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Abstract—In this research we focus on dealing with fuzzy
multivariate relations and how we could perform fuzzy qual-
itative simulation with models containing such relations. To
achieve this, we extended Morven, a fuzzy qualitative reasoning
framework, and proposed novel types of constraints for the
framework. We first introduced fuzzy multivariate function
(FMF ) constraints, and presented their corresponding con-
straints in higher differential planes of a Morven model. We
then implemented the fuzzy multivariate monotonicity (FMM )
relations by FMF constraints and MM add constraints,
another kind of constraints we proposed for Morven. In
addition, we employed alpha-cut to determine the “strictness”
of qualitative signs in the MM add constraints. Finally,
proof-of-concept experiments were performed to validate the
proposed constraints, and both fuzzy and non-fuzzy situations
were considered in these experiments.

I. INTRODUCTION

Modellers often utilise different model choices when
describing complex systems [1]. To describe the dynamic
systems with both uncertainty and imprecise properties,
fuzzy mechanisms and Qualitative Reasoning (QR) [2],
[3] can be combined to form appropriate modelling and
simulation tools.

Regarding this FuSim [4], a fuzzy QR system, was devel-
oped and it incorporated fuzzy mechanisms into QR, which
made it possible to perform fuzzy qualitative simulation.
The later fuzzy QR system Morven [5], [6] inherited the
fuzzy features of FuSim and introduced several new features
compared to its predecessors FuSim and QSIM [7], a non-
fuzzy QR system. This makes Morven become the state-of-
the-art fuzzy QR system.

Like QSIM and FuSim, Morven are constraint-based QR
systems (CBQR). In CBQR a qualitative model is composed
of a set of qualitative constraints, which form a Qualitative
Differential Equation (QDE). A QDE model is an abstraction
of a set of ODE (Ordinary Differential Equation) models
sharing the same structure, and thus able to qualitatively
model a complex dynamic system and provide a global
picture of the system by capturing qualitative behaviours.

In CBQR systems (both fuzzy and non-fuzzy) quali-
tative constraints are categorised into two types: algebraic
constraints and functional constraints. Algebraic constraints
include qualitative addition, subtraction, multiplication, and

division, and they are the qualitative versions of the cor-
responding algebraic operations. Examples of functional
constraints are monotonicity constraints, including monoton-
ically increasing and decreasing functions (denoted as M+

and M−) in QSIM, which describe that one variable will
monotonically increase with the increase (or decrease) of
another.

All algebraic constraints are ternary except qualitative
exponentiation. Functional constraints were originally de-
signed to be binary and provided limited capability for
reasoning about multivariable functions. Regarding this there
was an attempt by Wellman to extend monotonicity con-
straints in QSIM and make it possible for modelling multi-
variate relationships [8].

However, Wellman’s multivariate constraints were pro-
posed under the QSIM formalism, which are not compatible
with later fuzzy CBQR systems FuSim and Morven. This
means there is no direct support in Morven for modelling
fuzzy multivariate relations. This motivates the research
presented in this paper: to develop a scheme for describing
fuzzy multivariate relationships in Morven and enable Mor-
ven to reason about relations among an arbitrary number
of variables, the values of which may be both fuzzy and
qualitative.

The rest of the paper is organised as follows: in Section II
we introduce the Morven framework. Then we propose the
fuzzy multivariate function constraints and fuzzy multivari-
ate monotonicity constraints for Morven in Section III and
Section IV, respectively. This is followed by the report of
some proof-of-concept experiments in Section V. Finally
Section VI concludes the paper and explores some future
work.

II. THE Morven FRAMEWORK

In this section, we give a detailed description of Morven.
In addition, we intend to make the readers familiar with
the field of QR by giving concise explanations as well
as simple examples. Apart from FuSim’s large influence,
the development of Morven is also based on Predictive
Algorithm (PA) [9] and Vector Envisionment (VE) [10],
from which it inherited many features.
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Fig. 1. The Membership Function of a Fuzzy Four-tuple Number

Fig. 2. A Fuzzy Quantity Space

TABLE I. THE SIGNS QUANTITY SPACE

Quantity a b α β
negative(-) −∞ 0 0 0

zero(0) 0 0 0 0
positive(+) 0 ∞ 0 0

A. Fuzzy Quantity Spaces

In QR variables are restricted to take values only from
their associated quantity spaces. A quantity space in QSIM
is an ordered set of landmark values. In Morven the quantity
spaces are extended to the fuzzy domain, and are composed
of fuzzy numbers instead of landmark values as in QSIM.
For reasons of computational efficiency, trapezoidal fuzzy
numbers and intervals are used: each fuzzy number is
represented by a fuzzy four tuple <a, b, α, β>, which
determines the corresponding membership function, as
shown below:

