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Abstract—We present a fuzzy linguistic first order logic having
the truth domain as a refined hedge algebra. The syntax and se-
mantic are defined. Resolution is chosen for the inference system.
To capture the approximate nature of resolution inferences, the
notion of reliability of resolution inferences is defined. In this
respect the resolution procedure can not only prove facts but
also indicate how reliable the proof is. We prove the soundness
and completeness of the resolution procedure using semantic tree
technique.

Index Terms—Refined Hedge Algebra, Linguistic Truth Value,
Fuzzy Linguistic First Order Logic, Resolution.

I. INTRODUCTION

Logical inference is an approach to model human reasoning
process, which relies on accurate foundations from mathemat-
ics. However in many real world applications the reasoning
process has to deal with uncertain or fuzzy information.
The situation becomes even more complex when the fuzzy
information is expressed in natural language. Therefore it
is important to build logical systems which are capable of
handling logical reasoning with fuzzy linguistic information.

In [5], Zadeh introduced fuzzy set theory and fuzzy logic
to deal with uncertain reasoning. Later on, Zadeh [6], [7], [8]
used linguistic variables and linguistic values to formalize the
reasoning in natural languages. Zadeh’s work has played a
prominent role in mathematical basis of fuzzy logics, logical
foundation of fuzzy inference, and approximate reasoning
methods. In [9] Nguyen and Wechler introduced the concept
of hedge algebra, which is an algebraic approach to linguistic
hedges in Zadeh’s fuzzy logic.

The resolution principle, initially designed for two-valued
logics by Robinson in 1965 [1], is the heart of many kinds
of deductive systems such as theorem proving and logic
programming. Finding resolution methods in fuzzy logic as
effective as the resolution principle in two-valued logic have
been subsequently studied [2], [3], [4].

According to Zadeh [6], [7], [8] the statements “It is true
that Marry is very young’ and “It is very true that Marry is
young” have approximately equivalent truth values. Therefore
inferences in linguistic logics with multiple linguistic variables
can be approximately reduced to inferences in a linguistic logic
with a single linguistic truth variable, which again can be
approximately reduced to inferences in a multi-valued logic

with an algebraic truth domain. On the other hand it has
been shown that symmetrical refined hedge algebras have a
rich enough algebraic structure to be used as a logical truth
domain [17]. Indeed the lattice operations join and meet of
refined hedge algebras can model the semantics of the logical
disjunction and conjunction. Thus linguistic truth terms can
be expressed in conjunctive normal form, and the logical
formulae become suitable for refutation based inferences such
as resolution. This is the starting point for our investigation.

In previous work [10], we proposed a fuzzy propositional
logic whose the truth domain is based on a finite symmetrical
refined hedge algebra. In this paper we extend the work of
[10] from propositional logic to first order logic. We present
a fuzzy first order logic having the truth domain generated
by a symmetrical refined hedge algebra. We define its syntax
and semantics in a similar way as [10]. We give a resolution
inference system and prove its soundness and completeness.
Soundness means that if a resolution derivation finds the
empty clause at some point, then the input set of clauses
is unsatisfiable. Completeness means that if the input set of
clauses is unsatisfiable then a resolution derivation will find the
empty clause after a finite number of inferences. We introduce
the notion of reliability as in [10], in order to estimate how
reliable a resolution inference is.

Related work

Algebraic and deductive aspects of fuzzy logics have been
substantially studied (see e.g., [11] for a detailed survey). In
[2] Lee presented a resolution procedure in fuzzy logic and
showed the equisatisfiability of logical clauses in fuzzy logics
and two-valued logics. Shen et al. [3] went a step further
by introducing new concepts such as fuzzy contradictory,
contradictory degree, fuzzy resolvent, and confidence of re-
solvent, and then given a fuzzy refutation complete resolution
procedure in which the premises and conclusions, as well as
the inferential results are all fuzzy. Smutná and Vojtás [4]
gave a sound resolution in many-valued logic with arbitrary
connectives and graded information and the resolution truth
function to evaluate the truth value of the resolvent of a
resolution. Novak [12] gave a logical theory of trichotomous
evaluative linguistic expressions. Le et al. [13] introduced the
fuzzy linguistic logic programming whose truth domain is
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based on monotone symmetrical finite hedge algebras, then
gave a procedural semantics based on many-valued modus
ponens and proved the soundness and completeness of the
procedure. Its the soundness and completeness of the algorithm
are also proved. Nguyen et al. [14], [15], [16] presented
logical systems whose truth domain is based on monotone
symmetrical hedge algebras.

Our approach is similar to [3], [14]. The main difference
between our work and [3] is that our logic has a algebraic
truth domain based on a refined hedge algebra instead of the
usual numeric truth domain of fuzzy logic; thus it can directly
handle linguistic truth terms of natural languages. Our logic
differs from [14] in both algebraic and deductive aspects. We
make use of a refined hedge algebra as the truth domain instead
of a monotone hedge algebra. This allows us to employ a
resolution inference system which handles directly linguistic
truth terms in conjunctive normal forms instead of applying
hedge moving rules on arbitrary linguistic terms as in [14].
The monotonicity condition is necessary for the soundness of
hedge moving rules, while it is not needed for the soundness of
our resolution rule. It is worth mentioning that monotonicity is
rather too strong a requirement in the context of approximate
reasoning in linguistic logics.

