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Abstract—The contribution is focused on a new method of
grouping time series according to their local tendency indicator
that is expressed by a linear coefficient of the F 1 -transform.
The useful consequence of grouping is an effective procedure
of forecasting such that only one time series from a group is
forecasted.
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I. INTRODUCTION

In a time series analysis and forecast, the use of the
F- transform (in its direct and inverse form) was reported
in several publications, e.g., [1], [2], [3], [4], [5]. In [1],
[4], this technique was used to extract a low-frequency trend
component, whereas in [2] it was used for the modeling of
an autoregression function. In [3], the inverse F-transform was
used as a technical indicator in a stock market instead of the
commonly used simple and exponential moving averages. In
[1], [4], the inverse F -transform was used in combination with
perception based logical deduction, where the latter provides
forecasts of the future F-transform component(s).

In [5], we made two principal changes compared to the
methods described in [1], [4]. First, we decomposed a time
series based on the direct F-transform (as opposed to the
inverse F-transform, which was used in [1], [4]). We relax
some constraints (e.g., the Ruspini condition) to make the
F - transform more flexible and adjustable to various time
series (in general, functions). Second, we proposed forecasting
a future F -transform component based on the theory of fuzzy
time series tendencies ( [6]).

In this contribution, we keep the direction of [5], but de-
compose a time series based on the direct F 1 -transform. The
reason is that linear coefficients of F 1 -transform components
characterizes local tendencies which we are going to forecast.
Let us explain in more details.

If we consider economic applications of time series, then
we often encounter a situation where a certain process is char-
acterized by a set of various time series. In many cases, they
are connected, i.e. a dynamic behavior of one influences the
others. It appears in similar behavior of their local tendencies,
where the latter characterizes a stable direction of changes over
a certain period, e.g., increase, decrease, etc. Even though time
series are connected, their absolute values may be different.
Therefore, it is reasonable to select one time series from a
group, forecast its local tendency and use it for others.

The evident advantages of this type of analysis are as
follows:

1) Reducing the forecasting time,
2) Creating groups of similar time series and choosing

a distinctive element of each group.

The paper considers examples of two sets of time series.
The first set contains 14 time series of statistics collected
between 1970 and 2000 in Russian Federation in areas of
economics, production, social, health and culture indicators.
The second set consists of time series selected from the NN3
competition (http:// www.neural-forecasting-competition.com/
downloads/NN3/datasets/NN3 REDUCED.xls).

We perform the analysis on the basis of F 1 -transform
components for both sets and find groups of similar time series.
We choose a representative of each group, forecast its local
tendency and show that this forecast is valid for all other
elements of the same group.

II. FIRST DEGREE F 1-TRANSFORM

In this section, we recall the basic fact about F-transforms

A. Fuzzy partition with Ruspini condition

The fuzzy partition with the Ruspini condition (1) (simply,
Ruspini partition) was introduced in [7]. This condition implies
normality of the respective fuzzy partition, i.e., the partition-
of-unity. It then leads to a simplified version of the inverse
F-transform. In later publications [8], the Ruspini condition
was weakened to obtain an additional degree of freedom and
a better approximation by the inverse F-transform.

Definition 1. Let x1 < ... < xn be fixed nodes within [a, b]
such that x1 = a, xn = b and n ≥ 2. We say that the fuzzy sets
A1, ..., An , identified with their membership functions defined
on [a, b], establish a Ruspini partition of [a, b] if they fulfill the
following conditions for k = 1, ..., n:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x ∈ (xk−1, xk+1), where for uniformity

of notation, we set x0 = a and xn+1 = b;
3) Ak(x) is continuous;
4) Ak(x), for k = 2, ..., n, strictly increases on

[xk−1, xk] and Ak(x), for k = 1, ..., n − 1, strictly
decreases on [xk, xk+1];

5) for all x ∈ [a, b],
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n∑
k=1

Ak(x) = 1 (1)

If the nodes x1, ..., xn are h−equidistant, i.e. for all k =
1, ..., n + 1, xk = xk−1 + h where h = (b − a)/(n − 1), we
say that the fuzzy partition A1, ..., An is h− uniform.

The condition (1) is known as the Ruspini condition. The
membership functions A1, ..., An are called basic functions.
The shape of the basic functions is not predetermined and
therefore, it can be chosen according to additional require-
ments (e.g., smoothness).

B. F 1-transform of function of one variable

The F -transform of a higher degree m ≥ 1 was introduced
in [8]. In this section, we give a short description of the F 1-
transform of functions of one variable. The F 1 -transform
is a generalization of the F-transform where the constant
components are replaced by linear components (polynomials
of the first degree).

