
Ontology-based Service Matching in Cloud
Computing

Li Liu
School of Automation and

Electrical Engineering
University of Science and

Technology Beijing
Beijing, China

liuli@ustb.edu.cn

Xiaofen Yao
School of Automation and

Electrical Engineering
University of Science and

Technology Beijing
Beijing, China

Liangjuan Qin
School of Information

Technology and Management
University of International
Business and Economics

Beijing, China
ljqin@uibe.edu.cn

Miao Zhang
School of Automation and

Electrical Engineering
University of Science and

Technology Beijing
Beijing, China

s20130926@xs.ustb.edu.cn

Abstract—This paper focuses on how to maximize accuracy of
Cloud service discovery and give enough flexibility to Cloud
customers to discover their best suited services from a range of
Cloud providers. An ontology-based Cloud service discovery
approach is proposed, which works based on modeling
semantically enriched Cloud services, ontology reasoning and
logic matchmaking. Cloud customers have different
preferences for non-functional attributes, ranking discovered
services according their preference can help select the most
appropriate cloud service. Experimental results show that the
discovered services not only meet customer’s requirements in
semantics but also satisfy QoS requirements given in the terms
of SLA.

Keywords—Cloud Computing; Ontology; Service Level
Agreements (SLA); Service Discovery

I. INTRODUCTION
Cloud computing is a large scale application of

distributing computing, whereby shared virtualized
resources, software, and information are provided as
virtualized-encapsulating services delivered on demand to
customers over the Internet[1]. Cloud services have generally
three different service delivery models, i.e., Infrastructure-as-
a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS) [2][3] .

Service discovery is a procedure of searching for required
services which their functional and non-functional semantics
satisfy a customer’s goal. Cloud services are typically
accessed using brokers. The broker allows customers to
submit a service request to Cloud request, including required
set Service Level Agreement (SLA) objectives for that
service. The broker will then proceed to match available
service descriptions of Cloud provider to service request
description and find candidate services which can provide
expected functionality. However, only functional service
descriptions are not sufficient for service discovery process.
Usually customers also have some non-functional QoS

demands, such as a limited budget, the minimal time and
cost, or a strict response time (deadline), etc. A key
advantage of Cloud service is dynamically and automatically
service on demand. Furthermore, as more and more Cloud
services are available, there is often a case where many of
them can satisfy functional demands of a service request.
Therefore, it leads to the issue of quickly and efficiently
matchmaking and ranking to select the best services for the
requested among a list of candidate services.

This paper focuses on how to maximize accuracy of
Cloud service discovery and give enough flexibility to Cloud
customers to discover their best suited services from a range
of Cloud providers. We use ontology to service discovery to
enhance the service semantic information. We designed a
Cloud ontology contained a set of concepts for similarity
reasoning. These ontology concepts allows the broker have a
better way to understand the meaning of a cloud service, and
can further improve service matching results.

Each performance factor is defined in terms of SLA
called Service Level Objectives (SLO) which are used for
computing overall quality degrees of cloud services with
respect to a request’s QoS demands. Such SLO information
can be performance (response time, latency etc.), availability,
cost, security, etc., which have substantial impacts on user’s
expectation. Hence we use SLO as main factor to distinguish
and rank cloud services. Furthermore, we propose an
Ontology-based and SLA-aware service discovery algorithm,
which apply ontology to match cloud services with user’s
requirements, as well we use SLO-based sequence vector
ranking algorithm to select the fittest services. Experimental
results show that the selected services not only meet
customer’s requirements in semantics but also satisfy the
QoS demands given in the terms of SLA.

Our proposed approach brings the following two
benefits: (1) In service matching phase, we consider the
equivalence concepts which are same in semantics but

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2544

different in syntax. So our algorithm can improve accuracy
of Cloud service discovery; (2) It can find the most suitable
Cloud service taking into account of user QoS requirements
specified in SLO.

The remainder of this paper is organized as follows: in
the next section we discuss prior works related to service
discovery method in cloud. In section 3 we propose SLA-
based service discovery method. Then we rank the candidate
services by user’s non-functional property preferences in
section 4. We make simulation environment for cloud via
CloudSim and present evaluation results in section 5 to
certify the validity of the methodology. Finally, section 6
concludes the paper with a brief summary and describes our
future research directions.