Structure of the paper

The paper is organized as follows. Section II introduces
refined hedge algebras. Sections III and IV define the syntax
and semantics of fuzzy linguistic first order logics. Section V
gives a fuzzy linguistic resolution procedure, the soundness
and completeness of the procedure are proved. Section VI
concludes and draws possible future work.

II. REFINED HEDGE ALGEBRA

As aforementioned, inferences in natural language can be
approximately reduced to inferences in a multi-valued logic
with the truth domain based on an algebra of linguistic truth.
We will be employing an algebraic truth domain which is a
refined hedge algebra. In this section we introduce the most
important notions of refined hedge algebras.

We assume the usual notions such as abstract algebra, latice,
. . . and the notions defined in [9] and [17] such as linguistic
variable, hedge, hedge algebra, semantic consistency, PN-
homogenity, graded class, unit operation set, . . .

We will be working with a class of abstract algebras of the
form AX = (X,G,LH,≤) where X is the term set, G is
the set of generators, LH is the set of unary operations repre-
senting hedges, and ≤ is partial order on X . Furthermore, we
assume that X and LH are semantically consistent, and LH
is PN-homogeneous. Accordingly, the set LH is decomposed
into two subsets LH+, LH− such that LH++I and LH−+I
are finite latices with zero-element I . For c is either + or −,
SIc denotes the set of all indexes i which are not single-class
elements, LHc

i denotes graded class i of LHc, LH∗ denotes
the set of all strings of hedges in LH . Let us denote by USO
(unit operation set) the set of two unit-elements V and S of
LH+ + I and LH− + I . For any element x ∈ X , LH(x)

(respectively LHc
i [x]) denotes the set of all elements generated

from x by means of hedges in LH (respectively LHc
i ). The

set LH(LHc
i [x]) is the union of all the sets LH(x) where

x ∈ LHc
i [x].

AX is called a refined hedge algebra, if X and LH are
semantically consistent and the following conditions hold :
(where h, k ∈ LH):
(1) Every operation in LH− is converse to each operation in

LH+.
(2) The unit operation V of LH+ + I is either positive or

negative w.r.t. any operation in LH . In addition, LH
should satisfy the PN-homogeneous property.

(3) (Semantic independent property) If u and v are indepen-
dent, i.e. u /∈ LH(v) and v /∈ LH(u), then x /∈ LH(v)
for any x ∈ LH(u) and vice versa. If x 6= hx then
x /∈ LH(hx). Further, if hx 6= kx then kx and hx are
independent.

(4) (Semantic inheritance) If hx and kx are incomparable,
then same for elements u ∈ LH(hx) and v ∈ LH(kx).
Especially, if a, b ∈ G and a < b then LH(a) < LH(b).
And if hx < kx then

i) In the case that h, k ∈ LHc
i , for some i ∈ SIc the

following statements hold:
• δhx < δkx, for any δ ∈ LH∗.
• δhx and y are incomparable, for any ∀y ∈
LH(kx) such that y � δkx.

• δkx and z are incomparable, for any ∀y ∈
LH(hx) such that z � δhx.

ii) Otherwise, h, k /∈ LHc
i , then h′hx ≤ k′kx, for every

h′, k′ ∈ UOS.
(5) (Linear order between the graded classes) Assume that

u ∈ LH(x) and u /∈ LH(LHc
i [x]), for any i ∈ SIc. If

exist v ∈ LH(hx), for h ∈ LHc
i such that u ≥ v (or

u ≤ v), then u ≥ h′v (or u ≤ h′v) for any h′ ∈ UOS.
In the remain of the paper, we will consider a class of re-

fined hedge algebras enjoying properties such as distributivity.
symmetry, finiteness, . . . which make it suitable to be the truth
domain of our logic.

Let AX = (LH[G], G, LH,≤,⊥,W,>) be a refined hedge
algebra where
• G = {False,True},
• ⊥,> are fixed points (i.e. h> = >, h⊥ = ⊥ for all
h ∈ LH),

• W is the neutral element, and
• ⊥ < False <W < True < >.
We will be utilizing resolution as the inference system.

Resolution works with a special form of formulae called
clauses, therefore formulae need to be converted into conjunc-
tive normal form before applying resolution. It is well known
that the distributivity of the operators of and and or makes this
transformation is feasible. It was shown in [17] that a refined
hedge algebra AX = (X,G,LH,≤,⊥,W,>) is a distributive
latice when G is a totally ordered set.

Operations of meet and join on AX lattice are determined
recursively, based on the corresponding operations on hedge
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lattice LH . Denote LH[x] = {hx : h ∈ LH + I}, where
x ∈ X and I is the zero-element. It was proved in [17] that
LH[x] is a distributive sub-lattice of AX and operations of
meet and join on it is defined as follows:

hx ∨ kx =

{
(h ∪ k)x if hx ≥ x,
(h ∩ k)x if hx ≤ x

and hx ∧ kx =

{
(h ∩ k)x if hx ≥ x,
(h ∪ k)x if hx ≤ x

where ∪,∩ are the join and meet operators of LH , and ∨,∧
are the join and meet operators of X .

