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Abstract—The study of definable sets in various general-
ized rough set models would provide better understanding
to these models. Some algebraic structures of all definable
sets have been investigated, and the relationships among
the definable sets, the inner definable sets and the outer
definable sets have been presented. In this paper, we
further study the definable sets in three types of covering-
based rough sets and present several necessary and
sufficient conditions of definable sets. These three types
of covering-based rough sets are based on three kinds
of neighborhoods: the neighborhood, the complementary
neighborhood and the indiscernible neighborhood, re-
spectively. Some necessary and sufficient conditions of
definable sets are presented through these three types of
neighborhoods, and the relationships among the definable
sets are investigated. Moreover, we study the relationships
among these three types of neighborhoods, and present
certain conditions that the union of the neighborhood
and the complementary neighborhood is equal to the
indiscernible neighborhood.

Keywords-Rough set; Covering approximation space;
Inner and outer definable sets; Complementary and in-
discernible neighborhoods.

I. INTRODUCTION

Two important viewpoints form a foundation for
Pawlak’s rough set theory [15], [16]: one is that “knowl-
edge is based on the ability to classify objects”; the
other is that “uncertain, or rough concepts and knowl-
edge can be defined “approximately” by determined, or
definable concepts and knowledge”. And the advantage
of Pawlak’s rough set theory is that it does not need
any additional information about data, it has been
successfully applied to various fields such as process
control, economics, medical diagnosis, biochemistry,
environmental science, biology, chemistry, psychology,
conflict analysis, and other fields abound in [2], [7], [8],
[10], [14], [19], [23], [26], [31].

In the development of the theory of rough sets,
approximation operators are typically defined by using
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equivalence relations or partitions. Researchers have
considered various generalized forms of Pawlak’s mod-
el, such as relation-based rough sets [1], [22], [27],
[28], [29], covering-based rough sets [20], [21], [24],
[30], and rough-fuzzy sets and fuzzy-rough sets [3], [4],
[11], [17]. The properties and applications of various
generalized rough set models have been extensively
discussed. However, little attention has been paid to
investigate the definable sets.

In fact, systematic study of definable sets in various
generalized rough set models would provide better
understanding to these models. D. Pei [18] investigated
the mathematical structure of the definable sets in
several generalized rough set models such as relation-
based models, covering-based models, and fuzzy-based
models. X. Ge and Z. Li [6] presented the relation-
ships among the definable sets, the inner definable sets
and the outer definable sets in covering approximation
spaces. G. Liu and Y. Sai [12] studied the algebraic
structures of the definable sets of the covering-based
rough set model defined by W. Xu and W. Zhang [25].
In this paper, we further study the definable sets of
three types of covering-based rough sets and give some
necessary and sufficient conditions of definable sets.

Here we will continue to use the marks of the litera-
ture [6] to represent these three types of covering-based
rough set models [20], [21], [24]: C6, C7 and C10.
In fact, these models are based on the neighborhood,
the complementary neighborhood and the indiscernible
neighborhood, respectively. We present some necessary
and sufficient conditions of definable sets in these
models. We have that 1) a set is an inner definable
set of C6 if and only if it is an outer definable set
of C10; 2) a set is an outer definable set of C6 if and
only if it is an inner definable set of C10; 3) a set is a
definable set of C6 if and only if it is a definable set
of C10; 4) if a set is a definable set of C7, then it is a
definable set of C6 (or C10). In addition, we study the
relationships among the neighborhood, the complemen-
tary neighborhood and the indiscernible neighborhood.
We first prove the union of neighborhood and com-
plementary neighborhood belongs to the indiscernible
neighborhood. Moreover, a condition of the union of
neighborhood and complementary neighborhood to be
equal to the indiscernible neighborhood is given.
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The paper is structured as follows: in Section II,
we present some definitions and properties of gener-
alized rough sets induced by coverings. Section III,
we study some necessary and sufficient conditions of
definable sets in covering approximation spaces. In
Section IV, we investigate the relationships among the
neighborhood, the complementary neighborhood and
the indiscernible neighborhood. Finally, we conclude
the paper in Section V.

