
One side lattice memory reduced ordering function
allows discrimination in resting state fMRI

Abstract—Currently there is a lot effort to define neurological
biomarkers from resting state fMRI data for different neuro-
logical diseases. fMRI voxels are high dimensional vectors, so
that dimensional reduction, to scalar values if possible, is highly
desirable. At the same time, biomarkers are to be provided as
brain localizations which may have an anatomical interpretation.
A general procedure consists in the reduction of fMRI data to
scalar values, which are then entered in a feature selection process
to obtain the desired localizations of discriminant voxel sites in
the brain. These voxel sites may be interpreted as biomarkers.
Classification is performed on the feature vectors extracted from
the selected brain voxel sites. In this paper, we follow an approach
born from Multivariant Mathematical Morphology in order to
obtain meaningful orderings on multivariate data. We define a
supervised h-ordering defined on the fMRI time series by the
response of Lattice Auto-associative Memories (LAAM) built
from specific fMRI voxels. Instead of performing morphological
processing based on the induced ordering, we use the LAAM
supervised h-function map for feature selection and feature
extraction. We perform a classification experiment on a set
of resting state fMRI images of schizophrenia patients with
and without a history of auditive hallucinations obtaining high
accuracy with one side LAAM h-function.

I. INTRODUCTION

The study of low frequency correlation in brain fMRI
data obtained during resting state has uncover a collection of
functional networks that constitute a brain fingerprint highly
likely to identify image biomarkers for several brain neuronal
diseases [5], [10], [18]. A big advantage of resting state fMRI
experiments comes from the lack of effort on the cognitive
abilities of the subjects, therefore they can be applied to a wide
variety of subjects. For instance, cognitive impaired subjects
are not pressed into uncomfortable situations.

The informative potential of resting state fMRI can be
exploited to classify subjects and, conversely, classification can
be used as a method for biomarker identification. The general
method is as follows: fMRI data is transformed to a suitable
low dimensional data, preferably scalar values per voxel. Then,
these low dimensional data representations are entered into
a feature selection method. Data transformations, such as
Principal Component Analysis (PCA) that discard localization
information do not allow to report brain localizations that can
be further analyzed to identify biomarkers. Therefore, feature
selection usually is based on some voxel saliency measure,
such as the correlation with the categorical variable. The
result of feature selection is a collection of voxels sites where
feature vectors are extracted to enter the classifier training and
validation process.

In this paper we follow an approach proposed for Multi-
variate Mathematical Morphology in order to obtain sensible
orderings of high dimensional vectors. We propose a super-
vised h-function based on Lattice Auto-Associative Memories

(LAAMs) [15], [14], which may lead to a LAAM-supervised
ordering, as the fMRI data dimensionality reduction [7], [3].
The LAAM h-function provides a scalar value for each voxel.
Specifically, we will demonstrate the value of the proposed
approach on the discrimination of Schizophrenia patients,
where we obtain encouraging results on the discrimination of
patients with and without a history of auditory hallucinations.

LAAMs are auto-associative neural networks whose func-
tional neurons perform morphological (lattice) operations.
LAAMs present interesting properties such as perfect recall,
unlimited storage and one-step convergence. Compared to
the supervised h-orderings introduced by [19], the proposed
LAAM-supervised ordering keeps multivariate morphology
under the general framework of Lattice algebra. All the
required calculations are defined using the Lattice algebra
operators (∨, ∧ and +) and therefore, LAAM-supervised
ordering is faster and imposes less computational burden than
the supervised orderings previously proposed in [19].

Section II reviews the literature on resting state fMRI
processing. Section III recalls the definition of Lattice Auto-
Associative Memories. Section IV introduces Multivariant
Mathematical Morphology based on supervised reduced order-
ings. Section V introduces LAAMs-based supervised ordering
for multivariate data. Section VI presents some experimental
results. Finally we give some conclusions and further work in
section VII.