Let x be an element of the hedge algebra AX and the
canonical representation of x is x = hn...h1a where a ∈
{True,False}. The contradictory element of x is an element
y such that y = hn...h1a

′ where a′ ∈ {True,False} and
a′ 6= a, denoted by x. The contradictory element of > is
⊥ and conversely. The contradictory element of W is itself.
AX is said to be a symmetrical refined hedge algebra if every
element x ∈ X has a unique contradictory element in X .

In practice, natural language only uses finite string of
hedges. Therefore it is useful to limit the set X to consists
of only finite length elements. In this case we say that the
symmetrical refined hedge algebra is finite. Let LHp[G] =
{hn...h1a : hi ∈ LH + I, a ∈ G,n ≤ p}, then a finite
symmetrical refined hedge algebra AX = (LHp[G], G, LH,≤
,⊥,W,>) is a complete distributive lattice.

Let x and y be two elements of the finite symmetrical
refined hedge algebra AX , then
• the negation operator is an unary operator, which is

defined by ¬x = x, where x is the contradictory element
of x,

• the implication operator is a binary operator, which is
defined through negative and join operators: x → y =
¬x ∨ y.

Theorem II.1. [17] Let AX = (LHp[G], G, LH,≤
,⊥,W,>,¬,∨,∧,→,⊥,W,>) be a finite symmetrical refined
hedge algebra. Then, for all x, y ∈ LHp[G], for all h, k ∈
LH , we have:

1) ¬(hx) = h¬x
2) ¬(¬x) = x
3) ¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y
4) x ∧ ¬x ≤ y ∨ ¬y
5) x ∧ ¬x ≤W ≤ x ∨ ¬x
6) ¬> = ⊥,¬⊥ = > and ¬W = W
7) x > y iff ¬x < ¬y
8) x→ y = ¬y → ¬x
9) x→ (y → z) = y → (x→ z)

10) x→ y ≤ x′ → y′ if x ≤ x′ and y ≥ y′
11) x→ y = > iff x = ⊥ or y = >
12) > → x = x and x → > = >; ⊥ → x = > and

x→ ⊥ = ¬x
13) x → y ≥ W iff x ≤ W or y ≥ W, and x → y ≤ W iff

x ≥W or y ≤W

III. SYNTAX

The syntactical component of our logic is defined as in first
order logic with the usual syntactical notions such as alphabet,
term, formulae, . . . for our logic.

Definition III.1. An alphabet consists of the followings:

• variables: x, y, z, . . .;
• function symbols: a set FS of symbols f, g, h, . . . each of

n-arity (n ≥ 0); a function symbol with 0-arity is called
a constant;

• predicate symbols: a set PS of symbols P,Q,R, . . . each
of n-arity (n ≥ 0); predicate symbol with 0-arity is called
a logical constant symbol;

• logical connectives: ∨,∧,¬,→,↔;
• quantifiers: ∀,∃;
• auxiliary symbols: 2, (, ), . . .;

Definition III.2. A term is defined recursively as follows:

• either a constant symbol or a variable is a term,
• if f is a n-ary function symbol and t1, . . . , tn are terms

then f(t1, . . . , tn) (n > 0) is a term.

Definition III.3. An atom is either a 0-ary predicate symbol
or a n-ary predicate symbol P (t1, . . . , tn) (n > 0), where
t1, . . . , tn are terms. variables.

Definition III.4. Let A be an atom and α be a logical constant
symbol. Then Aα is called a literal.

Definition III.5. Formulae are defined recursively as follows:

• a literal is a formula,
• if φ, ψ are formulae, then φ∨ψ, φ∧ψ, φ→ ψ, φ↔ ψ,¬φ

are formulae, and
• if x is a variable and φ is a formula then ∀xφ,∃xφ are

formulae.

A variable bounded to a quantifier is called a bounded
variable. A free variable is a variable which is not bounded to
any quantifiers.

An expression is either a term or an atom or a formula. An
expression is ground if it does not contain any variables.

A clause is a finite set of literals, is usually written as a
disjunction l1∨l2∨...∨ln, where li is a literal (for i = 1, 2, ...).
An empty clause is denoted by 2. A formula is said to be
in conjunctive normal form (CNF) if it is a conjunction of
clauses.

A substitution is a finite set of specifications of the form
[t/v] in which t is a term and v is a variable. Substitutions
are usually written in set notation: {t1/v1, t2/v2, .., tn/vn}.
A substitution {t1/v1, t2/v2, .., tn/vn} is ground if all terms
t1, . . . , tn are ground. The product of two substitutions σ and
θ, denoted by σoθ, is defined such that if xiσ = yi and yiθ =
si then xiσoθ = si.

Let θ = {t1/v1, t2/v2, .., tn/vn} be a substitution and e
be a expression. An instance eθ of e is the expression ob-
tained by replacing simultaneously all occurrences of variables
v1, . . . , vn with the corresponding terms t1, . . . , tn.
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Let e1, e2 be expressions, and γ be a substitution. Then γ
is called a unifier e1 and e2 if e1 = e2γ. We say that a unifier
γ is more general than another unifier σ if there exists an
substitution φ such that σ = γoφ. We say that γ is the most
general unifier (m.g.u for short) if there is no unifier more
general than γ.