Throughout this section, we assume that A1, ..., An, n > 2
is a fuzzy partition of [a, b] with nodes xk, k = 0, ..., n+1. Let
k be a fixed integer from {1, ..., n} and let L2(Ak) be a normed
space of square-integrable functions f : [xk−1, xk+1] →
R, k = 1, ..., n.

By L2(A1, ..., An) we denote a set of functions f : [a, b]→
R such that for all k = 1, ..., n, f |[xk−1,xk+1] ∈ L2(Ak), where
f |[xk−1,xk+1] is the restriction of f on [xk−1, xk+1]. For any
function f from L2(A1, ..., An) we define the F 1 -transform
of f with respect to A1, ..., An as a vector

F 1[f ] = [F 1
1 , ..., F

1
n ]

where the components F 1
k , k = 1, ..., n are linear functions

F 1
k (x) = ck,0 + ck,1(x− xk), (2)

with the coefficients ck,0, ck,1 given by

ck,0 =

∫ xk+1

xk−1
f(x)Ak(x)dx

(
∫ xk+1

xk−1
Ak(x)dx)

ck,1 =

∫ xk+1

xk−1
f(x)(x− xk)Ak(x)

(
∫ xk+1

xk−1
(x− xk)2Ak(x)dx)

Here we emphasize the following property of the F 1 -
transform, more can be found in [8].

If f is four-times continuously differentiable on [a, b], then
for each k = 1, ..., n

ck,0 = f(xk) +O(h2),

ck,1 = f ′(xk) +O(h2).

In the discrete case, a function f is assumed to be known
only at points pi ∈ [a, b], where i = 1, ..., N . For the h-uniform
fuzzy partition and the triangular-shaped basic functions, the
coefficients c1k,0, c

1
k,1, k = 1, ..., n, are computed as follows:

ck,0 =
1

h

N∑
i=1

f(pi)Ak(pi) (3)

ck,1 =
12

h3

N∑
i=1

f(pi)(pi − xk)Ak(pi) (4)

III. TIME SERIES ANALYSIS

Usually, a time series is a set of observations of an econo-
metric quantity at various moments in time. In statistics,
a time series is connected with the notion of a stochastic
process, and from this concept, it is formalized by a sequence
{xt, t ∈ [1, T ]} of random variables. Specifically, xt can be
considered as one possible observation of the equally named
random variable, such that in this case, a time series is a
sequence of real numbers. In practice, real numbers xt are
known to have errors, and therefore, a time series cannot be
modeled using a real function of the discrete variable t.

Depending on the statistical properties of a time series,
its models are divided into two groups: stationary and non-
stationary. Although stationarity is a desirable property (a
model of a time series is rather simple), real-life time series are
usually non-stationary. Because in our experiments, we focus
on time series with economic indicators, we assume that an
analyzed time series is non-stationary and can be decomposed
as follows:

xt = f(t) + yt. (5)

In (5), f(t) is a deterministic part, which is usually called a
trend, and yt is a random part, which is additionally assumed to
be stationary with a zero mean value and a constant variance.
If a trend is represented by a linear function, i.e. f(t) = c1t+
c + 0, then c1 is a numeric characterization of a tendency. If
c1 > 0(c1 < 0), then the tendency is “increase” (“decrease”),
or if c1 = 0, then the tendency is “stagnation”.

A. F 1 -transform for trend extraction

We assume that a time series {xt, t ∈ [1, T ]} can be
decomposed in accordance with (5). Therefore, our task is to
extract its trend. For this purpose, we propose the technique
F 1 -transform that was described above. By applying the direct
and inverse F 1 -transform, we represent a trend of a time
series using the combination of 2 ≤ n ≤ T “basic functions”
A1, ..., An , which results in

f(t) =
n∑

k=1

F 1
k (t)Ak(t). (6)

A justification that (6) can be chosen as a trend follows from
the fact (local stationarity) that for all k = 1, ..., n, the F 0

- transform component of the function xt − F 1
k (t) is equal

to zero. Based on the representation (2), we take a sequence
of linear coefficients {c1,1, ..., cn,1} of the corresponding F 1

-transform components and call it “sequence of local tenden-
cies”.

In Figure 1, we show the time series #104 NN3 and its F 1

-transform component for the last interval of the partition.
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Fig. 1. F 1
n component for time series example

IV. CREATING GROUPS OF SIMILAR TIME SERIES

Groups of similar time series will be created by analyzing
local tendencies represented by coefficients ck,1 . For each pair
x′t , x′′t of time series from a set we calculate the Pearson
correlation coefficient (linear correlation coefficient) of the
corresponding sequences of local tendencies:

rx′t,x′′t =

∑n
k=1(c

′
k,1 − c′k,1)(c′′k,1 − c′′k,1)√∑n

k=1(c
′
k,1 − c′k,1)2

∑n
k=1(c

′′
k,1 − c′′k,1)2

(7)

We say that time series x′t , x′′t are similar, if rx′t,x′′t > θ where
θ is a chosen threshold.

