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Abstract—Fractional calculus has a long successful history of
300 years, as it able to model natural phenomena states more
accurately than the differential equations of integer order. With
this, it plays an important role in variant disciplines. Recently,
variant fractional models for the Bloch equations have been
proposed, however, effective numerical methods for the fractional
Bloch equation (FBE) are still in the infancy stage. In this paper,
we extend the time-fractional Bloch equation (TFBE) to fuzzy
field under the generalized Caputo differentiability, such that
these extensions have natural relationship between crisp. For this
purpose, we adopted the fractional Adams-Bashforth-Moulton
(FABM) type predictorcorrector method, and introduced a new
variant - the fuzzy fractional ADM (FFABM) to find the nu-
merical solution. In this case, a new theorem concerning the
error of our proposed FFADM method is also presented. Finally,
the capability of the newly developed numerical methods is
demonstrated in a fuzzy fractional-order problem, and it achieves
satisfactorily in terms of numerical stability.

Index Terms—Fuzzy fractional Bloch equation; Caputo differ-
entiability; Predictor-Corrector method.

I. INTRODUCTION

In contrast to the differential equations of integer order,
where the derivatives depend solely on the local behavior
of the function, fractional differential equations (FDEs) ac-
cumulate the whole information of the function in a weighted
form. This is the most significant advantage of fractional order
models in comparison with integer order models, in which
such effects are neglected. With this, recently, it has lead to
numerous applications [1], [21]–[23], [28].

Resultant of this, this topic has gained much interests from
mathematicians [12], [13]. It is well known that the exact
solutions for most of the FDEs could not be solved easily, thus
numerous analytical solutions have been studied extensively
to overcome such mathematical complexity. For example,
operational matrix method based on the Legendre polynomi-
als [34], He’s variational iteration method [32], Adomian’s
decomposition method [30], [31], fractional Adams method
[20] and interpolation functions [25].

On the other hand, modeling of natural phenomena states
using mathematical models plays an important role in various
disciplines. Commonly the unknown parameters involve in the

models are assumed constant over time. In reality, however,
some of them are not constant and implicitly depend on several
factors. Many of such factors usually do not appear explicitly
in the mathematical models due to the tradeoffs between
modeling and numerical tractability, and the lack of precise
knowledge about them.

In order to deal with such uncertainty in those param-
eters, stochastic approach is commonly employed with the
assumption that stochastic behavior implies knowledge of
probabilistic information of the system components. However,
this information can be very complicated with errors and
vagueness. Alternatively, fuzzy fractional differential equa-
tions (FFDEs) has provided another solutions to model the un-
certain and/or incompletely specified systems. The first attempt
was formulated by Kaleva [24] under the H-differentiability,
and subsequently by Bede et al. [15] under the new concept
of fuzzy differentiability [14]. According to [15], [16], this
new approach seems to be better suited to model the practical
situations under uncertainty and imprecision normally present
in the real dynamics.

To the best of our knowledge, though various solutions [2],
[10], [11], [35], [36] for the FFDEs have been attempted,
most of them are based on exact solutions; while numerical
methods for solving the FFDEs are still in the infancy stage,
albeit to our previous attempts [3]–[5], [7], [8], [29].

We, therefore, motivate in investigating an effective nu-
merical method with error analysis to approximate the fuzzy
time-fractional Bloch equations (FTFBE) on the time interval
J = (0, T ], with a view to be employed in the image pro-
cessing domain in near time. The predictor-corrector method
was adopted herein due to its simplicity. Particularly, we
exploits the fractional Adams-Bashforth as a predictor and the
fractional Adams-Moulton as a corrector; and introduced a
new variant - the fuzzy fractional Adams-Bashforth-Moulton
(FFABM). Finally, we demonstrate the capability of the newly
developed numerical methods in a fuzzy fractional-order prob-
lem, in terms of accuracy and stability analysis.