IV. SEMANTICS

We define the usual semantic notions for our logic such as
structure, interpretation, evaluation, model, satisfiability, . . . in
a similar way as for first order logic, except that we employ
the following finite symmetrical refined hedge algebra for the
truth domain

AX = (LHp[G], G, LH,≤,⊥,W,>,¬,∨,∧,→)

Definition IV.1. A structure M of an alphabet A is a triplet
(D, If , Ip), where:
• D is a nonempty set called the domain of the structure,

and:
– FD is the set of functions on D: FD = {fD|fD :
Dn −→ D,n > 0}

– PD is the set of relations on D: PD = {PD|PD :
Dn −→ X,n ≥ 0}, where X = LHp[G] ∪ {⊥,W,>}

• If : FS −→ FD, for every n-ary function symbol f , f
is assigned to an element in FD

• Ip : PS −→ RD, for every n-ary predicate symbol P ,
P is assigned to an element in PD

Definition IV.2. An assignment σ is a mapping of the set of
variables V into the domain D, σ : V −→ D.

Definition IV.3. An interpretation I is a pair (M, σ), where
M is a structure and σ is an assignment.

The evaluation of a term t under the interpretation I is
denoted by [|t|]Mσ , or I(t). Likewise, the evaluation of a
formula φ under the interpretation I is denoted by [|φ|]Mσ ,
or I(φ).

Definition IV.4. The evaluation of a term under an interpre-
tation I = (M, σ) is determined as follows:
• [|c|]M = cM for a constant c
• [|x|]Mσ = σ(x) for a variable x
• [|f(t1, . . . , tn)|]Mσ = fM([|t1|]Mσ , . . . , [|tn|]Mσ ) for a term
f(t1, . . . , tn)

Definition IV.5. Let I = (M, σ) be an interpretation and A
be an atom such that [|A|]Mσ = αM

1 . The evaluation of a literal
Aα2 under the interpretation I = (M, σ) is determined as
follows:

[|Aα2 |]Mσ =


αM
1 ∧ αM

2 if αM
1 , α

M
2 >W,

¬(αM
1 ∨ αM

2 ) if αM
1 , α

M
2 ≤W,

(¬αM
1 ) ∨ αM

2 , if αM
1 >W, αM

2 ≤W, and
αM
1 ∨ (¬αM

2 ), if αM
1 ≤W, αM

2 >W.

Definition IV.6. The evaluation of formulae under an inter-
pretation I = (M, σ) is determined recursively as follows:

• [|¬φ|]Mσ = ¬[|φ|]Mσ
• [|φ ∧ ϕ|]Mσ = [|φ|]Mσ ∧ [|ϕ|]Mσ
• [|φ ∨ ϕ|]Mσ = [|φ|]Mσ ∨ [|ϕ|]Mσ
• [|φ→ ϕ|]Mσ = [|φ|]Mσ → [|ϕ|]Mσ
• [|φ↔ ϕ|]Mσ = [|φ|]Mσ ↔ [|ϕ|]Mσ
• [|∃xφ|]Mσ = maxc∈D{[|φ|]Mσ′ |σ′ = σ ∪ {x := c}}
• [|∀xφ|]Mσ = minc∈D{[|φ|]Mσ′ |σ′ = σ ∪ {x := c}}

Definition IV.7. Let I = (M, σ) be an interpretation and φ
be a formula.
• φ is said to be true under the interpretation I, or I

satisfies φ, or I is a model of φ, iff [|φ|]Mσ >W, denoted
by I |= φ.

• We say that φ is satisfiable iff it has a model.
• We say that φ is unsatisfiable iff it has no model.
• φ is said to be false under the interpretation I, or I

falsifies φ, iff [|φ|]Mσ ≤W.
• φ is valid in the structure M if [|φ|]Mσ > W for all

assignments σ, denoted by M |= φ. M is called a model
of φ.

• φ is said to be tautology iff it is valid in all structures
M, denoted by |= φ.

Definition IV.8. Let I = (M, σ) be an interpretation, let φ
and ϕ be formulae. Then
• ϕ is a logical consequence of φ, denoted by φ |= ϕ, iff

for every interpretation I, I |= φ implies that I |= ϕ.
• φ and ϕ are said to be logically equivalent, denoted by
φ ≡ ϕ, iff φ |= ϕ and ϕ |= φ.

• φ and ϕ are said to be equisatisfiable if φ is satisfiable
iff ϕ is satisfiable.

Theorem IV.1. Let φ, ϕ and ψ be formulas. Then the follow-
ing properties hold:

1) Idempotency:
• φ ∨ φ ≡ φ
• φ ∧ φ ≡ φ

2) Implication:
• φ→ ϕ ≡ (¬φ) ∨ ϕ
• (φ ≡ ϕ) ≡ (φ→ ϕ) ∧ (ϕ→ φ)

3) Double negation:
• ¬¬φ ≡ φ

4) De Morgan:
• ¬(φ ∨ ϕ) ≡ (¬φ) ∧ (¬ϕ)
• ¬(φ ∧ ϕ) ≡ (¬φ) ∨ (¬ϕ)

5) Commutativity:
• φ ∨ ϕ ≡ ϕ ∨ φ
• φ ∧ ϕ ≡ ϕ ∧ φ

6) Associativity:
• φ ∨ (ϕ ∨ ψ) ≡ (φ ∨ ϕ) ∨ ψ
• φ ∧ (ϕ ∧ ψ) ≡ (φ ∧ ϕ) ∧ ψ

7) Distributivity:
• φ ∨ (ϕ ∧ ψ) ≡ (φ ∨ ϕ) ∧ (φ ∨ ψ)
• φ ∧ (ϕ ∨ ψ) ≡ (φ ∧ ϕ) ∨ (φ ∧ ψ)