II. RELATED WORK

The process of service discovery is to find out
appropriate service which could satisfy the user’s
requirements among a range of services. Current approaches
to service discovery can be divided into symmetric attribute-
based and semantic-based matching between user
requirements and services provider[4]. In a heterogeneous
Cloud environment, it is difficult to make syntax and
symmetric of QoS descriptions of services and user
requirements. Therefore, building semantics descriptions can
provide an inter-Cloud language which helps customers
quickly and accurately discover the required service.

Existing cloud service discovery methods are as follows.
Le Duy Ngan et al. [5] presented OWL-S based semantics
cloud service discovery and selection system, which adopts
the OWL-S (Ontology Web Language for Services)
Language to describe Cloud services and user requirements.

The service discovery process supports complex
constraints and makes the semantics match dynamically.
Amir Vahid Dastjerdi et al. [6] proposed a WSMO-based
cloud service discovery method, by using Web Service
Modeling Ontology (WSMO) language. The ontology
concepts of virtual units and requirements are defined in
WSMO, and translate the user’s requirements such as OS
and hardware requirements into a standard semantics.

Then an ontology-based service discovery method is
proposed to search for appropriate services. This method can
help users find suitable applications effectively from
different suppliers. Since most users want to find service
accurately, while QoS is a critical factor for service accuracy
and it is able to distinguish the web services which have
similar function.

 In this case, Pon Harshavardhanan et al. [7] proposed a
QoS-Broker architecture for dynamic web services
discovery, which the QoS properties are stored in the
database by QoS Broker (as a behalf of service providers).
Users can search for specific services in QoS database via
service select component which can help to select
appropriate services according to their functional or

nonfunctional requirements and personal preferences.
Jaeyong Kang et al. [8] presented a multi-criteria cloud
service search engine. In order to enhance the accuracy of
service discovery, the user can specify the functional,
technical and cost requirements as input parameters. The
system can return service list according these parameters
based on the similarity reasoning between cloud services and
users requirements. Michael Brock et al.[9] proposed cluster
as a service mode in the cloud environment, which helps
users discovery, selection and use the existing computing
cluster service.

Different from existing service matching methods, the
Ontology-based matching algorithm presented in this paper
has considered the equivalence concept to increase the
service matching success rate. In order to help user select the
fittest services, we propose a service selection method which
combines the analytic hierarchy process (AHP)[15] with
preference ranking organization method for enrichment
evaluations (PROMETHEE)[16], in which AHP is used to
determine the weights of attributes according to users’
preferences, and PROMETHEE is used to obtain the final
rank of candidate services.

III. SLA-BASED SERVICE MATCHING ALGORITHM

The typical architecture of a Cloud services includes
three roles, namely Cloud customer, Service broker and
Cloud service provider. The Cloud customer sends a service
request to the broker, and then the broker searches for the
service repository based on required SLO; finally matching
service providers should be sent back by the broker. If the
broker finds a set of services satisfy the functional
requirements of customer, how to select the fittest service
based on the user preferences is a key issue.

A. Cloud Service Ontology

Ontology can be defined as explicating semantics of a
shared concept. It also provides a shared understanding of a
domain of interest to support communication among
computers and human by defining shared and common
domain theories [10][11]. Ontology has been developed to
facilitate knowledge sharing and reuse in the field of
artificial intelligence. Ontology can be used to describe
properties of service demand and capabilities to enable
Cloud service providers to advertise their services.
Considering one type of Cloud services IaaS as an example,
there are a number of computing resources, such as
processing power, storage, networks, and other fundamental
computing resources. The purpose of creating cloud
Ontology is to enhance semantic information and let the
computer understand the meaning of the concept expressed
by service provider and customer, to realize semantic-based
services discovery.

