

[ ] [ ]
3 3 3 3

( ) ( )

G

G G

b b a a b b c c
E A B

b a b a b c b c

b a b c b a b c

E A E B

α α

α α α α

α α α α

+ + + − + + +
+ = +

+ + − + − +
= + + +

+ − + + − +
= + + +

= +

（ ） （ ）

（ ） （ ）

 

    2) It can be directly obtained by Theorem 2 and the 
conclusion 1). 
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IV. A GENERALIZED EQUILIBRIUM VALUE-BASED FUZZY   
PROGRAMMING PROBLEM AND ITS SOLVING METHOD 

A. Problem Formulation 
Formally, the fuzzy program models involve a vector of 

decision variables, objective functions, and constraints. 
Generally, the mathematical form can be formulated as 
follows: 

                
max ( ),
s. t. g ( ) , 1, 2, , .i i

f x
x b i m

⎧
⎨ ≤ =⎩

                           (3) 

Here, x=(x1,x2,…,xn) is a vector of decision variables, both 
f and g1,g2,…,gm  are n-dimensional fuzzy-valued functions, ≤~  
denotes the inequality relationship in the fuzzy sense, bi∈E1 
are the given fuzzy numbers. 

This model can be seen in several applications including 
project management [31, 32], multi-attribute decision making 
problems [33, 34, 35, 36, 37], supplier selection and order 
allocation [38]. Without loss of generality, these problems 
focus on the case of fuzzy objective function and constraints. 
As a matter of fact, the literatures were addressing the problem 
of converting fuzzy program into a crisp one. 

Therefore the optimal solution does not exist for (3) and 
we have to seek for some satisfactory solution. Moreover, 
existing deterministic approaches cannot be applied blindly. 
Here, we take advantage of the concept of the generalized 
equilibrium value of a fuzzy number, the original problem is 
converted into a deterministic one using approximate 
transformations. 

            
max ( ( )),
s. t. (g ( )) ( ), 1, 2, , .

G

G i G i

E f x
E x E b i m

⎧
⎨ ≤ =⎩

                (4) 

Here, EG(f(x)), EG(gi(x)), EG(bi) represents the generalized 
equilibrium value of f(x), gi(x), bi respectively, 
xj∈R,(j=1,2,…,n). 

Since triangular fuzzy numbers are often used to describe 
fuzzy information in practical problems, we will assume in 
this paper that the coefficients are all triangular fuzzy 
numbers. Due to the intrinsic difference between the 
operations of triangular fuzzy numbers and those of the real 
number, optimization problems with triangular fuzzy 
coefficients cannot be solved by analytical methods. We 
establish concrete solution methods to our optimization 
problem by combining with genetic algorithm. 

B.  Solution algorithm for the problem 
The task of global minimization problems is of paramount 

importance in several areas of applications. In this section, we 
present a novel evolutionary computation method called 
Genetic algorithm [39] (GA) to solve the problem proposed 
above. Here, before introducing the novel algorithm, let us 
first review the basic GA. GA is among the most popular 
methods to stochastic global optimization which mimic the 
natural evolutionary process in order to search the optimum 
from the feasible region. GA has the benefits of simplicity and 

superior performance. For many years this technique has been 
successfully applied to a wide variety of real fields. In GA, 
each individual in the population is encoded into a 
chromosome representing a possible solution. It works by 
generating a random initial population of potential solutions. 
The fitness of an individual is evaluated with respect to a 
given objective function. Highly fit individuals in a crossover 
procedure are given big probability to reproduce new 
“offspring” solutions. These new “offspring” solutions will 
share some characteristics with their parents. Mutation is often 
applied after crossover by altering some genes. This 
evaluation -selection-crossover-mutation cycle is repeated 
until a satisfactory solution is found. 

In the following, we adopt binary code to represent the real 
optimized variables. To find the satisfactory solutions to (4), 
we give the procedures of fuzzy GA. 

Step1  Transform (3) into a crisp optimization one, by 
using the generalized equilibrium value of fuzzy number and 
search for the global maxima of (2). 

Step2  Submit the generalized equilibrium value of fuzzy- 
valued objective function to the fuzzy GA, in order to search 
for the satisfactory solutions to (2). Here, it is possible to 
simply run the algorithm several times. As a stochastic 
method, fuzzy GA is able to explore different regions during 
different activations. 

• 1) Initialize parameters setting: the population size s, 
crossover probability pc, mutation probability pm and 
stopping iteration  Gmax; 

• 2) Set initial evolution iteration G=0, randomly 
generate s  candidate solutions,  

1 2( ) ( ( ), ( ), , ( ))sX G X G X G X G= ; 

• 3) Calculate the fitness value ( ( ))f X G  of initial 
candidate solution; 

• 4) (Selection Operation) The selection process is 
performed according to ( ( ))f X G , update the solution 
vectors in ( )X G  for the next iteration; 

• 5) (Crossover Operation) To increase the diversity of 
the population, crossover is introduced. In this paper, 
we adopt arithmetic crossover strategy; 

• 6) (Mutation Operation) To avoid trapping into the 
local premature convergence. In this paper, we adopt 
uniform mutation strategy. 

Step3  Check the stopping criterion. If the stopping 
criterion (maximum of iterations Gmax) is satisfied, then quit 
the iterative process. Otherwise, return to 3) of Step 2. 