II. RESTING STATE FMRI

Resting state fMRI data has been used to study the con-
nectivity of brain activations [5], [10], [18]. The assumption
is that temporal correlation of low frequency oscillations in
diverse areas of the brain reveal their functional relations.
When no explicit cognitive task is being performed, the
connections discovered are assumed as some kind of brain
fingerprint, the so-called default-mode network. Caution must
be taken on the confounding effects of the ambient noise, the
respiratory and cardiac cycles. One strong reason for resting
state fMRI experiments is that they do not impose constraints
on the cognitive abilities of the subjects. For instance in
pediatric applications, such as the study of brain maturation
[11], there is no single cognitive task which is appropriate
across the aging population. Several machine learning and data
mining approaches have been taken: hierarchical clustering
[4], independent component analysis (ICA) [6], [13], [1], frac-
tional amplitude of low frequency analysis [24], multivariate
pattern analysis (MVPA) [11], [12]. Graph analysis has been
suggested [18] as a tool to study the connectivity structure
of the brain. Resting state fMRI has being found useful for
performing studies on brain evolution based on the variations
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in activity of the default mode network [11], depression (using
regional homogeneity measures) [21], Alzheimer’s Disease
[8], and schizophrenia.

Schizophrenia is a severe psychiatric disease that is charac-
terized by delusions and hallucinations, loss of emotion and
disrupted thinking. Functional disconnection between brain
regions is suspected to cause these symptoms, because of
known aberrant effects on gray and white matter in brain
regions that overlap with the default mode network. Resting
state fMRI studies [9], [22], [23] have indicated aberrant
default mode functional connectivity in schizophrenic patients.
These studies suggest an important role for the default mode
network in the pathophysiology of schizophrenia. Functional
disconnectivity in schizophrenia could be expressed in altered
connectivity of specific functional connections and/or func-
tional networks, but it could also be related to a changed
organization of the functional brain network. Resting state
studies for schizophrenia patients with auditory hallucinations
have also been performed [20] showing reduced connectivity.
Recent findings [16] show that focusing on the resting state
network obtained by correlation with voxels in a left Heschl’s
gyrus (LHG; MNI coordinates -42,-26,10) regions of interest
from the auditory cortex it is possible to find significative
differences between schizophrenia patients with and without
a history of auditory hallucinations.

III. LATTICE AUTO-ASSOCIATIVE MEMORIES (LAAMS)

Given a set of input/output pairs of patterns (X,Y ) ={(
xξ,yξ

)
; ξ = 1, .., k

}
, a linear heteroassociative neural net-

work based on the pattern’s cross correlation is built up
as the cross-correlation of input and output patterns W =∑

ξ y
ξ ·

(
xξ

)′
. Mimicking this constructive procedure [15],

[14] proposed the following constructions of erosive and
dilative LAMs, respectively

WXY =
k∧

ξ=1

[
yξ ×

(
−xξ

)′]
and MXY =

k∨

ξ=1

[
yξ ×

(
−xξ

)′]
,

(1)
where × is any of the ∨! or ∧! operators, reducing the no-
tational burden since yξ ∨!

(
−xξ

)′
= yξ ∧!

(
−xξ

)′. Here
∨! and ∧! denote the max and min matrix product, respec-
tively defined as follows C = A ∨! B = [cij ] ⇔ cij =∨

k=1..n {aik + bkj} , and C = A ∧! B = [cij ] ⇔ cij =∧
k=1..n {aik + bkj} .
If X = Y then WXX and MXX are called Lattice

Auto-Associative Memories (LAAMs). LAAMs present some
surprising properies: perfect recall for an unlimited number
of stored patterns, i.e. WXX ∨! X = X = MXX ∧! X ,
and convergence in one step for any input pattern, i.e. if
WXX ∨! z = v and MXX ∨! z = u, then WXX ∨! v = v
and MXX ∧! u = u.

IV. MULTIVARIANT MATHEMATICAL MORPHOLOGY

Morphological operations are mappings between complete
lattices, denoted L or M, that are partially ordered sets
where infimum and supremum are defined for all pairs of

elements. For every subset Y ⊆ L an erosion is a mapping
ε : L → M that conmutes with the infimum operation,
ε (

∧
Y ) =

∧
y∈Y ε (y). Similarly, a dilation is a mapping

δ : L → M that conmutes with the supremum operation,
δ (

∨
Y ) =

∨
y∈Y δ (y). On top of these basic operators it

is possible to define image fiters such as the morphological
gradient g (Y ) = δ (Y ) − ε (Y ), or the top-hat t (Y ) =
Y − δ (ε (Y )).