The structure of the remainder of this paper is as follows.
The related work and motivation is discussed in Section II. In
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Section III, some mathematical preliminaries are revisited. In
Section IV, an analytical solution of the fuzzy time-fractional
Bloch equation (FTFBE) is derived. The proposed fuzzy frac-
tional Adams-Bashforth-Moulton (FFABM) for the FTFBE, as
well as the error analysis for the fractional FPCM is detailed
in Section V. In Section VI, we present the numerical result
that support our theoretical analysis. Finally, we conclude the
paper in Section VII.

II. RELATED WORK AND MOTIVATION

In 1946, Felix Bloch proposed a set of equations to describe
the time dependence of the net magnetization during the course
of the nuclear magnetic resonance (NMR) experiment. These
equations are known as the Bloch equations and give insights
into many processes in NMR. The Bloch equations follow first
order kinetics and the derivations are first-order differentials
which in the classical version take the following form [26],
[37]:

dM(t)

dt
= M(t)× γB(t)−R(M(t)−M0) (1)

in which M is ”bulk” magnetization that arises from all of the
magnetic moments in a sample and experiences a torque when
placed in a magnetic field and R is the ”relaxation matrix”. B
is the magnetic field (in general B is a vector quantity) and γ
is a physical property of each nucleus. For a given abundance,
nuclei with higher values of γ produce higher sensitivity NMR
spectra.

We note that recently, different fractional models for the
Bloch equations have been proposed. For instance, Magin et
al. [26] and Velasco et al. [37] have proposed the concept
of solutions for Bloch equation with fractional models. They
demonstrated that a fractional calculus based diffusion model
can be successfully applied to analyze the diffusion images
of human brain tissues; as well as new insights of the tissue
structures and the micro-environment. Generally, it is difficult
to develop robust numerical methods to handle the FBEs in
[26], [37], as they are defined based on the fractional operators.
Hence, work that similar to us, [39] derive the numerical
methods for time-fractional Bloch equations (TFBE) and the
anomalous fractional Bloch equations (AFBE), and [19], [27]
proposed numerical solutions for FBEs. However, it assumed
that the model is in the deterministic state, and effective
numerical solutions for the fractional Bloch equation (FBE)
are still limited.

According to [15], [16], the applications of the fuzzy
concept have appeared more visibly instead of deterministic-
stochastic cases. In this paper, we extend the TFBE to fuzzy
domain such that these extensions have natural relationship
between the crisp and fuzzy cases, as well as a natural relation
between fuzzy fractional and fuzzy non-fractional cases. Our
assumption is that M(t) can be seen as a fuzzy function
with fuzzy Caputo fractional derivative, c0D

α
t , and uncertain

initial conditions. With this, this view is not associated with
any of the above hypothesis, although it can include them.
It also allows us to consider a wider range of possibilities

to incorporate a more diverse behavior and to reflect a non-
exactly known parameter. Moreover, in a real-world problem,
the unknown quantity M(t) will typically have a certain
physical meaning (e.g. a dislocation), however it is not well
defined what the physical meaning of a fractional derivative
of M(t) is, and hence it is also not clear how such a
quantity can be measured. In other words, the essential data
merely will not be available in practice. However, the situation
is unlike, when we deal with Caputo derivatives. We can
specify the initial values M(0),M ′(t), ...,M (m−1)(0), i.e., the
function value itself and integer-order derivatives. Typically,
these data have a well understood physical meaning and could
be measured. As we have described above, for the Riemann-
Liouville approach this generalization is connected with major
practical complications [18]. It is with this motivation that
we introduce the fuzzy time-fractional Bloch equations under
fuzzy Caputo differentiability.

As a summary, we considered the numerical solution of
FTFBE in the literature for the first time. To this end, we
introduced the fuzzy fractional Adams-Bashforth (predictor)
and the fuzzy fractional Adams-Moulton (corrector) as our
proposed numerical scheme with discussions on the error
analysis.