8) Quantifier:
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• (Qxα) ∧ β ≡ Qx(α ∧ β)

• (Qxα) ∨ β ≡ Qx(α ∨ β)

• α ∧ (Qxβ) ≡ Qx(α ∧ β)

• α ∨ (Qxβ) ≡ Qx(α ∨ β)

where Q ∈ {∃,∀}

A formula ϕ is said to be in conjunctive normal form
(CNF) if ϕ is a conjunction of clauses. Below is a rule-
based algorithm to transform an arbitrary formula into an
equisatisfiable CNF formula. The algorithm consists of seven
steps:

1) Eliminate implications and equivalences:
α→ β =⇒CNF ¬α ∨ β
α↔ β =⇒CNF (¬α ∨ β) ∧ (¬β ∨ α)

2) Move negations inward:
¬¬α =⇒CNF α
¬∃xα =⇒CNF ∀x¬α
¬∀xα =⇒CNF ∃x¬α
¬(α ∨ β) =⇒CNF ¬α ∧ ¬β
¬(α ∧ β) =⇒CNF ¬α ∨ ¬β

3) Standardize variables: if two variables have the same
name but are in two different clauses then rename one
of them.

4) Move quantifiers outward:
(Qxα) ∧ β =⇒CNF Qx(α ∧ β)
(Qxα) ∨ β =⇒CNF Qx(α ∨ β)
α ∧ (Qxβ) =⇒CNF Qx(α ∧ β)
α ∨ (Qxβ) =⇒CNF Qx(α ∨ β)
where Q ∈ {∃,∀}

5) Eliminate existential quantifiers:
∀x1 . . . ∀xn∃xα =⇒CNF ∀x1 . . . ∀xnα[x := π(x1,...,xn)]
where π is a n-ary function symbol, also called ”Skolem
function”

6) Eliminate universal quantifiers: ∀xα =⇒CNF α
7) Distribute disjunctions inward over conjunctions:

α ∧ (β ∨ γ) =⇒CNF (α ∧ β) ∨ (α ∧ γ)
α ∨ (β ∧ γ) =⇒CNF (α ∨ β) ∧ (α ∨ γ)

Lemma IV.1. Let φ and ϕ be formulae such that φ =⇒CNF

ϕ. Then φ and ϕ are equisatisfiable.

The following theorem follows from Lemma IV.1.

Theorem IV.2. Any formula of arbitrary form can be con-
verted into an equisatisfiable CNF formula.

As in two-valued first order logic, for deciding satisfiability
of formulae it is sufficient to consider a special class of inter-
pretations, namely Herbrand’s interpretations, as satisfiability
can be reduced to satisfiability in Herbrand’s interpretation.

Definition IV.9. The Herbrand universe, or H-universe for
short, of an alphabet A, denoted by U(A), is the set of all
ground terms built over A.

Definition IV.10. The set of all ground atoms built over A
is called the Herbrand base, or H-base for short, denoted by
B(A).

Definition IV.11. A Herbrand structure, or H-structure for
short, of an alphabet A is a structure having the domain which
is the Herbrand universe U(A).

Definition IV.12. A Herbrand interpretation, or H-
interpretation for short, of an alphabet A is a pair (MH , σH),
where MH is a H-structure of the alphabet A and σH : V −→
U(A) is a variable assignment.

It is convenient to define the notions of H-universe, H-base,
H-structure and H-interpretation for a set of clauses S. Let
S be a clause set, let A(S) be the alphabet containing exactly
the constant symbols, function symbols, predicate symbols
appearing in S, along with usual symbols such as variables,
logical symbols, auxiliary symbols. The H-universe of S,
denoted by U(S), is the H-universe of the alphabet A(S). The
H-base of S, denoted by B(S), is the H-base of the alphabet
A(S). An H-structure of S is an H-structure of the alphabet
A(S). An H-interpretation of S is an H-interpretation of the
alphabet A(S).

Theorem IV.3. A clause set S is satisfiable iff S is satisfied
in an H-interpretation.

Proof: (⇒) Assume that S is satisfiable, then it is satisfied
by an interpretation I = (M, σ) over the domain D. We
construct an H-interpretation of S based on the existing
interpretation I as follows: H = (MH , σH)

• MH = (U(S)), Hf , Hp), where:
– U(S) is the H-universe of S,
– Hf (f)(h1, . . . , hn) = f(h1, . . . , hn) ∈ U(S)),
– Hp(P )(h1, . . . , hn) = Ip(P )(I(h1), . . . , I(hn)) ∈
X .

• σH(x) = h where h ∈ U(S)) and I(h) = σ(x).

Then, we have:

H(P (t1, . . . , tn)) = Hp(P )(σH(t1), . . . , σH(tn))

= Ip(P )(I(σH(t1)), . . . , I(σH(tn)))

= Ip(P )(σ(t1), . . . , σ(tn))

= I(P (t1, . . . , tn))

This shows that if S is true under I, then it is true under
H as well.

(⇐) If S is satisfied under an H-interpretation H, then it
is obvious that S is satisfiable.