The domain model and vocabulary for expressing service
are showed in Fig. 1. Our IaaS Cloud ontology defines the
hierarchical relations of Cloud concepts. For example, there

2545

are four different concepts (CPU,RAM,HDD,OS) in each service of IaaS. Each concept has several sub-concepts

Fig. 1 IaaS cloud ontology

respectively, such as OS has children nodes Linux, Windows,
Apple. Windows include WinXP, Win2000, Vista, and so on.

Fundamentally the ontology reasoning is used to extract
implicit knowledge of concept, and get the matching degree
of any two concepts by reasoning and calculating the
similarity between two concepts. On the base of Cloud
ontology, the similarity reasoning is explained in next
section.

B. Matchmaking method ܵ is property vector of IaaS, ܴ is user’s requirements
vector for IaaS service . Service matching is to find the

appropriate service to satisfy the user’s functional goal based
on the ontology concepts.

From the ontology concepts of IaaS cloud depicted in fig.
1, we know that some concepts are same in semantics but
different in syntax, as well there are some inheritance
relation between concepts. For the concepts with same
semantics but different syntax, we defined them as
equivalence matching. The inheriting concepts are defined
containing matching. The four matching type include same
comparison, equivalence matching, containing reasoning and
similarity matching. The matching step is shown in fig. 2.

Fig. 2 the matching procedure

• same comparison We firstly calculate the concept similarity between user’s requirements and provided cloud services. Only when each concept in service ܵ is exactly equal to corresponding concept in request ܴ, that is service ܵ satisfy request ܴ . If same comparison is false, then go to the next equivalence matching step. For example,

ܴሺܴ א ܴሻ is Win2000, and the corresponding concept ܵሺ ܵ א ܵሻ is Win2000, then the two concepts are same.
• equivalence matching If two concepts are not exactly equal, then carry out the equivalent matching. If the result of matching is

2546

 equivalent, then matching the next concept in ܵ and ܴ until the end, else go to the next containing reasoning step. For example, ܴ is Win2000 and the corresponding concept ܵ is Windows2000, that is the two concepts are equivalent matching.

• containing reasoning If two concepts are not exactly equal and equivalent, then execute containing reasoning, which is mainly to solve the inheritance relationship between concepts. If the comparison result shows that the two concepts are containing relation, then matching the next concept in ܵ and until the end, else go to the next similarity matching step. For example, if ܴ is Win2000, and the corresponding concept ܵ is Windows, that is to say ܵ contains ܴ, so the two concepts are containing relation.
• similarity matching If the relationship between each concept in requirement and service is not any one of the above three cases, then the similarity matching is performed, which is to calculate the degree of similarity between two concepts. If the degree of similarity is no less than user’s threshold, two concepts are defined as similarity. For example, ܴ is Win2000, and the corresponding concept ܵ is LinuxLinux, then the two concepts are similar. If the relation of concept between request and services provider is not any of the above four cases, that is this service unsatisfied with the user’s request. Then to find the other cloud service from the registry to match with user’s requests until all services processed.

C. Similarity calculation

The similarity value between ܴ and ܵ is calculated by
Eq.1.

 ܵ݅݉ሺܴ, ܵሻ ൌ ∑ ߱ܵ݅݉ሺܴୀଵ , ܵሻ (1)

 Where ߱ א ሾ0,1ሿ is weight coefficient defined the
degree of influence, and ∑ ߱ୀଵ =1. SimሺR୧, S୧ሻ ൌ Simୡ୭୬୮ሺR୧, S୧ሻ Sim୮୰୭୮ሺR୧, S୧ሻ (2) ݅ ൌ ሺ1, … , ݊ሻ , where ܵ݅݉ሺܴ, ܵሻ is the concept
similarity, ܵ݅݉ሺܴ, ܵሻis the property similarity. ܵ݅݉ሺܴ, ܵሻ is calculated by counting common
reachable nodes between two concepts [12][13]. the concept
similarity is calculated as Eq.3: ܵ݅݉ሺܴ, ܵሻ ൌ |ఈሺோሻתఈሺௌሻ||ఈሺோሻ| ሺ1 െ ሻߩ |ఈሺோሻתఈሺௌሻ||ఈሺௌሻ|

(3)