II. PRELIMINARIES

In this section, we introduce the fundamental ideas
about Pawlak’s rough sets and the existing three types
of covering-based rough sets.

We start to recall Pawlak’s rough sets [15]. Let U
be a non-empty finite set and P = {P1, · · · , Pm} a
partition of U where P1, · · · , Pm are the equivalence
classes. In the rough set theory, the equivalence classes
are also called elementary sets of P. Let ∅ denote the
empty set. For any X ⊆ U , we can describe X by the
elementary sets of P and the two sets:

P(X) = ∪{P ∈ P : P ⊆ X},
P(X) = ∪{P ∈ P : P ∩X 6= ∅}

are called the lower and the upper approximations of
X , respectively.

For any X ⊆ U , it is called a definable set if P(X) =
P(X), otherwise, it is called a rough set.

Proposition 1: Let −X be the complement of X in
U , we have the following properties of Pawlak’s rough
sets:

(L1) P(U) = U
(H1) P(U) = U
(L2) P(∅) = ∅
(H2) P(∅) = ∅
(L3) P(X) ⊆ X
(H3) X ⊆ P(X)
(L4) P(X ∩ Y ) = P(X) ∩P(Y )
(H4) P(X ∪ Y ) = P(X) ∪P(Y )
(L5) P(P(X)) = P(X)
(H5) P(P(X)) = P(X)
(L6) X ⊆ Y ⇒ P(X) ⊆ P(Y )
(H6) X ⊆ Y ⇒ P(X) ⊆ P(Y )
(L7) P(−P(X)) = −P(X)
(H7) P(−P(X)) = −P(X)
(L8) ∀P ∈ P,P(P ) = P
(H8) ∀P ∈ P,P(P ) = P

(LH9) P(−X) = −P(X)
(HL9) P(−X) = −P(X)
We present basic concepts of covering-based rough

sets used in this paper. They are a covering of a
set, the neighborhood of a point, the complementary

neighborhood of a point, the indiscernible neighborhood
of a point with respect to a covering, and the existing
three types of covering-based rough sets.

Definition 1: (Covering) Let U be a universe of
discourse and C a family of subsets of U . C is called
a covering of U if none of subsets in C is empty and
∪C = U . The ordered pair (U,C) is called a covering
approximation space if C is a covering of U .

It is clear that a partition of U is certainly a covering
of U , so the concept of a covering is an extension to the
concept of a partition. Unless stated, for any covering
C of U , for all K1,K2 ∈ C, we have K1 6= K2 in this
paper.

Definition 2: (Three types of neighborhoods [13],
[32], [36]) Let (U,C) be a covering approximation
space and x ∈ U .
∩{K ∈ C : x ∈ K} is called the neighborhood of x
and denoted as NC(x).
∪{K ∈ C : x ∈ K} is called the indiscernible
neighborhood of x and denoted as IC(x).
{y ∈ U : x ∈ NC(y)} is called the complementary
neighborhood of x and denoted as MC(x).
When there is no confusion, we omit C at the lower-
case.

Based on the neighborhoods, different types of cov-
ering rough sets have been defined. In this paper, we
recall and further consider three types of them. Here
we will continue to use the marks of the literature [6].

Definition 3: ([20], [21], [24]) Let (U,C) be a
covering approximation space. For each n ∈ {6, 7, 10},
Cn and Cn are defined as follows and are called n-th
lower covering approximation operator and n-th upper
covering approximation operator on (U,C) respectively.
(1) C6(X) = {x ∈ U : N(x) ⊆ X};

C6(X) = {x ∈ U : N(x) ∩X 6= ∅}.
(2) C7(X) = {x ∈ U : ∀K ∈ C(x ∈ K → K ⊆ X)};

C7(X) = ∪{K ∈ C : K ∩X 6= ∅}.
(3) C10(X)= {x ∈ U : ∀u ∈ U(x ∈ N(u)→ u ∈ X)};

C10(X)= ∪{N(x) : x ∈ X}.
Through the literatures [9], [32], [33], we see the

above three types of covering approximation operators
C6, C7 and C10 all satisfy the properties (L1)− (L6)
and (LH9), and C6, C7 and C10 all satisfy the
properties (H1)− (H6) and (HL9).