V. RESOLUTION

In fuzzy linguistic logic the degree of contradiction can vary
because the truth domain contains more than two elements.
For instance sets of formulae {AVeryTrue, AVeryFalse} is “more
contradictory” than the set formulae{ALessTrue, ALessFalse}. As
in [10], the notion of reliability is needed to capture the
fuzziness of resolution inferences.

Let α be an element of X such that α > W and C be a
clause. The clause C with its reliability α is the pair (C,α).
The reliability α of a clause set S = {C1, C2, . . . , Cn}, is
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defined as follows:

α = α1 ∧ α2 ∧ . . . ∧ αn

where αi is the reliability of Ci (for (i = 1, 2, . . . , n)).
An inference rule R working with clauses with reliabilities

is represented as follows:

(C1, α1) (C2, α2) . . . (Cn, αn)

(C,α)

where C1, α1) (C2, α2) . . . (Cn, αn) are premises and
(C,α) is the conclusion. We say that α is the reliability of R,
provided that α ≤ αi for i = 1, 2, . . . , n.

An inference is sound if its conclusion is a logical conse-
quence of its premises. That is, for any interpretation I, if
I(C1 ∧ C2 ∧ . . . ∧ Cn) >W then I(C) >W.

Definition V.1. Define the resolution rule as follows:

(Aa ∨Bb, α1) (Cc ∨Dd, α2)

((Aa ∨Dd)γ, α3)

where b, c and α3 satisfy the following conditions:
b ∧ c ≤W
b ∨ c >W
γ is the most general unifier of B and C
α3 = f(α1, α2, b, c)

with f is a function such that α3 ≤ α1, and α3 ≤ α2.
((Aa∨Dd)γ, α3) is called a resolvent of (Aa∨Bb, α1) and

(Cc ∨Dd, α2).

In Definition V.1 the reliability α3 is defined so as to be
smaller or equal to both α1 and α2. This makes sure that the
more inferences we need to deduce a clause the less reliable
the obtained clause is. There are different ways to define α3.
Below we define α3 in three ways based on ∧ and ∨ operators.

The reliability of the resolution rule V.1 based on ∧ operator
is given by:

α3 = f(α1, α2, b, c) = α1 ∧ α2 ∧ ¬(b ∧ c)

The reliability of the resolution rule V.1 based on ∨ operator
is given by:

α3 = f(α1, α2, b, c) = α1 ∧ α2 ∧ (b ∨ c)

The reliability of the resolution rule V.1 based on the
combination of ∧ and ∨ operators is given by:

α3 = f(α1, α2, b, c) = α1 ∧ α2 ∧ (¬(b ∧ c)) ∧ (b ∨ c)

Proposition V.1. The reliability based on ∧ operator (respec-
tively ∨ operator or the combination of ∧ and ∨ operators)
satisfies the conditions on α3 in Definition V.1.

Proof: For ∧ operator we need to prove that α1 ∧ α2 ∧
¬(b∧c) ≤ α1 and α1∧α2∧¬(b∧c) ≤ α2 and α1∧α2∧¬(b∧
c) >W. By definition of ∧ it is clear that that α1∧α2∧¬(b∧
c) ≤ α1 and α1 ∧ α2 ∧ ¬(b ∧ c) ≤ α2. Additionally, we have
that α1, α2 >W. Moreover, b∧ c ≤W implies ¬(b∧ c) >W.
Then α1 ∧ α2 ∧ ¬(b ∧ c) >W.

For ∨ operator we need to prove that α1∧α2∧(b∨c) ≤ α1

and α1 ∧ α2 ∧ (b ∨ c) ≤ α2 and α1 ∧ α2 ∧ (b ∨ c) > W.
By definition of ∧ it is clear that α1 ∧ α2 ∧ (b ∨ c) ≤ α1 and
α1∧α2∧(b∨c) ≤ α2. Additionally, we have that α1, α2 >W
and b ∧ c ≤W. Therefore α1 ∧ α2 ∧ (b ∨ c) >W.

For the combination operator, we have

α3 = α1 ∧ α2 ∧ (¬(b1 ∧ b2)) ∧ (b1 ∨ b2)

= (α1 ∧ α2 ∧ ¬(b1 ∧ b2)) ∧ (α1 ∧ α2 ∧ (b1 ∨ b2))

Clearly α3 ≤ α1 and α3 ≤ α2. Applying the results of ∧ and
∨ operators we have α3 >W.

Theorem V.1. The resolution rule V.1 is sound.

Proof: Let I = (M, σ) be an interpretation. We need to
prove that if I((Aa ∨ Bb) ∧ (Cc ∨Dd)) > W then I((Aa ∨
Dd)γ) >W.
I((Aa∨Bb)∧ (Cc∨Dd)) >W implies that I((Aa∨Bb)∧

(Cc ∨Ddγ)) >W.