III. PRELIMINARIES

We first provide an overview of some common properties
of fuzzy settings theory and fuzzy differential equations of
integer and fractional order. For detailed, one can refer to [2],
[17], [35].

We denote the set of all real numbers by R and the set of
all fuzzy number on R is indicated by E. A fuzzy number is
a mapping u : R→ [0, 1] with the following properties:

(a) u is upper semi-continuous,
(b) u is fuzzy convex, i.e., for all x, y ∈ R, λ ∈ [0, 1]:

u(λx+ (1− λ)y) ≥ min{u(x), u(y)},
(c) u is normal, i.e., ∃ x0 ∈ R for which u(x0) = 1,
(d) supp u = {x ∈ R | u(x) > 0} is the support of the

u, and its closure cl(supp u) is compact
Definition 3.1: A fuzzy number u in parametric form is a

pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfy
the following requirements:

1) u(r) is a bounded non-decreasing left continuous func-
tion in (0, 1], and right continuous at 0,

2) u(r) is a bounded non-increasing left continuous func-
tion in (0, 1], and right continuous at 0,

3) u(r) ≤ u(r), 0 ≤ r ≤ 1.
Reference to Zadeh,s extension principle, operation of addition
on E is defined as:

(u⊕ v)(x) = sup
y∈R

min{u(y), v(x− y)}, x ∈ R, (2)

and scalar multiplication of a fuzzy number is given by

(k � u)(x) =

{
u(x/k), k > 0,

0̃, k = 0,
(3)
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where 0̃ ∈ E. It is well known that the following properties
holds for all levels:

[u⊕ v]r = [u]r + [v]r (4)

[k � u]r = k[u]r (5)

Definition 3.2: Let u ∈ E and r ∈ [0, 1], the r-cut of u is
the crisp set [u]r that contains all elements with membership
degree in u greater than or equal to r, i.e.

[u]r = {x ∈ R|u(x) ≥ r} (6)

For a fuzzy number u, its r-cuts are closed intervals in R and
can be denoted as

[u]r = [ur, ur] (7)

Definition 3.3: The distance D(u, v) between two fuzzy
numbers u and v is defined as

D(u, v) = sup
r∈[0,1]

dH([u]r, [v]r) (8)

where dH([u]r, [v]r) = max {|ur − vr|, |ur − vr|} is the
Hausdorff distance between [u]r and [v]r. It is easy to see
that d is a metric in E and has the following properties [33]:

(a) d(u+ w, v + w) = d(u, v), ∀u, v, w ∈ E,
(b) d(ku, kv) = |k|d(u, v), ∀k ∈ R, u, v ∈ E,
(c) d(u+v, w+e) ≤ d(u,w)+d(v, e), ∀u, v, w, e ∈ E,
(d) (d,E) is a complete metric space
Definition 3.4: Let x, y ∈ E, if there exists z ∈ E such

that x = y + z, then z is called the H-difference of x and y,
and it is denoted by x	 y. In this paper, the sign ”	” always
stands for H-difference, and also note that x	y 6= x+(−1)y.

Definition 3.5: ( [14]) Let f : (a, b)→ E and x0 ∈ (a, b),
f is strongly generalized differentiable at x0, if there exists
an element f ′(x0) ∈ E, such that

(i) for all h > 0 sufficiently small, there exist
f(x0 + h) 	 f(x0), f(x0) 	 f(x0 − h) and the
limits (in the metric d): limh↘0

f(x0+h)	f(x0)
h =

limh↘0
f(x0)	f(x0−h)

h = f ′(x0)

or
(ii) for all h > 0 sufficiently small, there exist

f(x0) 	 f(x0 + h), f(x0 − h) 	 f(x0) and the
limits (in the metric d): limh↘0

f(x0)	f(x0+h)
−h =

limh↘0
f(x0−h)	f(x0)

−h = f ′(x0)

where h and −h at denominators mean 1
h and −1

h , respectively.
It should be mentioned here the function which is satisfied
in Case (i) is called as (1)-differentiable function while Case
(ii) is known as (2)-differentiable function.