Recently, D. Pei generalized definable sets of ap-
proximation spaces to inner definable sets and outer
definable sets.

Definition 4: ([18]) Let (U,C) be a covering ap-
proximation space with approximation operators C and
C. A set X of U is called an inner (resp. outer) defin-
able set of (U,C) if C(X) = X (resp. C(X) = X).

X. Ge and Z. Li [6] established some relationships
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among definable sets, inner definable sets and outer
definable sets in covering approximation spaces, which
deepened some results on definable sets in approxima-
tion spaces.

Theorem 1: ([6]) Let (U,C) be a covering
approximation space. For any X ⊆ U ,
(1) C6(X) = C6(X)⇔ C6(X) = X , C6(X) = X;

C6(X) = X ; C6(X) = X;
C6(X) = X ; C6(X) = X .

(2) C7(X) = C7(X)⇔ C7(X) = X;
C7(X) = C7(X)⇔ C7(X) = X;
C7(X) = X ⇔ C7(X) = X .

(3) C10(X) = C10(X)⇔ C10(X) = X , C10(X) = X;
C10(X) = X ; C10(X) = X;
C10(X) = X ; C10(X) = X .

Unary covering is an important concept of covering-
based rough sets, and it has played an important role to
investigate some properties of several types of covering-
based rough sets. Therefore, we introduce the notion of
unary covering as follows.

Definition 5: (Unary covering [35]) Let (U,C) be a
covering approximation space. Let Md(x) = {K ∈ C :
x ∈ K ∧ ∀S ∈ C(x ∈ S ∧ S ⊆ K → K = S)}. C is
called unary if |Md(x)| = 1 for all x ∈ U .

W. Zhu and F. Wang [34] introduced a notion of
reducible element, and used it to solve some problems
of covering-based rough sets. We present this notion as
follows.

Definition 6: Let (U,C) be a covering approxima-
tion space and K ∈ C. If K is a union of some sets
in C − {K}, we say K is a reducible element of C,
otherwise K is an irreducible element of C. If every
element of C is an irreducible element, we say C is
irreducible; otherwise C is reducible.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
A SET TO BE DEFINABLE, INNER DEFINABLE OR

OUTER DEFINABLE

X. Ge et al. [5] obtained another representations
of the 7-th lower and upper covering approximation
operators. That is,
C7(X) = {x ∈ U : I(x) ⊆ X};
C7(X) = {x ∈ U : I(x) ∩X 6= ∅}.
L. Ma [13] also obtained another expressions of the

10-th lower and upper covering approximation operators
through introducing a notion of the complementary
neighborhood. That is,
C10(X) = {x ∈ U : M(x) ⊆ X};
C10(X) = {x ∈ U : M(x) ∩X 6= ∅}.
X. Ge and Z. Li [6] established some relationships

among definable sets, inner definable sets and outer
definable sets in covering approximation spaces. In

this section, we further present some necessary and
sufficient conditions for a set to be a definable one,
an inner definable one or an outer definable one.

Lemma 1: ([13], [33]) Let (U,C) be a covering
approximation space and x, y ∈ U .
(1) y ∈ N(x)⇒ N(y) ⊆ N(x);
(2) y ∈M(x)⇒M(y) ⊆M(x).

Corollary 1: Let (U,C) be a covering approxima-
tion space and x, y ∈ U .
(1) y ∈ N(x)⇔ N(y) ⊆ N(x);
(2) y ∈M(x)⇔M(y) ⊆M(x).

Proof: According to Definition 2, we have z ∈
N(z) and z ∈ M(z) for any z ∈ U . Then according
to Lemma 1, we can easily prove that y ∈ N(x) ⇔
N(y) ⊆ N(x) and y ∈M(x)⇔M(y) ⊆M(x).