µA(x) =




0 x < a− α
α−1(x− a+ α) x ∈ [a− α, a]
1 x ∈ [a, b]
β−1(b+ β − x) x ∈ [b, b+ β]
0 x > b+ β

Different values of a, b, α and β will result in different
shapes of membership functions. For instance, the fuzzy
number <a, a, 1, 1> (a>0) will have a triangle-shape
membership function. The general situation is shown in
Fig. 1, and one possible fuzzy quantity space is shown in
Fig. 2.

The fuzzy quantity space can be considered as a more
general representation for quantity spaces. In particular, the
signs quantity space, which is often used in many CBQR
systems, can be represented in Table I and illustrated in
Fig. 3.

Fig. 3. The Signs Quantity Space

TABLE II. SOME QUALITATIVE CONSTRAINTS IN Morven AND

THEIR CORRESPONDING MATHEMATICAL EQUATIONS

Morven Constraints Mathematical Equations

sub (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = X(t) − Y (t)
add (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = X(t) + Y (t)
mul (dt 0 X, dt 0 Y, dt 0 Z) Z(t) = Y (t) ∗X(t)
Function (dt 0 Y, dt 0 X) Y (t) = f(X(t))
sub (dt 1 Z, dt 0 X, dt 0 Y) dZ(t)/dt = X(t) − Y (t)
Function (dt 1 Y, dt 0 X) dY (t)/dt = f(X(t))

B. Fuzzy Qualitative Variables and Constraints

Variables in Morven are in the form of variable length
vectors. The first element in the vector is the magnitude
of the variable, and the ith (i>1) element is the (i-1)th
derivative. Each element of the variable vector can have its
individual fuzzy quantity space.

Algebraic constraints in Morven have the similar form
to QSIM and FuSim, but each place in a Morven algebraic
constraint is an element of a variable vector, which could
be either the magnitude or arbitrary derivative of a variable.
Function constraints in Morven are more general than M+

and M+ in QSIM and are many-to-many mappings allowing
more flexible descriptions between two variables without
knowing the exact mathematical relation.

Table II lists some Morven constraints and their corre-
sponding mathematical equations. In these constraints the
label dt means derivative, and the integer immediately
following it indicates which derivative of the variable (0
means the magnitude). In the right column of the table X(t),
Y (t), and Z(t) are continuous functions of time t, and f is a
function that is continuously differentiable over its domain.

A set of fuzzy arithmetic operations is defined by
FuSim [4] and also used by Morven to calculate the algebraic
constraints using fuzzy quantity spaces, and details of these
operations are given in Table III. These arithmetic operations
guarantee that the calculated results are also four-tuple fuzzy
numbers. In particular, when a calculated fuzzy number fa
is assigned to a variable Va, it may not be exactly the same
as any available fuzzy number in Va’s associated quantity
space Q. In this case, the approximation principle [4], [11]
will ensure fa can be mapped onto the fuzzy numbers in Q,
which overlap with it. In addition, the distance metric, which
can measure the similarity between two fuzzy numbers,
can be used to evaluate the “quality” of the approximation
of each mapped fuzzy number in Q. The fuzzy number
which has the minimum “distance” from fa is the best
approximation.
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TABLE III. ARITHMETIC PRIMITIVES USED IN FUSIM AND Morven

Let: m = [a, b, τ, β], n = [c, d, γ, δ]
Operation Result Conditions

−n (−d,−c, δ, γ) all n
1

n

(
1

d
, 1

c
, δ
d(d+δ)

, γ

c(c−γ)

)
n >0 0, n <0 0

m + n (a + c, b + d, τ + γ, β + δ) all m,n
m − n (a − d, b − c, τ + δ, β + γ) all m,n
m × n (ac, bd, aγ + cτ − τγ, bδ + dβ + βδ) m >0 0, n >0 0

(ad, bc, dτ − aδ + τδ,−bγ + cβ − βγ) m <0 0, n >0 0
(bc, ad, bγ − cβ + βγ,−dτ + aδ − τδ) m >0 0, n <0 0
bd, ac,−bδ − dβ − βδ,−aγ − cτ + τγ) m <0 0, n <0 0