A. Multivariate ordering
Morphological operators are well defined for scalar images,

however their extension to multivariate images is not straight-
forward since defining a total order on these vector spaces is
required. One way to accomplish that mapping the multivariant
values into a scalar through the definition of a reduced order-
ing. A h-ordering is defined by a surjective map of the original
partially ordered set onto a complete lattice h : X → L , so
that the order in the target lattice induces a total order in the
source set X , that is, r ≤h r′ ⇔ h (r) ≤ h (r′).

The reduced ordering can be defined on the basis of a
supervised classifier trained with some pixel values extracted
from the image [19]. Formally, a h-supervised ordering over a
non-empty set X [19] is a h-ordering satisfying the conditions
h (b) = ⊥, ∀b ∈ B, and h (f) = ,, ∀f ∈ F , where B,F ⊂ X
are subsets of X such that B ∩ F = ∅, and ⊥ and , are
the bottom and top elements of the target lattice, respectively.
Erosion operators increase image regions of points close to the
background, and dilation operators will increase image regions
of points close to the foreground.

V. LAAMS-BASED SUPERVISED ORDERING

A. LAAMs-based h-function
Our contribution [2], [7], [3] to reduced supervised order-

ings is the definition of a h-function based on LAAMs. In
[17] the use of LAAMs and the Chebyshev distance was
proposed for classification tasks. Here, we propose their use to
define an h-fuction that yields to a supervised ordering among
multivariate data and so, allow multivariate morphological
operations under the general Lattice algebra theoretical setting.

Given a multivariate data vector c ∈ Rn and a non-empty
training set X = {xi}Ki=1 such that xi ∈ Rn for all i =
1, . . . ,K; we define the LAAM based hX -function as:

hX (c) = ζ
(
x#, c

)
, (2)

where x# ∈ Rn is the recall result from the LAAM, can
be either the min matrix product of the vector c and the
erosive memory MXX , or the max matrix product of c with the
dilative memory WXX , x# = Mxx ∧! c = Wxx ∨! c. ζ (a,b)
denotes the Chebyshev distance between two vectors given by
ζ (a,b) =

∨
i |ai − bi|, i = 1, . . . , n.

B. One-sided LAAM supervised ordering
The LAAM-based hX -function (2) yields directly to the

formulation of the one-side LAAM-supervised ordering:

∀x,y ∈ Rn, x ≤X y ⇐⇒ hX (x) ≤ hX (y) . (3)
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The one-side LAAM-supervised ordering induces a lattice
LX , whose bottom is the set of fixed points of the LAAM
built upon X , ⊥X= F (X), where F (X) is the set of fixed
points of the LAAM. FIxed points are mapped to 0, and the
LAAM hX -function is non-negative. On the other hand, there
is no upper bound for the LAAM hX -function, thus we can
not identify the the top element of LX , hence it is not a
complete lattice. The proposed ordering (3) allows to define
erosion operators increasing the image regions of voxels close
to F (X), according to the Chebyshev distance, and dilation
operators shrinking those image regions of voxels far from
F (X).

VI. EXPERIMENTAL RESULTS

The aim of the experiments in this section is a proof of
concept of the approach on a specific case, that of the discrim-
ination of schizophrenia patients with and without auditory
hallucinations. The experiment shows that this approach is able
to perform this classification with high accuracy, sensitivity
and specificity using a LAAM h-function built from selected
voxel ROI located on the LHG.

A. Process
We proceed as follows:
1) Resting state fMRI data is first preprocessed to ensure

that all fMRI volumes are aligned and warped to the
spatially normalized structural T1-weighted data. Also,
covariates are regressed out to remove noise and motion
artifacts.

2) Compute the one sided LAMM h-function extracting
the seed voxels from the locations shown in Figure 1 in
each subject. Foreground seed is the average time signal
from a selection of voxels in the LHG according to [16].
We obtain a 3D h-map from the specific seeds for each
subject.