Lemma 2: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have
(1) X ⊆ ∪

x∈X
N(x);

(2) X ⊆ ∪
x∈X

M(x);

(3) X ⊆ ∪
x∈X

I(x).
The following two theorems present necessary and

sufficient conditions of inner and outer definable sets
in the 6-th type of covering-based rough sets from the
viewpoint of the neighborhood and the complementary
neighborhood.

Theorem 2: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have C6(X) = X if and
only if X = ∪

x∈X
N(x).

Proof: (⇒): Suppose X 6= ∪
x∈X

N(x). According
to Lemma 2, there exists y ∈ U such that y ∈
∪

x∈X
N(x) − X . That is, there exists x ∈ X such that

y ∈ N(x) and y /∈ X . According to Lemma 1, we have
N(y) ⊆ N(x). Since C6(X) = X , that is, x ∈ C6(X),
i.e., N(x) ⊆ X . Then N(y) ⊆ X . So y ∈ C6(X)
which is contradictory with C6(X) = X . Therefore, if
C6(X) = X , then X = ∪

x∈X
N(x).

(⇐): Since X = ∪
x∈X

N(x), then for any x ∈ X ,

N(x) ⊆ X . According to Definition 3, we have
x ∈ C6(X) for any x ∈ X , i.e., X ⊆ C6(X).
Since C6(X) ⊆ X for all X ⊆ U . Therefore, if
X = ∪

x∈X
N(x), then C6(X) = X .

Theorem 3: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have C6(X) = X if and
only if X = ∪

x∈X
M(x).

Proof: (⇒): Suppose X 6= ∪
x∈X

M(x). According
to Lemma 2, there exists y ∈ U such that y ∈
∪

x∈X
M(x) − X . That is, there exists x ∈ X such that

y ∈M(x), i.e., x ∈ N(y). Then N(y)∩X 6= ∅. Accord-
ing to Definition 3, we see y ∈ C6(X). Since y /∈ X ,
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so y ∈ C6(X) is contradictory with C6(X) = X .
Therefore, if C6(X) = X , then X = ∪

x∈X
M(x).

(⇐): Suppose C6(X) 6= X . According to the prop-
erties of 6-th covering upper approximation operator,
we have X ⊆ C6(X) for all X ⊆ U . Then there
exists y ∈ U such that y ∈ C6(X) − X . According
to Definition 2, we see N(y) ∩ X 6= ∅. That is, there
exists x ∈ X such that x ∈ N(y), i.e., y ∈ M(x).
Then y ∈ ∪

x∈X
M(x). Since y /∈ X , so y ∈ ∪

x∈X
M(x)

is contradictory with X = ∪
x∈X

M(x). Therefore, if

X = ∪
x∈X

M(x), then C6(X) = X .
In the following two theorems, necessary and suffi-

cient conditions of inner and outer definable sets in the
10-th type of covering-based rough sets are given.

Theorem 4: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have C10(X) = X if and
only if X = ∪

x∈X
M(x).

Proof: (⇒): Suppose X 6= ∪
x∈X

M(x). According
to Lemma 2, there exists y ∈ U such that y ∈
∪

x∈X
M(x) − X . That is, there exists x ∈ X such that

y ∈ M(x). According to Lemma 1, we see M(y) ⊆
M(x). Since x ∈ C10(X), we have M(x) ⊆ X .
Then M(y) ⊆ X , i.e., y ∈ C10(X). Since y /∈ X ,
so y ∈ C10(X) is contradictory with C10(X) = X .
Therefore, if C10(X) = X , then X = ∪

x∈X
M(x).

(⇐): Since X = ∪
x∈X

M(x), we have for any x ∈
X , M(x) ⊆ X . According to anther expressions of
10-th covering lower approximation operator, we see
x ∈ C10(X) for any x ∈ X , i.e., X ⊆ C10(X). Since
C10(X) ⊆ X for all X ⊆ U . Therefore, we have if
X = ∪

x∈X
M(x), then C10(X) = X .