TABLE IV. MAPPINGS OF A FUNCTION CONSTRAINT IN Morven

dt 1 Y → dt 0 X n-small zero p-small p-large

n-large 1 0 0 0
n-small 0 1 0 0
zero 0 0 1 1
p-small 0 0 1 1

Fig. 4. The Single Tank System

For each Function constraint in Morven a mapping be-
tween two variables must be specified. A function constraint
Function (V1, V2) (V1, V2 are either the magnitude or
arbitrary derivative of a variable) can represent any possible
mapping from V1’s associated quantity space to V2’s. For
instance, for the constraint Function (dt 1 Y, dt 0 X)
in Table II, which describes the relation between the first
derivative of Y and the magnitude of X, the mapping could
be specified in Table IV, assuming both (dt 1 Y) and (dt 0
X)’s quantity spaces are the same as the one shown in Fig. 2.
This figure shows a binary relation matrix, in which “1”
stands for the corresponding mapping is valid. For instance,
if the value of (dt 1 Y) is zero, then the value of (dt 0 X)
is either p-small or p-large. Note that the mappings can be
many-to-many.

C. Qualitative Morven Models

A Morven model is the conjunction of all its qualitative
constraints, which are distributed over several differential
planes [9]. The 0th differential plane contains the model
which is similar to the one used for numerical simulation;
constraints in the nth differential planes are obtained by
differentiating the corresponding constraints in the (n-1)th
differential plane (n> 1).

A Morven model for the single tank system shown in
Fig. 4 is given in Table V. In this table V is the volume of
the liquid in the tank, qi is the inflow, qo is the outflow, and k
is a positive constant coefficient. This model is composed of
four constraints, C1 to C4. The meaning of these constraints
has been explained in Section II-B, and the corresponding
quantitative relation for each constraint is shown on the right
hand side in the brackets. For variable V , the magnitude, the

TABLE V. THE Morven MODEL FOR THE SINGLE TANK SYSTEM

Differential Plane 0

C1: Function (dt 0 qo, dt 0 V) (qo = k ∗ V )
C2: sub (dt 1 V, dt 0 qi, dt 0 qo) (V ′ = qi − qo)

Differential Plane 1

C3: Function (dt 1 qo, dt1 V) (q′
o
= k ∗ V ′)

C4: sub (dt 2 V, dt1 qi, dt1 qo) (V ′′ = q′
i
− q′o)

TABLE VI. FUNCTION MAPPINGS UNDER THE SIGNS QUANTITY

SPACE

Function(A,B) negative zero positive

negative 1 0 0
zero 0 1 0
positive 0 0 1

Fig. 5. The Complete Envisionment for the Single Tank System (qi=<pos
, zer>

TABLE VII. THE ENVISIONMENT STATES FOR THE SINGLE TANK

SYSTEM

State ID V qi qo
0 <pos , neg , pos> <pos , zer> <pos , neg>
1 <pos , zer , zer> <pos , zer> <pos , zer>
2 <zer , pos , neg> <pos , zer> <zer , pos>
3 <pos , pos , neg> <pos , zer> <pos , pos>

first and second derivatives are used; for variable qo and qi,
only the magnitude and the first derivative are used.

If all the qualitative variables (including their magnitudes
and derivatives) use the signs quantity space, which is shown
in Table I, the mappings of the Function in constraint C1
and C3 are given in Table VI, in which “1” stands for the
existence of a mapping between variables A and B.

D. Model Output

After performing qualitative simulation with Morven for
the model shown in Table V, the model output could be
either an envisionment or a behaviour tree. For example, in
the single tank model suppose all the variables take values
from the signs quantity space and the input qi remains
positive and steady, the simulation results are shown in
Fig. 5, in which each node stands for a qualitative state and
each directed edge stands for a possible transition between
two states.

The corresponding states in this envisionment are listed
in Table VII. In this table, pos, zer, and neg stand for
positive, zero, and negative, respectively. So the assignment
V =<pos, zer, zer> means that the magnitude of V is
positive, the first and second derivatives are zero, and it is
similar for the assignments of qi and qo.
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III. FUZZY MULTIVARIATE FUNCTION CONSTRAINTS

From Section II-B we see that function constraints in
Morven (also in FuSim) cannot straightforwardly represent
multivariate relations. In this section we propose fuzzy
multivariate function (FMF ) constraints to address this
issue. As the Morven framework uses differential planes to
hold qualitative constraints, as described in Section II-C,
we first give the FMF constraint in the 0th differential
plane, and then derive corresponding constraints in higher
differential planes.