The principal properties of the derivatives can be found
in [14]–[16]. In this paper, we make use of the following
theorem:

Theorem 3.1: ( [16]) Let f : R → E be a function and
denote f(x; r) =

[
f(x; r), f(x; r)

]
, for each r ∈ [0, 1]. Then,

1) If f be a (1)-differentiable function, then f(x; r) and
f(x; r) are differentiable functions and [f ′(x)]

r
=[

f ′(x; r), f
′
(x; r)

]
,

2) If f be a (2)-differentiable function, then f(x; r) and
f(x; r) are differentiable functions and [f ′(x)]

r
=[

f
′
(x; r), f ′(x; r)

]
.

Definition 3.6: ( [35]) Let f ∈ C(J,E) ∩ L1(J,E), the
Riemann-Liouville integral of fuzzy-valued function f is de-
fined as

(RLIα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)dt

(x− t)1−α , x > a, 0 < α ≤ 1.

(9)
Definition 3.7: ( [35]) Let f ∈ C(J,E) ∩ L1(J,E) and

x0 ∈ J and Φ(x) = 1
Γ(1−α)

∫ x
0+

f(t)
(x−t)α dt, f(x) is fuzzy

Caputo fractional differentiable of order 0 < α ≤ 1 at x0,
if there exists an element (cDα

0+f)(x0) ∈ C(J,E) such that
for all 0 ≤ r ≤ 1, h > 0,

(i) (cDα
0+f)(x0) = lim

h→0+

Φ(x0+h)	Φ(x0)
h =

lim
h→0+

Φ(x0)	Φ(x0−h)
h ,

or
(ii) (cDα

0+f)(x0) = lim
h→0+

Φ(x0)	Φ(x0+h)
−h =

lim
h→0+

Φ(x0−h)	Φ(x0)
−h

The fuzzy-valued function f c[1 − α]-differentiable if it is
differentiable as in the Definition 3.7, Case (i), and f is c[2−
α]-differentiable if it is differentiable as in the Definition 3.7,
Case(ii).

Theorem 3.2: ( [35]). Let 0 < α ≤ 1 and f ∈ C(J,E) ∩
L1(J,E), then the fuzzy Caputo fractional derivative exists
almost everywhere on J and for all 0 ≤ r ≤ 1, we have

(cDα
0+f)(x; r) = [ 1

Γ(1−α)

∫ x
0+

f ′r(t)dt

(x−t)α ,
1

Γ(1−α)

∫ x
0+

f
′r(t)dt

(x−t)α ,]

= [(I1−α
0+ Dfr)(x), (I1−α

0+ Df
r
)(x)],

(10)
when f is (1)-differentiable, and

(cDα
0+f)(x; r) = [ 1

Γ(1−α)

∫ x
0+

f ′r+(t)dt

(x−t)α ,
1

Γ(1−α)

∫ x
0+

f ′r−(t)dt

(x−t)α ,]

= [(I1−α
0+ Dfr+)(x), (I1−α

0+ Dfr−)(x)],
(11)

when f is (2)-differentiable.

IV. ANALYTICAL SOLUTION OF THE FTFBE

In this section, we derive the analytical solutions for the
FTFBE. With this, we can ascertain the accuracy of our
proposed numerical solutions.

The FTFBE can be written as:
c
0D

α
t X(t) = AX(t) + f(t) (12)

with initial condition X(0) = X0, and the matrix A stated by

A =

 − 1
s2

s0 0

−s0 − 1
s2

0

0 0 − 1
s1

 ∈ R3×3.