I(((Aa ∨Bb) ∧ (Cc ∨Dd))γ)

= I(((Aa ∧ Cc) ∨ (Aa ∧Dd) ∨ (Bb ∧ Cc) ∨ (Bb ∧Dd))γ)

= I((Aa ∧ Cc)γ ∨ (Aa ∧Dd)γ ∨ (Bb ∧ Cc)γ ∨ (Bb ∧Dd)γ)

= I((Aa ∧ Cc)γ) ∨ I((Aa ∧Dd)γ) ∨ I((Bb ∧ Cc)γ)∨
I((Bb ∧Dd)γ)

It is easy to see that:
• I((Aa ∧ Cc)γ) ≤ I(Aaγ) ≤ I((Aa ∨Dd)γ),
• I((Aa ∧Dd)γ) ≤ I((Aa ∨Dd)γ),
• I((Bb ∧ Cc)γ) ≤W, and
• I((Bb ∧Dd)γ) ≤ I(Ddγ) ≤ I((Aa ∨Dd)γ).
This means that if I((Aa∨Dd)γ ≤W then I((Aa∧Cc)γ)∨
I((Aa ∧Dd)γ) ∨ I((Bb ∧ Cc)γ) ∨ I((Bb ∧Dd)γ) ≤ W, or
equivalently I((Aa∨Bb)∧(Cc∨Dd)) ≤W, which contradicts
with the fact that I((Aa ∨ Bb) ∧ (Cc ∨ Dd)) > W. This
complete the proof of the theorem.

Definition V.2. Define the factoring rule as follows:

(Aa ∨Ba ∨ Cc, α)

((Aa ∨ Cc)γ, α)

where γ is the most general unifier of A and B.
((Aa ∨ Cc)γ, α) is called a factor of (Aa ∨Bb ∨ Cc, α).

Theorem V.2. The factoring rule V.2 is sound.

Proof: Straightforward.

Definition V.3. A resolution derivation is a sequence of the
form

S0, . . . , Si, . . .

where
• Si is a set of clauses with reliability (for i = 1, . . . , n),

and
• Si+1 = Si ∪ (C,α), and (C,α) /∈ Si , and (C,α) is the

conclusion of a resolution inference with premises from
Si or of a factoring with premisse from Si.
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Below we are going to prove the soundness and complete-
ness of resolution derivations.

Theorem V.3 (Soundness). Let S0, . . . , Si, . . . be a resolution
derivation. If Sn contains the empty clause, (for some n =
0, 1, ...) , then S0 is unsatisfiable.

Proof: By Theorems V.1 and V.2, Si and Si+1 are log-
ically equivalent. Therefore if Sn contains the empty clause,
meaning that Sn is unsatisfiable, then S0 is unsatisfiable

To prove the completeness of the resolution derivation, we
use semantic tree method. According to Theorem IV.3, instead
of considering all possible interpretations of a clause set, we
only consider its H-interpretations and build semantic trees
based on the H-interpretations.

Definition V.4. Let S be a set of clauses and B(S) be the H-
base of S. A semantic tree of S is a n-level complete binary
tree constructed as follows:
• Each level corresponds to an element of B(S). If the ith

level corresponds to the atom Ai ∈ B(S), then the left
edge of each node at the level i is assigned with the label
Ai ≤ W, and the right edge of each node at the level i
is assigned with the label Ai >W,

• Each element of B(S) corresponds to exactly one level
in the tree, which means that if Ai ∈ A(S) appears in
level i then it must not be chosen in any other levels.

Notice that each path from the root to a certain leaf in a
semantic tree corresponds to an H-interpretation of the clause
set S. The tree’s depth is infinite if B(S) is infinite. There are
different semantic trees for a given set of clauses, depending
on choices of atoms in each level on the tree.

Let T be a semantic tree of a set of clauses S. A clause C
of S is failed at node N of T if there exist an H-interpretation
I corresponding to a branch of T containing N such that C
is false under I. A node N of T is called a failure node of C
iff C is failed at N but is not failed at any nodes above N .
A node N of T is an inference node if both of its successor
nodes are failure nodes. If every branch in T contains a failure
node, cutting off its descendants from T , we have a tree T ′

which is called a closed tree of S; if the number of nodes in
T ′ is finite then T ′ is called a finite closed tree.

Lemma V.1. There always exists an inference node on finite
closed tree.

Proof: Assume that we have a closed tree T . Because
T has finite level, so there exists one (or more) leaf node on
T at the highest level, let say this node is called j. Let i be
parent node of j. By definition of closed tree, i cannot be
failure node. Therefore, i has another child node, named k.
If k is a failure node then i is inference node, the lemma is
proved. If k is not a failure node then it has two child nodes:
l,m. Clearly l,m are at higher level than j. This contradicts
with the assumption that j is at the highest level. Therefore k
is a failure node and i is an inference node. This completes
the proof of the theorem.”

Next, we shall recall König’s lemma.

Lemma V.2 (König’s Lemma). Suppose that T is an infinite
finitely branching tree. Then there exists an infinite branch B
through T .

A corollary of König’s lemma is that if every branch of a
tree T has finite depth, then the number of nodes of T is finite.

Theorem V.4. Let S be a clause set. S is unsatisfiable iff for
every semantic tree of S, there exists a finite closed tree.

Proof: (⇒) Suppose that S is unsatisfiable and T is a
semantic tree of S. Let B be a branch of T , we denote IB
the H-interpretation corresponding to B. By Theorem IV.3,
IB falsifies S. Thus, there exists a ground instance C ′ of a
clause C in S which is false under IB . Therefore there exists
a failure node NB on the branch B. Since C ′ has a finite
number of literals, NB is a finite number of edges away from
the root. We have actually shown that there is a failure node
on every branch of T which is a finite number of edges away
from the root. The tree T ′ is obtained by T removing all nodes
which are below the failure node. T ′ is a closed tree. Every
branch of T ′ has finite length. By König’s lemma, T ′ has finite
nodes.