A. The Fuzzy Multivariate Function (FMF ) Constraints in
the 0th Differential Plane

We first naturally extend the function constraints in
Morven to be multivariate as follows:

MultiFunction(Y,X 1, X 2, ..., X n) (1)

The above FMF constraint will be in the 0th differential
plane and represent a multivariate function:

y(t) = f(x1(t), x2(t), ...xn(t)), (2)

where n > 2, and y(t) and xi(t) (1 ≤ i ≤ n) are continuous
functions of time t and correspond to Y and X i (1 ≤ i ≤
n) in Constraint (1), respectively. As Morven variables are in
the form of vectors, each place in Constraint (1) are actually
the magnitude or derivatives of a variable. For instance, an
actual Morven FMF constraint may be as follows:

MultiFunction(dt 1 Y, dt 1 X 1, dt 0 X 2, ..., dt 0 X n)
(3)

However, for ease of description, we use the variable
magnitude form as in Constraint (1). The mapping of the
FMF constraints can be obtained from empirical knowl-
edge or observations, similar to the way we specify map-
pings in Morven function constraints.

B. Corresponding Constraints in the 1st Differential Plane

Differentiating Equation (2) with respect to time t we
obtain the total derivative of Y (t):

dy

dt
=

n∑
i=1

∂y

∂xi

dxi

dt
(4)

Using Lagrange’s notation, Equation (4) can be re-
written as:

y′ =
n∑

i=1

fxi
x′
i, (5)

where fxi
= ∂y

∂xi
, y′ = dy

dt
, and x′

i =
dxi

dt
.

This means in the 1st differential plane the constraints
corresponding to Constraint (1) should be

Function(Item i,X i′) (6)

add(Y ′, Item 1, Item 2, ..., Item n) (7)

Equations (6) are a set of function constraints (2 ≤

i ≤ n), and the function mappings of these functions are

determined by fxi
. As algebraic constraints are ternary,

Equation (7) is actually a compact representation of the
following ternary add constraints:



add(Aux 1, Item 1, Item 2),
add(Aux 2, Aux 1, Item 3),
......,
......,
add(Y ′, Aux (n− 1), Item n).

(8)

It is noted that in the above add constraints the algebraic
operation (“+”) is defined in Table III. It is also noted that
in the above add constraints Aux i (1 ≤ i ≤ n − 1)
are auxiliary variables [6], which are used to break long
mathematical expressions. Auxiliary variables are used to
keep temporary values and will not be mapped back to
any quantity spaces. However, the value of Y in the last
constraint will be mapped to its associated quantity space by
the approximation principle as mentioned in Section II-B.

We can also use one FMF constraint to represent
Equation (5):

MultiFunction(Y ′, X 1′, X 2′, ..., X n′) (9)

In the above equation, Y ′ and X i′ (1 ≤ i ≤ n) are
derivative of Y and X i in Equation (1) with respect to time
t. The mappings of this FMF constraints is determined by
fxi

.

C. Corresponding Constraints in the 2nd Differential Plane

Differentiating Equation (5) with respect to time t will
give us the second derivative of y with respect to t:

y′′ =

n∑
i=1

fxi
x′′
i +

n∑
i=1

n∑
j=1

(fxixj
x′
ix

′
j) (10)

In the above y′′ = d2y
dt2

, fxixj
= ∂2f

∂xi∂xj
. The derivation

of Equation (10) is detailed in Appendix A.

From Equation (10) we see that in order to obtain
information about the second derivative of y, we need to
know the Jacobian and Hessian matrices of the multivariate
function f in Equation (2). In addition, the second derivative
of y is determined by not only x′′

i , but also x′
i.