 Where, ߩ א ሾ0,1ሿ is the influence degree. ߙሺܴሻ is the
number of reachable nodes from root to ܴ, ߙሺܴሻ ת ሺߙ ܵሻ is
the number of the reachable nodes shared by ܴ and ܵ ,

represent the commonality between concepts ܴ and ܵ .
Such as the CPU concept in cloud ontology shown in fig.1,
there are three reachable nodes from the concept CPU to
Pentium, two reachable nodes from the concept CPU to
AMDCPU. The concept Pentium and AMDCPU have only
one common reachable node, i.e. ሻ݉ݑ݅ݐሺܲ݁݊ߙ ൌ ሻܷܲܥܦܯܣሺߙ,3 ൌ 2, ݉ݑ݅ݐሺܲ݁݊ߙ ת ሻܷܲܥܦܯܣ ൌ 1.

If set ߩ ൌ 0.5, then the similarity between Pentium and
AMDCPU is: ܵ݅݉ሺܲ݁݊݉ݑ݅ݐ, ሻܷܲܥܦܯܣ ൌ 0.5 ൈ 1 3 0.5 ൈ 1 2⁄⁄

 if the threshold Tୡ 0.4 , then the two concepts are
similar.

The property similarityܵ݅݉ሺܴ, ܵሻ can be calculated
by Eq.4. ܵ݅݉ሺߤሺܴሻ, ሺߤ ܵሻ, ሻܥ ൌ 1 െ ฬߤሺܴሻ െ ሺߤ ܵሻܥ௫ െ ܥ ฬ ሺ4ሻ

Where ߤሺܴሻ and ߤሺ ܵሻ represent the value of property, ܥ represents the concept that owns the property, ܥ௫ and ܥ indicates the range of the property. For example, the

maxmum size of hard disk is 800G, and the minimum size is
100G, then the similarity between 400G and 500G hard disk
is ܵ݅݉ሺ400,500, ሻܦܦܪ ൌ 1 െ ቚସିହ଼ିଵቚ ൌ 0.86 , if the
similarity value is greater than the threshold , the matching
successfully.

IV. SERVICE RANKING
Most users not only have functional requirements, they

also have some non-functional property requirements. For
example, users require a limited cost of services or minimal
response time. Based on non-functional properties
preference descript in SLO, the candidate services having
similar function are ranked to find appropriate service by our
service selection method which combines the analytic
hierarchy process (AHP)[15] with preference ranking
organisation method for enrichment
evaluations(PROMETHEE)[16]. AHP is used to determine
the weights of user’s preferences, and PROMETHEE is used
to obtain the final rank of candidate services.

A. Weights of Metric

The AHP method is used to determine the weights of
QoS metrics.

• Construct the hierarchy
As a example which QoS metrics including response

time, cost, reliability and availability, the hierarchy is
generated as shown in Fig.3. The higher level is determined
or measured by lower level attributes.

• Assign weight to each metric
Users adopt a pairwise comparison mechanism to

determine the relative priority of each metric, and construct
pairwise comparison matrix ܣ. For example, comparing the

2547

relative importance between response time and cost, that is to
determine which one has a greater impact to the user’s
preference in the case of other properties are the same, and

Fig. 3 The AHP hierarchy model of service selection

how much the degree of influence will be. Usually integer1-

9 is used for pairwise comparison: 1 means the equal

importance, 9 means the highest level of importance. After

the pairwise comparison, matrix ܣ ൌ ሺߙሻൈ ሺm is the

number of metrics) is as (5).

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a

A
a a a a
a a a a

= （5）

where ߙ ൌ 1, ߙ ൌ 1 ⁄ߙ , The weights for each metric

are given by the right eigenvector ݓ corresponding to the
highest eigenvalue ߣ௫ሺܣሻ , The weight ߱ derived by
matrix ܣ, and obtained by the equation ߱ܣ ൌ ሻ߱ , ߱ ൌܣ௫ሺߣ ሺ߱ ଵ, … , ߱ ሻ்.