Theorem 5: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have C10(X) = X if and
only if X = ∪

x∈X
N(x).

Proof: (⇒): Suppose X 6= ∪
x∈X

N(x). Then there

exists y ∈ U such that y ∈ ∪
x∈X

N(x)−X . That is, there

exists x ∈ X such that y ∈ N(x), i.e., x ∈M(y). Then
M(y) ∩ X 6= ∅, i.e., y ∈ C10(X). Since y /∈ X . So
C10(X) 6= X which is contradictory with C10(X) =
X . Therefore, if C10(X) = X , then X = ∪

x∈X
N(x).

(⇐): Suppose C10(X) 6= X . We see X ⊆ C10(X),
then there exists y ∈ U such that y ∈ C10(X) − X .
According to another representation of 10-th covering
approximation operators, we have M(y) ∩X 6= ∅, i.e.,
there exists x ∈ X such that x ∈ M(y). According
to Definition 2, we have y ∈ N(x). Since y /∈ X , we
have X 6= ∪

x∈X
N(x). Therefore, if X = ∪

x∈X
N(x), then

C10(X) = X .

Based on the above results, we can easily obtain the
following two corollaries: a set is an inner definable set
of C6 if and only if it is an outer definable set of C10;
a set is an outer definable set of C6 if and only if it is
an inner definable set of C10.

Corollary 2: Let (U,C) be a covering approxima-
tion space. For any X ⊆ U , we have C6(X) = X if
and only if C10(X) = X .

Corollary 3: Let (U,C) be a covering approxima-
tion space. For any X ⊆ U , we have C6(X) = X if
and only if C10(X) = X .

From the above results, a necessary and sufficient
condition of definable sets in 6-th and 10-th covering-
based rough sets is obtained. Moreover, we see a set is
a definable set of C6 if and only if it is a definable set
of C10.

Theorem 6: Let (U,C) be a covering approximation
space. For any X ⊆ U , the following statements are
equivalent:
(1) C6(X) = C6(X);
(2) C10(X) = C10(X);
(3) X = ∪

x∈X
(N(x) ∪M(x)).

Proof: According to Theorems 1, 2 and 3, and
according to Corollaries 2 and 3, it is straightforward.

We study the definable sets, the inner definable sets
and the outer definable sets of 7-th covering-based
rough sets in the following theorem.

Theorem 7: Let (U,C) be a covering approximation
space. For any X ⊆ U , the following statements are
equivalent:
(1) C7(X) = X;
(2) C7(X) = X;
(3) C7(X) = C7(X);
(4) X = ∪

x∈X
I(x).

Proof: According to Theorem 1, we see (1), (2)
and (3) are equivalent. Therefore, we need to prove (1)
⇔ (4).

(1) ⇒ (4): Suppose X 6= ∪
x∈X

I(x). According to

Lemma 2, there exists y ∈ ∪
x∈X

I(x) − X . Then there

exists x ∈ X such that y ∈ I(x). Hence I(x) * X .
According to another representation of 7-th covering
lower approximation operator, we see x /∈ C7(X),
which is contradictory with C7(X) = X . Therefore,
if C7(X) = X , then X = ∪

x∈X
I(x).

(4) ⇒ (1): Since X = ∪
x∈X

I(x), we have for any

x ∈ X , I(x) ⊆ X . That is, x ∈ C7(X) for any x ∈ X ,
i.e., X ⊆ C7(X). Since C7(X) ⊆ X for all X ⊆ U .
Therefore, we have if X = ∪

x∈X
I(x), then C7(X) = X .
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We will investigate the relationship between definable
sets of C6 and ones of C7. A lemma is presented to
solve this issue.

Lemma 3: Let (U,C) be a covering approximation
space and x ∈ U . Then M(x) ⊆ I(x).

Proof: According to Definition 2, we have
y ∈ M(x) ⇔ x ∈ N(y) ⇔ ∀K ∈ C(y ∈ K → x ∈

K)⇒ y ∈ I(x).
Therefore, M(x) ⊆ I(x).