We can use a set of function and add constraints to repre-
sent Equation (10), similar to the way we use Constraints (6)
and (7) to represent Equaiton (5). We assume n = 2 for ease
of description, and Equation (10) becomes:

y′′ = fx1
x′′
1 + fx2

x′′
2 + fx1x1

x′2
1 + fx2x2

x′2
2 + 2fx1x2

x′
1x

′
2

(11)

The above equation can be represented by the following
set of Morven constraints:



function(Item 1, X 1′′)
function(Item 2, X 2′′)
mul(Item 3, X 1′, X 1′)
function(Item 4, Item 3)
mul(Item 5, X 2′, X 2′)
function(Item 6, Item 5)
mul(Item 7, X 1′, X 2′)
function(Item 8, Item 7)
add(Y ′′, Item 2, Item 4, Item 6, Item 8)

(12)
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Similar to Equation (9) we can use a single FMF
constraint to represent Equaiton (10):

MultiFunction(Y ′′, X 1′, X 2′, ..., X n′,

X 1′′, X 2′′, ..., X n′′)
(13)

In the above FMF constraint the function mappings
are determined by the Jacobian (fxi

) and Hessian (fxixj
)

matrices.

IV. FUZZY MULTIVARIATE MONOTONICITY (FMM )
CONSTRAINTS

In the previous section we gave a general form of
FMF constraints and corresponding constraints in higher
differential planes. In practice it is sometimes not feasible
to use FMF constraints for the following reasons: first, if
high resolution fuzzy quantity spaces cannot be associated
with derivatives, only signs quantity spaces can be used, as
in QSIM. Second, even we can obtain high resolution fuzzy
quantity spaces for derivatives, we may not have sufficient
knowledge about the underlying multivariate function in
terms of its Jacobian and Hessian Matrices.

In the above cases it might still be feasible to study the
partial monotonicity of the function, that is, the signs of the
Jacobian and Hessian matrices. For instance, we can describe
how the resultant variable (i.e., the value of the function) will
change with the change of a particular variable in terms of
increase and decrease.

A. Wellman’s MM Constraints

Wellman’s research on multivariate monotonicity (MM )
constraints [8] provides us with meaningful preliminary
results. However, Wellman’s MM constraints are developed
under the QSIM paradigm, and not suitable for the Morven
framework: first, it cannot incorporate fuzzy quantity space;
second, it assumes the derivatives can only take signs
quantity spaces; third, in a Morven model we may need
both MM and FMF constraints, because within one model
some underlying mulitvariate functions are better under-
stood, which makes it possible to build FMF constraints,
and some are not, which requires MM constraints. This
situation has to be dealt with.

The above consideration motivates us to develop MM
constraints for the Morven framework, or more precisely,
fuzzy MM constraints (FMM ). The original Wellman’s
MM constraints are in the following form:

M∆(x1, ..., xn, y), (14)

where ∆ is a vector of qualitative signs (δ1, δ2, .., δn) and
each δi (1 ≤ i ≤ n) could be +, −, or 0. Constraint (14) is
a natural extension of the binary M constraints in QSIM.

Assuming the underlying function described by Con-
straint (14) is

y(t) = g(x1(t), x2(t), ..., xn(t)). (15)

Then the function g will be well constrained by ∆ to be
partially monotonic [8], which means the signs of the partial

derivative ∂y
∂xi

must be consistent with δi (1 ≤ i ≤ n) in
∆ in Constraint (14). In this paper to be consistent with

the representation of Morven FMF constraints, we rewrite
Constraint (14) as follows:

M∆(Y,X1, ..., Xn). (16)

For instance, when ∆ = (+,−) and n = 2, the above
constraint becomes

M (+,−)(Y,X1, X2), (17)

which indicates that ∂y
∂x1

> 0 and ∂y
∂x2

< 0 in Equation (15).
This can be intuitively understood as follows: y will increase
(decrease) with the increase (decrease) of x1 (if x2 remains
unchanged), and y will decrease (increase) with the increase
(decrease) of x2 (if x1 remains unchanged). In addition, y
will increase (decrease) if x1 increases (decreases) and at
the same time x2 decreases (increases).

B. Implementing Multivariate Monotonicity (MM) Con-
straints in Morven

Recall Sections III-A and III-B, we can use the Mor-
ven constraints (including the newly proposed FMF con-
straints) to implement the MM constraints (this is similar
to the way we specialised the Morven function constraints
to represent the M constraints in QSIM, details of which
are give in [12] and Chapter 4.5 of [13]).

To achieve this we will implement Morven constraints
in the 0th and 1st differential planes to represent Con-
straint (16). In the 0th differential plane we will have an
FMF constraint:

MultiFunction(Y,X1, X2, ..., Xn) (18)

The mappings of the above constraint are equivalent to the
corresponding values [8] of the MM constraint (16).