• Consistency check
The purpose of consistency check is for testing

coordination of the important degree between each attribute.
To avoid appearing the contradiction such as: A is more
important than B, B is more important than C, and C is more
important than A. For example, it is inconsistent in the case
where a service user thinks that response time is strongly
more important than reliability, and reliability is moderately
more important than cost, and cost is moderately more
important than availability. The consistency index (CI) is
shown as Eq.6 ܫܥ ൌ ௫ߣ െ ݊݊ െ 1 ሺ6ሻ

 The consistency ratio (CR) is calculated as ܴܥ ൌ ூோூ ,
indicates whether the evaluations are sufficiently consistent.

The RI is obtained from the random consistency index table.
If ܴܥ 0.1, the consistency rate is acceptable; otherwise,
matrix A needs to be revised to calculate again. Finally, the
weight of each trust metric can be obtained.

B. Service ranking

PROMETHEE is used to rank the candidate services, and
the process is shown in the following:

Define the preference functions and parameters for
metrics. PROMETHEE performs pairwise comparisons by
considering the deviation between the evaluations of the
alternatives. Two candidate services ݏଵ ଶݏ , compare on the
property j ,and the comparison results express with the
preference function ܲሺݏଵ, ଶሻݏ , the greater the preference
function value, the better performance the candidate service
on that attribute. The preference function is denoted as Eq.7.

 1 2 1 2(,) [(,)]j j jP s s f d s s= , ,ଵݏ ଶݏ א ܵ (7)

where ݀ሺݏଵ, ଶሻݏ ൌ ܳሺݏଵሻ െ ܳሺݏଶሻ is the difference

between the evaluation of tow service for criterion Qj.
PROMETHEE has six pre-defined preference functions(PF)
according to the inherent characteristics of the metrics. The
preference function of response time is a linear criterion.
When the difference is smaller than the indifference
threshold it is considered as negligible (criterion preference
degree is equal to zero). If the difference exceeds the
preference threshold it is considered to be significant
(criterion preference degree is equal to one). When the
difference is between the indifference and preference
thresholds, an intermediate value is computed for the
preference degree using a linear interpolation. The
preference function of price is a V-shaped criterion, meaning
that in a certain acceptable range, preference increases
linearly with the difference, out of the acceptable range, the
low cost service has an absolute advantage, and preference
degree is 1. The preference function of reliability and
availability is a Gaussian criterion.

 When a preference function has been associated to each
criterion by the decision maker, all comparisons between all
pairs of actions can be done for all the criteria. A multi-
criteria preference degree as Eq.8 [16]: ߨሺݏଵ, ଶሻݏ ൌ ∑ ߱ୀଵ ܲሺݏଵ, ,ଵݏ ଶሻݏ ଶݏ א ܵ (8)

where ߨሺݏଵ, .ଶ on all the property metricsݏ ଵ is preferred overݏ ଶሻ measures how muchݏ

The positive, negative and net preference flows[16] is as
from Eq.9 to Eq.11 differently. ߶ାሺݏሻ ൌ 1|ܵ| െ 1 ,ݏሺߨ ሺௌିሼ௦ሽሻאሻ௫ݔ ሺ9ሻ

߶ିሺݏሻ ൌ 1|ܵ| െ 1 ,ݔሺߨ ሺௌିሼ௦ሽሻאሻ ሺ10ሻ௫ݏ

 ߶ሺݏሻ ൌ ߶ାሺݏሻ െ ߶ିሺݏሻ (11)

2548

Where |ܵ| is the number of service S. The positive

preference flow ߶ାሺݏሻ quantifies how a candidate service S
is preferred to all the others, while the negative preference
flow ߶ିሺݏሻ quantifies how a candidate service S is being
preferred by other services. An ideal action would have a
positive preference flow equal to 1 and a negative preference
flow equal to 0. The positive and negative preference flows
are aggregated into the net preference flow ߶ሺݏሻ calculated
by equation (11), which is defined as the intersection of these
two rankings.

C. Ranking algorithm

Step1: obtaining non-functional property from the
candidate services, such as the cost, response time, reliability
and availability.

Step 2: The AHP method is used to determine the
weights of property metrics, first constructing the hierarchy
which contains the target layer, the property layer and the
solution layer. Then we use a pairwise comparison
mechanism to determine the relative priority of each metric
and getting comparison matrix A. Finally verify the
consistency of the matrix A.