Remark 1  In Step 2, the fitness value is closely related 
with the generalized equilibrium value of the fuzzy-valued 
objective function, so we name our algorithm by FGA-GEV. 

Remark 2 In practice, triangle fuzzy number has good 
operability and interpretability, so the following we will make 
a example based on the triangle fuzzy numbers. 
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V. NUMERICAL EXAMPLE 
Example 1  Considering the fuzzy nonlinear programming 

problem as follows: 
2 2

1 2 1 2 1

2

1 2

1 2

1 2

max ( , ) (0.1, 0.3, 0.8) (0.2, 0.4, 0.7) (16.1, 17, 17.3)
(17.7, 18, 18.6)

(1.4 , 2, 2.6) (2.7, 3, 3.3) (47, 50, 51),
(3.8, 4, 4.4) (1.6, 2, 2.2) (40, 44, 47),

s.t.
(2.6, 3, 3.2) (1.6, 2, 2.2) (32, 36,

f x x x x x
x

x x
x x
x x

= − − +
+

+ ≤
+ ≤
+ =

1 2

40),
, 0x x

⎧
⎪
⎪
⎨
⎪
⎪ ≥⎩

 

For this optimization problem (both coefficients are real 
numbers), the optimal solutions are x1=4.8333, x2=10.75, max 
f(x1,x2)=222.4329. 

The parameters in the FGA-GEV are set as follows: the 
population size s=80, crossover probability pc=1, mutation 
probability pm=0.0001and stopping iteration Gmax=100. Then, 
we implement the FGA-GEV on MATLAB with 0.5α = . We 
can get the iteration curve as Figure 1, and the satisfactory 
solutions are x1=4.5503, x2=11, and the maximal generalized 
equilibrium value of fuzzy objective function is 217.7872. We 
make 10 times experiments, the corresponding results are 
listed in the following TABLE I. By varying the values of 
decision parameter α , different results can be obtained which 
are listed in the following TABLE II. 
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Fig. 1   The 100 iteration curve for Example 1 

TABLE I.  THE 10 COMPUTATION RESULTS OBTAINED BY MODEL (4) 
WHEN 0.5α =  

 S. S. M. G. E. V. C. T. C. I. 

1 
x1=4.5650  

x2=10.9677 
217.7012 0.9683 15 

2 
x1=4.5503   

x2=11 
217.7872 0.8595 17 

3 
x1=4.5503   

x2=11 
217.7872 0.8726 13 

4 
x1=4.5601  

x2=10.9785 
217.7299 0. 9395 13 

5 
x1=4.5601  

x2=10.9785 
217.7299 0.9906 16 

6 
x1=4.5503   

x2=11 
217.7872 0.8449 13 

7 
x1=4.5552  

x2=10.9892 
217.7586 0.8141 16 

8 
x1=4.5503  

 x2=11 
217.7872 0.8307 15 

9 
x1=4.5503  

 x2=11 
217.7872 0.8024 12 

10 
x1=4.5503  

 x2=11 
217.7872 0.8178 13 

A.V. _______ 217.7643 0.8740 14.3 

TABLE II.  THE COMPUTATION RESULTS OBTAINED BY MODEL (4) 
UNDER DIFFERENT VALUES OF α  

α  S. S. M. G. E. V. C. T. C. I. 

0 
x1=4.1984 
x2=0.9570 

202.9568 0.8452 11 

0.1 
x1=4.2522 

x2=10.9892 
205.8321 0.8642 11 

0.3 
x1=4.3939 

x2=11 
211.7108 0.8801 13 

0.4 
x1 =4.4819 
x2=10.9892 

214.7790 0.8625 13 

0.6 
x1 =4.6383 
x2=10.9785 

220.7957 0.8049 12 

0.8 
x1 =4.7849 

x2=11 
227.0739 0.8984 14 

1 
x1 =4.9462 

x2=11 
233.4603 0.8237 16 

In TABLE I-II, S.S. denotes satisfactory solutions, M. G. E. 
V. denotes Maximal generalized equilibrium value, C. T. 
denotes Convergence Time, C. I. denotes Convergence 
iteration, A. V. denotes Average value. 

From the results above we see that: 1) The computational 
results are closely related to the parameter α , which shows 
FGA-GEV can effectively merge uncertainty decision 
preferences into the decision process; 2) Despite of the 
variations of parameters, the convergence time is less than 1 
seconds, and the convergence iteration is less than 20, which 
shows the algorithm have higher computational efficiency and 
good convergence performance; 3) The computational 
complexity is equivalent to that of conventional algorithms, so 
FGA-GEV has good practicability; 4) FGA-GEV has many 
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advantages such as good interpretability and strong 
operability. Therefore, FGA-GEV is suitable for the 
optimization problems under uncertain environment. 

VI. CONCLUSIONS 
In this paper, we present a new method FGA-GEV that can 

merge uncertainty decision preference into the solving when 
coping with the fuzzy programming with fuzzy-valued 
objective function and constraints. 

In ranking fuzzy numbers, we propose the concept of 
generalized equilibrium value, discuss its properties and 
operation rules. Based on it, the discussed fuzzy programming 
is transformed into a crisp one. Experiments studies make 
transition from theory to practice in this setting. 

Another line for further development consists of extending 
our method described here to the programming problems 
where the optimized variables are fuzzy numbers. 
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