3) Compute the Pearson’s Correlation Coefficient (PCC)
between each voxel h-map values across subjects with
the categorical variable indicating the class of the sub-
ject. Each classification experiment involves a separate
correlation computation, obtaining a volume of correla-
tion coefficients for each. We have explored the discrim-
ination between schizophrenia patients with and without
auditory hallucinations, i.e. SZAH versus SZnAH.

4) Feature selection consists in selecting the voxel sites
with the largest absolute values of the correlation co-
efficients. Experiments cover a wide range of feature
vector dimensions.

5) Feature extraction consists in building the actual feature
vectors extracting the selected voxel site values from
the h-map of each subject. Therefore, we have separate
feature datasets for each feature vector size.

6) We perform a classification experiment with linear ker-
nel SVM classifiers to assess the discrimination power
of the feature vectors. For validation we apply a ten fold
cross-validation strategy, repeated one hundred times.

TABLE I
ACCURACY, SENSITIVITY AND SPECIFICITY OF THE CLASSIFICATION

SZNAH VS. SZAH FOR VARIOUS FEATURE VECTOR SIZES

500 1 000 5 000 10 000
Accuracy 97.5 97.5 97.5 92.5
Sensitivity 100 100 100 100
Specificity 95 95 95 85

Accuracy results are assumed to provide some endorse-
ment of the value of the image biomarkers identified by
the feature masks.

B. Materials

We perform computational experiments resting state fMRI
data obtained from two groups of schizophrenia patients: 26
subjects with and 14 subjects without auditory hallucinations
(SZAH and SZnAH respectively). For each subject we have
240 BOLD volumes and one T1-weighted anatomical image.
Details of image acquisition and demographic information
are given elsewhere [16]. The data preprocessing begins
with the skull extraction using the BET tool from FSL
(http://www.fmrib.ox.ac.uk/fsl/). All the images were manually
AC-PC transformed. The functional images were coregistered
to the T1-weighted anatomical image. Further preprocessing,
including slice timing, head motion correction (a least squares
approach and a 6-parameter spatial transformation), smoothing
(FWHM=4mm) and spatial normalization to the Montreal
Neurological Institute (MNI) template (resampling voxel size
= 3 mm × 3 mm × 3 mm), temporal filtering (0.01-0.08
Hz) and linear trend removing, were conducted using the
DPARSF (http://www.restfmri.net/forum/DPARSF) package.
All the subjects have less than 3mm maximum displacement
and less than 3º of angular motion.

C. Results

Figure 2 shows the localizations of the one-side LAAM
h-map computed from foreground seeds extracted from the
LHG as illustrated in Figure 1 , for sample subjects in the
SZAH and SZnAH populations.The colors are arbitrary, and
the localizations are overlaid on the MNI152 template. Some
differences on the localization spatial distribution from each
population can be appreciated on inspection. The working
hypothesis is that such kind of differences may be dis-
criminant and the basis for classification of individuals into
categories. The discrimination between Schizophrenia patients
with and without a history of auditory hallucinations, SZAH
vs. SZnAH, is difficult and has not been accomplished by
statistical inference methods [16]. The classification results are
summarized in Table I providing the best average Accuracy,
Sensitivity and Specificity obtained in one of the repetitions of
the 10-fold cross-validation experiment. Columns correspond
to the feature vector size. Results are quite good, with a
slight decrease for the larger feature vectors. The approach
is quite sensitive to the patients without a history of auditory
hallucinations.
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Fig. 1. Foreground voxel seed site from the left Heschl’s gyrus (LHG; -42,-26,10).

VII. CONCLUSIONS

We propose a new method for fMRI data analysis inspired
on multivariate mathematical morphology and supervised re-
duced ordering that produces a scalar representation of the
fMRI data depending only on the definition of seed voxels.
This method does not involve any conventional statistical
techniques and assumptions, being model-free in a very ex-
tensive point of view. Moreover the method relies only in
lattice computing operators, so that the only operations re-
quired for its intelligent wandering are min, max and addition
which introduce less error than other arithmetic approaches.
Experiments on the discrimination of schizophrenia patients
with and without a history of auditory hallucinations are very
encouraging, providing excellent results. Further work must
be addressed to confirm these results and to perform post-hoc
studies assessing the value of the voxel sites as biomarkers.
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