In the 1st differential plane, consider Equation (5) and
its Morven implementation Constraints (6) and (7), we
give the following abstract constraint to represent partial
monotonicity:

MM add(Y ′, δ1sgn(X
′
1), δ2sgn(X

′
2), ..., δnsgn(X

′
n))

(19)

We will explain the above constraint by describing the
meaning of each operator. First, MM add indicates that
this is an add constraint similar to Constraint (7): the value
of Y ′ will be the sum of all the rest of the terms in the
constraint. In addition, MM add also means this constraint
is a special kind of add constraint used to implement an
MM constraint. In this kind of constraints all variables
(derivatives) will use the signs quantity space and ∆ in
Constraint (16) will be considered. Second, the expression
sgn(A) means we will map the fuzzy four-tuple number that
variable (or derivative) A currently takes from its quantity
space to the signs quantity space. δi (1 ≤ i ≤ n) is the
element of ∆ from Constraint (16), and its value is either +
or − (if a δi is 0, the corresponding item δisgn(X

′
i) will be

0, which means this item has no contribution to the value
of Y ′ and therefore it can be ignored).

To map the value of variable A to the signs quantity
space, we can use alpha-cut to determine how “strict” we
want the signs to be. Let the current value of variable A be
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the fuzzy four-tuple number c=(a, b, α, β), then the signs
of A can be determined as follows:

sgn(A) =




positive(+) if (a− α+ αᾱ ≥ 0) ∧ (b > 0)
negative(−) if (b+ β − βᾱ ≤ 0) ∧ (a < 0)
zero(0) if a = b = α = β = 0
? Otherwise

(20)

In the above, positive, negative, and zero are from the
signs quantity space defined in Table I. The question mark
“?” means the signs could be +, −, or 0. ᾱ is the value of
alpha-cut, and its range is [0,1]. The value of ᾱ is determined
by the domain knowledge and the nature of the associated
quantity space of A. if ᾱ = 0, we will consider the strictest
case and the resultant signs will be the most absolute ones.
For instance, the value c is considered to be positive only
when its minimum possible value (a − α) is non-negative,
and the value of b is positive. Similarly, if ᾱ is close to 1,
we will have a more relaxed situation.

After calculating sgn(A), we then consider the items
δisgn(X

′
i) in Consraint (19). The calculation follows the

following rule:

δisgn(X
′
i) =

{
sgn(X ′

i) if δi is +
−sgn(X ′

i) if δi is −
(21)

Naturally −sgn(A) is calculated as

−sgn(A) =

{
positive if A = negative
zero if A = zero
negative if A = positive

(22)

Having defined all the operations in Constraint (19),
we now consider its implementation under the Morven
framework.

First we can treat Constraint (19) as an add constraint,
and implement it in the same way as we implement
Constraint (7) using Constraints (8). However, as we are
dealing with signs, it can be simply, and more efficiently,
implemented by a set of rules rather than performing the
actual fuzzy arithmetic operations. The calculation of Y ′ in
Constraint (19) is as follows:

Rules of MM Constraint Checking:

• Y ′= + iff ∀i (δisgn(X
′
i) = 0∨δisgn(X

′
i) = +)

∧ ∃i(δisgn(X
′
i) = +)

• Y ′= − iff ∀i (δisgn(X
′
i) = 0∨δisgn(X

′
i) = −)

∧ ∃i(δisgn(X
′
i) = −)

• Y ′= 0 iff ∀i (δisgn(X
′
i) = 0)

The above rules can be used to efficiently check whether
a qualitative state is consistent with a given Constraint (19).
Using these rules, Constraint (19) together with Con-
straint (18) can represent the same relations described by
the MM constraint (16). In this sense we can implement
the MM constraints in Morven. In the actual Morven model
for the ease of parsing the constraints by the model parser

TABLE VIII. THE Morven MODEL WITH FMM AND FMF
CONSTRAINTS FOR THE SINGLE TANK SYSTEM

Differential Plane 0

C1: Function (dt 0 qo, dt 0 V) (qo = k ∗ V )
C2: MultiFunction (dt 1 V, dt 0 qi, dt 0 qo) (V ′ = qi − qo)

Differential Plane 1

C3: Function (dt 1 qo, dt1 V) (q′o = k ∗ V ′)
C4: MM add (+,−) (dt 2 V, dt1 qi, dt1 qo) (V ′′ = q′

i
− q′

o
)