Step3: Select the preference functions base on the
inherent characteristics of the property metrics. Using
PROMETHEE method to calculate the positive preference
flow ߶ା , the negative preference flow ߶ି and the net
preference flow ߶.Then ranking the candidate services based
on the net preference flow ߶.

Step4: Finally, the rank of candidate services can be
generated and the service with higher preference degree will
be selected.

V. EXPERIMENT RESULTS
In this section our approach is evaluated on a case study

to show the effectiveness of the proposed algorithm and
tested in cloud computing simulation software
CloudSim[17]. First we use ontology development tool
Protégé3.4.8 to build IaaS cloud ontology. Then we use
Cloudsim to call ProtégéOWL-API to read into the OWL
file, so the application can access ontology information
which are stored in OWL file, then execute the ontology
query and reasoning operations. In order to verify the
effectiveness of the matching methods, we test a series of
data set in different range among 10-50 services.

Our experiment includes the following three cases: A is
without the cloud ontology, in this situation we can get the
matching results only when the two concepts are equal
exactly. B is with the cloud ontology, consider containing
reasoning and similarity matching, but not consider the
equivalence concept. C is with the cloud ontology, and takes
into account the equivalence concept. The precision ratio of
service matching is shown in fig.4, which is the ratio of the
number of success matching to the number of all related
candidate services. As fig.4 shown, the precision ratio

increased significantly when considering the cloud ontology
and the non-functional attributes of the user preferences.

Fig. 4 precision rate of service matching for three cases

In order to verify whether the proposed service matching
method can effectively express a user's personalized
preference, we assume that there are two users named ଵܷ and ଶܷ needing to decide which service to select. The user’s
preferences are expressed as follows:

 Assume that ଵܷ sets response time as the most
important metric, followed by cost, reliability and
availability. The pairwise comparison matrix ܣଵ is
constructed. ௫ߣ ൌ 4.18 ܴܥ , ൌ 0.07 ൏ 0.1 .The weights
are ω ൌ ሾ0.44,0.081,0.119,0.359ሿ

 Assume that ଶܷ sets availability as the most important
trust metric, followed by response time, reliability and cost.
The pairwise comparison matrix ܣଶ is constructed. ߣ௫ ൌ4.201 and ܴܥ ൌ 0.075 ൏ 0.1 . The weights are ω ൌሾ0.249,0.166,0.049,0.535ሿ. Then, the weights are filled into
Table I, and the positive, negative and net outranking flows
are calculated separately.

TABLE I PREFERENCE FUNCTIONS AND PARAMETERS

We select the top 30% services of the ranking queues,

and calculate the average metric values of all candidate
services. In order to show the intuitive comparison results,
the response time and price are decreased 10 times. The
comparison results of service selected with different QoS
metric considering user’s preference are shown in Fig.5.

Fig.5 show that the average values of ଵܷ's response time
and cost of the selected services are better than ଶܷ's, for the
reason of ଵܷ taking the response time as the most important
metric. While the average values of ଶܷ 's availability and
reliability of the selected services are better than ଵܷ 's
according to ଶܷ 's preference. Generally, the experimental

0

20

40

60

80

100

10 20 30 40 50

pr
ec

is
io

n
ra

te
 (%

)

the number of services

C

B

A

Parameters Time Price Reliability Availability

Min/Max Min Min Max Max
Weight ωଵ ωଶ ωଷ ωସ

PF Linear V-shape Gauss Gauss
q 50 - - -
p 150 100 - -
s - - 5 5

2549

results show that services selected by ଵܷ and ଶܷ have faster
response time and higher availability respectively, i.e. our
method can express users' preferences for multi metrics.