Also, f(t) = (0, 0, X0

s1
)T , X(t) = (Xx(t), Xy(t), Xz(t))

T

and X0 = (Xx(0), Xy(0), Xz(0))T are fuzzy vectors.
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Note that, the coefficients of A are expressed as follow:

s0 =
w0

τα−1
2

,
1

s1
=
τα−1
1

T1
,

1

s2
=
τα−1
2

T2
, α ∈ (0, 1] (13)

where τ1 and τ2 are fractional time constant.
Theorem 4.1: Consider the following condition:{

c
0D

α
t X(t) = AX(t),

X(0) = X0 ∈ E,
(14)

where A ∈ Rn×n, has a solution under (1−α)-differentiability
given by

X(t) =

∫ t

0

e(t−ξ)A
α AX0dξ +X0 (15)

and has a solution (2− α)-differentiability given by

X(t) = X0 	 (−1)

∫ t

0

e(t−ξ)A
α AX0dξ. (16)

Now, in order to find the general solution of FTFBE, we
consider the following Banach space:

Cβ
F =

{
h(t) ∈ CF : ||h||cβ = ||(t− a)

β
h(t)||c <∞

}
(17)

where ||h||c = max
t∈[a,b]

d(h(t), 0̃) and CF is the set of all

continuous fuzzy-valued functions.
Then, using Definition 3.5, Definition 3.7, Theorem 3.2 and

Theorem 4.1, we can obtain an explicit general solution of the
Eq. 12 (FTFBE) by Theorem 4.2.

Theorem 4.2: Consider the following condition:{
c
0D

α
t X(t) = AX(t) + f(t),
X(0) = X0 ∈ E,

(18)

where A ∈ Rn×n and f ∈ C1−α[0, T ], has a solution under
(1− α)-differentiability given by

X(t) = X0 +

∫ t

0

e(t−ξ)A
α [f(ξ) +AX0]dξ (19)

that is valid when A is positive and has a solution (2 − α)-
differentiability given by

X(t) = X0 	 (−1)

∫ t

0

e(t−ξ)A
α [f(ξ) +AX0]dξ (20)

that is valid when A is negative.
Remark 4.1: In fact we can rewrite the exact solutions

under (1− α)− and (2− α)-differentiability as follows:

X(t) =

∫ t

0

e(t−ξ)A
α f(ξ)dξ+[AtαEα,α+1(tαA)+I]X0, (21)

and

X(t) = X0 	 (−1)

∫ t

0

e(t−ξ)A
α f(ξ)dξ + [AtαEα,α+1(tαA)]

(22)

V. FUZZY FRACTIONAL PREDICTOR-CORRECTOR
METHOD

In this section, we investigate the numerical solutions of the
FTFBE using our proposed fuzzy fractional predictor-corrector
method (FFPCM). For this purpose, let us consider the FTFBE
with initial condition:{

c
0D

α
t X(t) = −K1X(t) + f(t),

X(0) = X0 ∈ E,
(23)

where X0 is a fuzzy initial vector condition and α ∈ (0, 1]. It
is easy to verify that this problem is equivalent to the following
fuzzy Volterra integral equation under (1−α)-differentiability

X(t) = X0+
1

Γ(α)

∫ t

0

(t− ξ)α−1
[−K1X(ξ)+f(ξ)]dξ (24)

and under (2− α)-differentiability, we have

X(t) = X0 	 (−1)
1

Γ(α)

∫ t

0

(t− ξ)α−1
[−K1X(ξ) + f(ξ)]dξ

(25)
In this paper, we adopted the fractional Adams-Bashforth as

the predictor and the fractional Adams-Moulton as the correc-
tor formulas [38]; and derive a novel fuzzy fractional Adams-
Bashforth (predictor) as well as fuzzy fractional Adams-
Moulton (corrector). Here, due to the space constraints, we
only consider the state the numerical method under (2 − α)-
differentiability.