An important requirement is equal lengths of all time
series in a set. Moreover, absolute values of F 1 -transform
components were normalized to the interval [0, 1]. Grouping
of time series requires a choice of a threshold.

V. EXPERIMENTS WITH THE PROPOSED METHOD OF
GROUPING

Let us choose two sets of time series. The first set
contains 14 time series with 37 observations each, collected
between 1970 and 2000 in Russian Federation in areas of
economics, production, social, health and culture indicators
(RF statistics). The second set consists of 8 time series
with 126 observations each, selected from the NN3 compe-
tition (http:// www.neural-forecasting-competition.com/ down-
loads/NN3/datasets/NN3 REDUCED.xls). For both sets, par-
titions were chosen in such a way that each basic function
covers 7 points. The threshold θ for the correlation coefficient
is set to 0.9.

In Table I, we show how many similar time series from
the first set correspond to the chosen one.

Because the relation “to have the correlation coefficient
greater than a threshold” is not transitive, we establish group-
ing by choosing a representative time series with the biggest
number of similar ones, deleting its group from the set
and repeating until the set is empty. In the first set, the
biggest first group has representative time series #1 and
consists of similar time series whose order numbers are:
1,2,3,7,8,9,10,11,12,13,14. Time series from the first group are
shown below in Figure 2.

In Figure 3, we show time series that are not included into
the first group. Their order numbers are: 4,5,6. All of them are
similar with the representative time series #5.

RF statistics. Time series #1

RF statistics. Time series #2

RF statistics. Time series #3

RF statistics. Time series #7

RF statistics. Time series #8

RF statistics. Time series #9

RF statistics. Time series #10

RF statistics. Time series #11

RF statistics. Time series #12

RF statistics. Time series #13

RF statistics. Time series #14
Fig. 2. The group of 11 similar time series from the first set (RF statistics)
with the representative time series #1
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In the second set (NN3 competition), there is only one
group of similar time series that can be selected by the
threshold 0.9. This group consists of time series with order
numbers 1,4,5,6. In Figure 4, we show time series that are
included into this group.

TABLE I. GROUPING OF SIMILAR TIME SERIES WITH CORRELATION
COEFFICIENT GREATHER THAN 0.9

Time series Number of similar time series
1 11
2 11
3 8
4 3
5 5
6 2
7 11
8 9
9 10

10 9
11 10
12 9
13 11
14 9

RF statistics. Time series #4

RF statistics. Time series #5

RF statistics. Time series#6
Fig. 3. The second group of 3 similar time series from the first set (RF
statistics) with the representative time series #5

In Figure 5, we show time series from the second set (NN3
competition) that are not included into the group of similar
ones. Their order numbers are: 2,3,7,8. All of them are not
pairwise similar.

VI. FORECASTING OF LOCAL TENDENCIES

In this section, we show that prediction of a local tendency
of a representative time series from a group of similar ones
can be used for all time series from the group. By this we
mean prediction of a time series of linear coefficients ck,1,
k = 1, ..., n, of the F 1 -transform components. Below, we
give an illustrative example where we choose three similar
time series with order numbers 1,2,3 from the first group of
the set RF statistics with the representative time series #1. We
made prediction of the coefficient cn,1 from the time series
ck,1, k = 1, ..., n − 1. This predicted value has been used in
computation of the last F 1 -transform component F 1

n for time
series #2 and #3. The results are illustrated in Figures 6, 7. It
is obvious that both predicted components F 1

n of time series
#2 and #3 can be used instead of actual ones.

NN3: Time series #1

NN3: Time series #4

NN3: Time series #5

NN3: Time series #6
Fig. 4. The group of 4 similar time series from the second set (NN3
competition) with the representative time series #1.

NN3: Time series #2

NN3: Time series #3

NN3: Time series #7

NN3: Time series #8
Fig. 5. 4 non - pairwise similar time series from the second set (NN3
competition).

Fig. 6. Time series #2 (RF statistics). the last F 1 - transform component
F 1
n was computed with the predicted from time series #1 coefficient cn,1 .
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Fig. 7. Time series #3 (RF statistics). the last F 1 - transform component
F 1
n was computed with the predicted from time series #1 coefficient cn,1 .

VII. CONCLUSION

In the proposed contribution, we were focused on the
new method of grouping time series according to their local
tendency indicator that is expressed by a linear coefficient of
the F 1 -transform. Groups of similar time series are created
on the basis of the Pearson correlation coefficient of the
corresponding sequences of local tendencies represented by
coefficients ck,1 . The useful consequence of grouping is an
effective procedure of forecasting such that only one time
series from a group is forecasted. Two sets of real time series
were chosen for experiments.
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