Fig. 5 metric values of selected services

VI. CONCLUSIONS
Ontology-based and SLA-aware service matching

method is proposed in this paper, in which we calculate
similarity between two concepts by cloud ontology, and
consider the equivalence concept in service matching
procedure. At the same time based on user’s requirement of
various non-functional properties, we proposed a service
selection method which combines the analytic hierarchy
process (AHP) with preference ranking organization method
for enrichment evaluations (PROMETHEE) to rank the
available services. Experimental results show that the
proposed method can effectively find the cloud service
meeting user’s requirements.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China(Grant No 61370132) and the State
High-Tech Development Plan (No.2013AA01A601).

REFERENCES

[1] I. Foster, Y. Zhao, I. Raicu, “Cloud Computing and Grid Computing

360-Degree Compared,” IEEE Grid computing Environment
Workshop,2008. GCE'08. pp:1-10, Nov. 2008.

[2]R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, “Cloud
computing and emerging IT platforms:Vision, hype, and reality for

delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp.599-616, June 2009.

[3] A. V. Mladen, “Cloud Computing-Issues,Reasearch and
Implementations,” Journal of Computing and Information Technology-
CIT, vol. 16, no. 4, pp.235-246, June. 2008.

[4]D. Fensel, F. Facca, E. Simperl, I. Toma, “Web service modeling
ontology (Book style),” Semantic Web Services Springer Berlin
Heidelberg, 2011, pp. 107–129.

[5]Le Duy Ngan, R. Kanagasabai, “OWL-S Based Semantic Cloud Service
Broker,” 2012 IEEE 19th International Conference on Digital Object
Identifier, 2012 , pp: 560 – 567.

[6]A.V. Dastjerdi, S. G. H. Tabatabaei, R. Buyya, “An Effective
Architecture for Automated Appliance Management System Applying
Ontology-Based Cloud Discovery,” 2010 10th IEEE/ACM International
Conference on Digital Object Identifier 2010, pp: 104-112.

[7]P. Harshavardhanan, J. Akilandeswari, R. Sarathkumar, “Dynamic Web
Services Discovery and Selection Using QoS-Broker Architecture,”
2012 International Conference on Digital Object Identifier, 2012, pp: 1
– 5.

[8]K. Jaeyong, M. S. Kwang, “Cloudle: A Multi-criteria Cloud Service
Search Engine,” 2010 IEEE Asia-Pacific Services Computing
Conference, 2010, pp:339-346.

[9]M. Brock, A. Goscinki, “Toward Ease of Discovery,Selection and Use
of Clusters within a Cloud,” 2010 IEEE 3rd International Conference on
Cloud Computing, 2010, pp:289-296.

[10]H. Stuckenschmidt, “Ontology-based information sharing in weekly
structured environments,” Ph.D. thesis, AI Department, Vrije
University Amsterdam, 2002.

[11]K. Jaeyong, M. S. Kwang, “Cloudle:An Agent-based Cloud Search
Engine that Consults a Cloud Ontology,” Annual International
Conference on Cloud Computing and Virtualization(CCV 2010), 2010,
pp:312-318.

[12]H. Taekgyeong, M. S. Kwang, “An Ontology-enhanced Cloud Service
Discovery System,” Proceedings of the International MultiConference
of Engineers and Computing Scientists, pp.17-19, March 2010.

[13]Liangxiu Han, Dave Berry, “Semantic-supported and agent-based
decentralized grid resource discovery,” Future Generation Computer
Systems, vol. 24, no. 8, pp. 806-812, Oct 2008.

[14]O. S. Vaidya, S. Kumar, “Analytic hierarchy process: An overview of
applications,” European Journal of Operational Research, vol. 169, no.
1, pp.1-29, Feb. 2006.

[15]C. Herssens, I. J. Jureta, S. Faulkner, “Dealing with quality tradeoffs
during service selection,” Proceeding of the International Conference on
Autonomic Computing(ICAC), 2008, pp.77-86.

[16]C Herssens, IJ Jureta, S Faulkner.Dealing with quality tradeoffs during
service selection[C]//Proceeding of the International Conference on
Autonomic Computing(ICAC) , Chicago, IL,USA,2008: 77-86.

[17]R.N. Calheiros, R. Ranjan, A. Beloglazov, “CloudSim: a toolkit for
modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23-50, 2011.

0

20

40

60

80

100

response
time

cost availability reliability

U1

U2

2550