TABLE IX. MAPPINGS OF CONSTRAINT C2 IN TABLE VIII

dt 1 V dt 0 qi dt 0 qo
positive positive zero

zero zero zero

negative zero positive

and also to make it look similar to an MM constraint,
Constraint (19) will be rewritten as follows:

MM add(δ1, δ2, ...., δn)(Y
′, X1′, X2′, ..., Xn′) (23)

This means when calculating the above constraint within
Morven, each Xi′ will be automatically replaced by
δisgn(X

′
i). An example of Constraint (23) which represents

the MM constraint (17) is given as follows:

MM add(+,−)(dt 1 Y, dt 1 X1, dt 1 X2) (24)

It is again noted that in Morven constraints each place is a
magnitude or derivative of a variable. So in Constraints (18),
(19) and (23) each place is actually the magnitude or
derivative of a variable.

V. PROOF-OF-CONCEPT EXPERIMENTS

In this section we will perform simulation with the single
tank model to demonstrate the validity of FMF and FMM
constraints.

A. Single Tank Model

We first give the single tank model as shown in Ta-
ble VIII. In this model we assume we are not aware of the
algebraic relations among V ′, qi, and qo, and instead we use
an MM relation represented by one FMF constraint (Con-
straint C2) in the 0th differential plane and one MM add
constraint (Constraint C4) in the 1st differential plane.

B. Simulation of Models With Signs Quantity Space and
Complete Specification of the Mappings in the FMF Con-
straint

We first let all variables and derivatives take the signs
quantity space, and specify the mappings for Constraint C2
in Table VIII as shown in Table IX.

We then perform both total envisionment (the envision-
ment that considers all situations of the input qi) and com-
plete envisionment (the envisionment that assumes certain
values of the input variables) when the input qi remains
positive and steady. To compare the simulation results we
also perform the same total and complete envisionment with
the model shown in Table V. Simulation results show that
both the model with FMF and FMM constraints and

580



TABLE X. MAPPINGS OF CONSTRAINT C2 IN TABLE VIII

dt 1 V dt 0 qi dt 0 qo
positive positive zero

negative zero positive

V=<zero, zero, zero>
qo=<zero, zero>
qi=<positive,zero>

Fig. 6. A Qualitative State of the Single Tank by Morven

the original Morven model give us the same envisionment
graphs: for the complete envisionment both models produces
the same envisionment graph as shown in Fig. 5; for the total
envisionment both models produce 22 qualitative states and
72 possible transitions between these states.

C. Simulation of Models With Signs Quantity Space and
Partial Specification of the Mappings in FMF

In this section we perform the same total and complete
envisionment with the same models as in Section V-B.
However, we remove one function mapping of Constraint C2
from Table IX, which gives us the function mappings shown
in Table X. This is to demonstrate that we can perform the
simulation with only partial specification of the mappings in
FMF constraints.

For the complete envisionment, we generate one addi-
tional qualitative state compared to the results with complete
specification of the mappings, and this state is shown in
Figure 6. From this figure we see that because we do not
know the algebraic relation among V ′, qi, and qo, when
qi = positive and qo = zero, the value of V ′ are assigned to
be zero instead of positive. However, the ability to perform
this kind of simulation shows that our FMF constraint
can deal with incomplete knowledge about the underlying
multivariate function and generate results accordingly.

D. Simulation of Models with Fuzzy Quantity Space

In this section we perform the simulation with a model
of which variables are associated with fuzzy quantity spaces.
We first give the following two high resolution fuzzy quan-
tity spaces, as shown in Table XI and Table XII, respectively.
We assume that the magnitudes of all variables are associated
with Tanks-Quantity-Space-1 in Table XI and the derivatives
of all variables are associated with Tanks-Quantity-Space-
2 in Table XII. The mappings of the function constraint
C1 will be both (dt 0 V ) and (dt 0 qo) taking the same
values. For instance, if (dt 0 V ) is n-max, (dt 0 qo) is
n-max too. Similarly, for Constraint C3 the mappings are
also both (dt 1 V ) and (dt 1 qo) taking the same value: if
(dt 1 V )=ps-dash, (dt 1 qo) is ps-dash too. The mappings
of Constraint C2 is given in Table IX. In addition, we set
the value of alpha-cut to be zero.

We then perform the total envisionment, which gives us
257 qualitative states and 2755 transitions. The results are
compared with those from the original Morven model shown
in Table V, and both models generated the same states and
transitions.