Theorem 8: Let (U,C) be a covering approximation
space. For any X ⊆ U , if C7(X) = C7(X), then
C6(X) = C6(X).

Proof: According to Theorems 6 and 7, we have
C7(X) = C7(X) if and only if X = ∪

x∈X
I(x),

C6(X) = C6(X) if and only if X = ∪
x∈X

(N(x) ∪
M(x)). Then we need to prove if X = ∪

x∈X
I(x), then

X = ∪
x∈X

(N(x) ∪M(x)).

According to Definition 2, it is easy to obtain N(x) ⊆
I(x) for all x ∈ U . According to Lemma 3, we have
M(x) ⊆ I(x) for all x ∈ U . Therefore, for any x ∈
U , N(x) ∪ M(x) ⊆ I(x). Then X ⊆ ∪

x∈X
(N(x) ∪

M(x)) ⊆ ∪
x∈X

I(x). Since X = ∪
x∈X

I(x), we have X =

∪
x∈X

(N(x) ∪M(x)).

Therefore, if C7(X) = C7(X), then C6(X) =
C6(X).

Corollary 4: Let (U,C) be a covering approxima-
tion space. For any X ⊆ U , if C7(X) = C7(X), then
C10(X) = C10(X).

Example 1: Let U = {1, 2, 3} and C =
{{1, 2}, {2}, {1, 3}} be a covering of U . Then, we have
N(1) = {1} M(1) = {1, 3} I(1) = {1, 2, 3}
N(2) = {2} M(2) = {2} I(2) = {1, 2}
N(3) = {1, 3} M(3) = {3} I(3) = {1, 3}
We use the following figure to represent the definable

sets, the inner and outer definable sets of these three
types of covering-based rough sets.

IV. RELATIONSHIPS AMONG N(x), M(x) AND I(x)

Above the two sections, we see C6, C7, C10 and
their definable sets are all closely linked with the
neighborhood, the complementary neighborhood and
the indiscernible neighborhood. It is necessary to study
the relationships among these three types of neighbor-
hoods.

In the literature [13], L. Ma has presented the re-
lationships between the neighborhood and the comple-
mentary neighborhood: N(x) * M(x) and M(x) *
N(x). We present an example to illustrate this situation.

Example 2: Let U = {1, 2, 3} and C =
{{1}, {1, 2}, {1, 2, 3}} be a covering of U . We have

∅

{1} {2}

{1, 2}{1, 3}

U

(a) C6(X) = X , C10(X) = X

∅

{2} {3}

{1, 3}{2, 3}

U

(b) C6(X) = X , C10(X) = X

∅

{1, 3} {2}

U

(c) C6(X) = C6(X)

C10(X) = C10(X)

∅

U

(d) C7(X) = X , C7(X) =

X , C7(X) = C7(X)

Fig. 1: Definable sets, inner and outer definable sets of
C6, C7, C10

N(1) = {1} M(1) = {1, 2, 3}
N(2) = {1, 2} M(2) = {2, 3}
N(3) = {1, 2, 3} M(3) = {3}
We present the following proposition to describe the

connections between the neighborhood and the comple-
mentary neighborhood.

Proposition 2: Let (U,C) be a covering approxima-
tion space and x, y ∈ U . Then N(x) = N(y) if and
only if M(x) = M(y).

Proof: (⇒): Since N(x) = N(y), according to
Definition 2 and Corollary 1, we have for any z ∈ U ,
z ∈ M(x) ⇔ x ∈ N(z) ⇔ N(x) ⊆ N(z) ⇔ N(y) ⊆
N(z)⇔ y ∈ N(z)⇔ z ∈M(y). Therefore, if N(x) =
N(y), then M(x) = M(y).

(⇐): Since M(x) = M(y), according to Definition 2
and Corollary 1, we have for any z ∈ U , z ∈ N(x)⇔
x ∈M(z)⇔M(x) ⊆M(z)⇔M(y) ⊆M(z)⇔ y ∈
M(z)⇔ z ∈ N(y). Therefore, if M(x) = M(y), then
N(x) = N(y).