We formulate the fuzzy fractional Adams-Bashforth ap-
proach, the predictor XP

k+1 as follows:

XP
k+1 = X0 	 (−1)

1

Γ(α)

k∑
j=0

mj,k+1[−K1Xj + f(tj)] (26)

where

mj,k+1 =
τα

α
[(k + 1− j)α − (k − j)α].

Note that, for sake of simplicity we used a uniform discrete
scheme tj = jτ, j = 0, 1, ..., n and T = nτ , where T is the
final time. Also, we formulate the fuzzy fractional Adams-
Moulton approach as the corrector by

Xk+1 = X0 	 (−1) 1
Γ(α) (

k∑
j=0

aj,k+1[−K1Xj + f(tj)]

ak+1,k+1[−K1X
P
k+1 + f(tk+1)]),

(27)
where

aj,k+1 =
τα

α(α+ 1)
×


kα−1 − (k − α)(k + 1)

α
, j = 0,

(k − j + 2)
α+1

+ (k − j)α+1

−2(k − j + 1)
α+1

, 1 ≤ j ≤ k,
1, j = k + 1.
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A. Error analysis of FFPCM
Here, we present a theorem concerning the error of our

FFPCM.
Lemma 5.1: Suppose that f ∈ C1[0, T ], then

d(
∫ tk+1

0
(tk+1 − t)α−1f(t)dt,

k∑
j=0

mj,k+1f(tj)) ≤
1
αd∞(z′, 0̃)tαk+1τ,

(28)

where d∞(z, 0̃) = max
0≤t≤T

d(z(t), 0̃).

Lemma 5.2: Suppose that f ∈ C2[0, T ], then we have

d(
∫ tk+1

0
(tk+1 − t)α−1f(t)dt,

k∑
j=0

aj,k+1f(tj)) ≤

Nαd∞(z′′, 0̃)tαk+1τ
2,

(29)

where Nα is a constant depends on α.
Theorem 5.1: Suppose the c

0D
α
t X ∈ C2[0, T ], then

max
0≤j≤n

d(X(tj), Xj) = O(τ1+α) (30)

VI. CASE STUDY

In order to show the efficiency of the proposed FFPCM, we
consider the following FTFBE with initial condition:{

c
0D

α
t X(t) = −K1X(t) + f(t),

X(0) = 0,
(31)

where 0 < α ≤ 1, K1 > 0 and f(t) = C(K1t
α + Γ(1 + α)).

The exact solution under (2− α)-differentiability is obtained
as follows:

X(t) = Ctα (32)

where C = (−1 + r, 1 − r). The exact solution of Eq. 31 is
shown for different r-cuts in Fig. 1 with K1 = 1 and α = 0.5.
Now, in order to obtain the numerical solution in compare
of the given exact solution we used the parameter α = 0.7,
K1 = 1. The comparison between exact and approximate
solution of the model is depicted in Fig. 2. Indeed in 0-cut
position, the approximation of the upper solution coincide
with the deterministic case proposed by Yu et al. [39] which
demonstrate the effectiveness of the method in the fuzzy sense.
Also, absolute errors between fuzzy approximate solution and
the corresponding exact solutions, i.e. [Ne]

r = [N1
r
e, N2

r
e] =[

|Xr
n −X

r|, |Xr

n −X
r|
]

are shown in Fig. 3. It is clearly
seen that the proposed solution is in excellent agreement with
the fuzzy exact solution.

VII. CONCLUSION

In this paper, we considered the numerical solution of fuzzy
time-fractional Bloch equation (FTFBE) in the literature for
the first time. To this end, an analytical solution and an
effective fuzzy predictor-corrector method (FPCM) for solving
the FTFBE have been derived. Experiment using a fuzzy
fractional-order problem has demonstrated the capability of the
newly proposed method. In future, we will consider (i) some
other cases for A such that it is neither negative nor positive,
(ii) the numerical method under (1 − α)-differentiability and
(iii) application in image processing domain [6], [9].
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