(⇐) Assume that there is always a finite closed tree for a
semantic tree T of the set of clauses S. Then every branch
of T contains a failure node, it means any H-interpretation
falsifies S. By Theorem IV.3, S is unsatisfiable.

Lemma V.3 (Lifting lemma). Let C be a resolvent of {C1, C2}
and C ′1, C

′
2 be instances of C1, C2 respectively. If C ′ is a

resolvent of {C ′1, C ′2} then C ′ is an instance of C (or of a
factor of C).

Proof: C ′1 = Γ′1
α ∨ T ′1

β1 , C ′2 = Γ′2
δ ∨ T ′2

β2 , γ is a m.g.u
of T ′1, T

′
2. Let σ be a substitution such that C ′1 = C1σ,C

′
2 =

C2σ and C1 = Γ1
α ∨ T1β1 , C2 = Γ2

δ ∨ T2β2 . By resolution
rule V.1, C ′ = (Γ′1

α ∨ Γ′2
δ
)γ = (Γ1

α ∨ Γ2
δ)γoσ because

Γ′1 = Γ1σ,Γ
′
2 = Γ2σ. Assume that θ is the m.g.u of T1, T2

then θ is more general than γ, which implies that θ is more
general than γoσ. Thus C ′ = (Γ1

α ∨ Γ2
δ)γoσ is an instance

of C = (Γ1
α ∨ Γ2

δ)θ (or of a factor of C = (Γ1
α ∨ Γ2

δ)θ).

Theorem V.5 (Completeness). Let S0, . . . , Si, . . . is a reso-
lution derivation. If S0 is unsatisfiable then there exists Sk
containing the empty clause.

Proof: According to Theorem V.4 if S0 is unsatisfiable,
then for every semantic tree T0 of S0 there is a corresponding
finite closed tree T ′0. By Lemma V.1, there exists an inference
node N on T ′0. Let S′0 be the set of all ground instance of
clauses in S0 Let C ′1, C

′
2 ∈ S′0 be the ground instances of two

clauses C1, C2 ∈ S0 such that C ′1, C
′
2 are failed at the two

children of N . Assume that the level of N corresponds to a
ground atom L′. Then C ′1 and C ′2 contains the literal L′α1 and
L′α2 where α1 >W and α2 ≤W.

Resolving C ′1 and C ′2, we obtain the clause C ′ not contain-
ing L′, therefore C ′ is failed the node N . By Lemma V.3,
we can find a resolvent C of C1, C2 ∈ S0 such that C ′ is an
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instance of C, or of a factor of C. The closed semantic tree
T ′1 associated to S1 = S0 ∪ C has fewer nodes than T ′0.

The process is then iterated. Because T ′0 has a finite number
of nodes so there exists k such that T ′k of Sk consists only
of one root node, then 2 must be in S′k. By Lemma V.3, Sk
contains 2. This completes the proof of the theorem.

Let us consider an example to illustrate how a resolution
derivation works.

Example V.1. Let AX = (LHp[G], G, LH,≤
,⊥,W,>,¬,∨,∧,→) be a finite symmetrical refined
hedge algebra where G = {False,True}, ⊥,W,> are
the smallest, neutral, biggest elements respectively, and
⊥ < False < W < True < >; H+ = {Very,More} and
H− = {Possibly, Less}. Consider the following clause set:

1) A(x)MF ∨B(z)MF ∨ C(x)PT

2) C(y)MF ∨D(y)VMT

3) C(t)VVTrue ∨ E(t, f(t))MF

4) E(a, u)T

5) D(a)MF

where a is a constant symbol and x, y, z, t, u are variables,
T = True, F = False, V = Very, M = More, P = Possibly,
L = Less. The reliability is defined based on the combination
operator. At the beginning, the reliability of each clause is
assigned to T. We have the following resolution inferences.

(C(y)MF ∨D(y)VMT,T) (C(t)VVT ∨ E(t, f(t))MF,T)
[t/y]

D(t)VMT ∨ E(t, f(t))MF,MTrue)

D(t)VMT ∨ E(t, f(t))MF,MT) (D(a)MF,T)
[a/t]

E(a, f(a))MF,MT)

E(a, f(a))MF,MT) (E(a, u)True,T)
[f(a)/u]

(2,True)

The empty clause is inferred, we conclude that the initial
clause set is unsatisfiable and the reliability of the proof of
unsatisfiability is True.

VI. CONCLUSION

We have presented a fuzzy first order linguistic logic having
truth domain as a finite symmetrical refined hedge algebra.
The syntax and semantic of logic have been defined. We have
proposed a fuzzy linguistic resolution which is based on the
usual resolution of two-valued logics. We have proved the
soundness and completeness of the fuzzy linguistic resolution
procedure. We have introduced the notion of reliability to
capture the fact that a fuzzy linguistic resolution inference
may involve literals with very contradictory truth values or
with slightly contradictory truth values. In this respect we can
estimate the reliability of a proof of a clause from a given set
of clauses.

There are some lines of future works. It would be worth to
investigate how to eliminate redundant resolution inferences to
make the resolution procedure more efficient and effective in
practice. Another interesting line of work is to consider other
inference systems than resolution to widen the applicability
scope of our work.
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