TABLE XI. TANKS-QUANTITY-SPACE-1

Quantity a b α β
n-max -1 -1 0 0.1
n-large -0.9 -0.75 0.05 0.15

n-medium -0.6 -0.4 0.1 0.1
n-small -0.25 -0.15 0.1 0.15

zero 0 0 0 0
p-small 0.15 0.25 0.15 0.1

p-medium 0.4 0.6 0.1 0.1
p-large 0.75 0.9 0.15 0.05
p-max 1 1 0.1 0

TABLE XII. TANKS-QUANTITY-SPACE-2

Quantity a b α β
nl-dash -1 -0.75 0 0.15
ns-dash -0.6 -0.15 0.1 0.15

zero 0 0 0 0
ps-dash 0.15 0.6 0.15 0.1
pl-dash 0.75 1 0.15 0

E. Remarks

In this section we have demonstrated the validity of
our proposed FMF and FMM constraints by performing
fuzzy qualitative simulation with models containing such
constraints. We use the single tank system as it is a de
facto benchmark system in the field of QR, and it is easier
to explain the concepts. We point out that more complex
system could have been used, for instance, we have built
and simulated more complex models with FMF and FMM
constraints based on the minimal interaction model for the
osmotic stress response pathway in yeast [14], but using
models of such complexity would have made the explanation
more tortuous.

In other words, although both FMF and FMM con-
straints used in the single tank model constraints are ternary,
we can easily perform simulation with models containing
more complicated FMF and FMM constraints. In this
sense the experiments reported in this section are illustrative
and proof-of-concept ones.

VI. CONCLUSIONS AND FUTURE WORK

In this research we enhance the expressive power of
Morven and enable it to deal with fuzzy multivariate re-
lations by introducing two kinds of constraints: multivariate
function (FMF ) constraints and MM add constraints.
We present the form of FMF constraints across different
differential planes, and use FMF and MM add constraints
to describe fuzzy multivariate monotonicity (FMM ) rela-
tions. This makes it possible to perform fuzzy qualitative
simulation with models containing multivariate relations.
Proof-of-concept experiments were carried out on the single
tank model and simulation results validate the proposed
constraints on such benchmark model.

In the future we will conduct theoretical analysis on the
completeness and soundness of Morven after introducing
multivariate constraints. We will also investigate how the
values of alpha-cut in MM add would affect the generation
of spurious states. Finally, we are interested in introducing
multivariate constraints into QML-Morven [15], a qualitative
model learning [16] framework, so that we can automatically
learn models containing fuzzy multivariate relations.
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APPENDIX

A. The Derivation of Equation (10)

For ease of understanding, we use Leibniz’s notion.
When differentiating Equation (5) with respect to time t,
according to the sum rule in differentiation:

d2y

dt2
=

d

dt

n∑
i=1

(
∂y

∂xi

dxi

dt
) =

n∑
i=1

d

dt
(
∂y

∂xi

dxi

dt
) (25)

Apply the product rule in differentiation to each item
d
dt
( ∂y
∂xi

dxi

dt
) of the above equation:

d

dt
(
∂y

∂xi

dxi

dt
) =

d

dt
(
∂y

∂xi

)
dxi

dt
+

∂y

∂xi

d2xi

dt2
(26)

For the item d
dt
( ∂y
∂xi

) in Equation (26), we express the

total derivative of
∂y
∂xi

, which is a function of x1, x2, ..., xn:

d

dt
(
∂y

∂xi

) =
n∑

j=1

∂

∂xj

(
∂y

∂xi

)
dxj

dt
=

n∑
j=1

∂y

∂xj∂xi

dxj

dt
(27)

Substitute Equation (27) into Equation (26):

d

dt
(
∂y

∂xi

dxi

dt
) =

n∑
j=1

∂y

∂xj∂xi

dxj

dt

dxi

dt
+

∂y

∂xi

d2xi

dt2
(28)

Finally substitute Equation (28) into Equation (25):

d2y

dt2
=

n∑
i=1

n∑
j=1

∂y

∂xj∂xi

dxj

dt

dxi

dt
+

n∑
i=1

∂y

∂xi

d2xi

dt2
(29)

Rewrite the above equation using Lagrange’s notation,
and according to Young’s Theorem fxixj

= fxjxi
, we will

obtain Equation (10).
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