L. Ma has presented the relationships between the
neighborhood and the complementary neighborhood:
N(x) * M(x) and M(x) * N(x). A condition is given
in the following proposition, under which N(x) is equal
to M(x).

Lemma 4: [13] Let (U,C) be a covering approxi-
mation space. If N(x) = M(x) for any x ∈ U , then
{N(x) : x ∈ U} forms a partition of U .

Proposition 3: Let (U,C) be a covering approxima-
tion space. Then N(x) = M(x) for any x ∈ U if and
only if {N(x) : x ∈ U} forms a partition of U .

Proof: According to Lemma 4, we need to prove if
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{N(x) : x ∈ U} forms a partition of U , then N(x) =
M(x) for any x ∈ U .

Since {N(x) : x ∈ U} forms a partition of U , we
have y ∈ N(x) if and only if x ∈ N(y) for any x, y ∈
U . According to Definition 2, we see x ∈ N(y) if and
only if y ∈ M(x). Therefore, for any x ∈ U , N(x) =
M(x).

In the following part, the relationships among the
neighborhood, the complementary neighborhood and
the indiscernible neighborhood are presented.

Proposition 4: Let (U,C) be a covering approxima-
tion space. For all x ∈ U ,

N(x) ∪M(x) ⊆ I(x).
Proof: According to Definition 2, it is easy to

obtain N(x) ⊆ I(x) for all x ∈ U . Based on Lemma 3,
M(x) ⊆ I(x) for all x ∈ U . That is, N(x) ∪M(x) ⊆
I(x) for all x ∈ U .

An issue “for any element of a universe, does the
indiscernible neighborhood of the element belong to
the union of the neighborhood of the element and
the complementary neighborhood of the element?” is
naturally put forward. We give a counter example to
solve this issue.

Example 3: Let U = {1, 2, 3} and
C = {{1}, {2}, {1, 2, 3}} be a covering of U .
According to Definition 2, we have
N(1) = {1} M(1) = {1, 3} I(1) = {1, 2, 3}
N(2) = {2} M(2) = {2, 3} I(2) = {1, 2, 3}
N(3) = {1, 2, 3} M(3) = {3} I(3) = {1, 2, 3}

Then, N(1) ∪M(1) ⊂ I(1) and N(2) ∪M(2) ⊂ I(2).
According to Proposition 4, we see N(x)∪M(x) ⊆

I(x) for each x ∈ U . We present certain conditions that
the union of the neighborhood and the complementary
neighborhood is equal to the indiscernible neighbor-
hood.

Proposition 5: Let (U,C) be a covering approxi-
mation space. If C is a partition of U , then I(x) =
N(x) ∪M(x) for each x ∈ U .

For a covering approximation space (U,C),
N(x) ∪ M(x) ⊆ I(x) for each x ∈ U , we ask the
following questions:

1. When I(x) = N(x) ∪ M(x) for each x ∈ U ,
is C a partition of U?
2. When I(x) = N(x) ∪ M(x) for each x ∈ U , is
{N(x) : x ∈ U} a partition of U? And what about the
converse?
3. When I(x) = N(x)∪M(x) for each x ∈ U , is C a
unary covering? And what about the converse?

The answers to these questions are no. The following
are counterexamples.

Example 4: Let U = {1, 2} and C = {{1}, {1, 2}}
be a covering of U . We have
N(1) = {1} M(1) = {1, 2} I(1) = {1, 2}
N(2) = {1, 2} M(2) = {2} I(2) = {1, 2}

Then we see for any x ∈ U , I(x) = N(x)∪M(x), but
C is not a partition of U . And {N(x) : x ∈ U} is not
a partition of U .

Example 5: Let U = {1, 2} and C =
{{1}, {2}, {1, 2}} be a covering of U . We have
N(1) = {1} M(1) = {1} I(1) = {1, 2}
N(2) = {2} M(2) = {2} I(2) = {1, 2}

Then we see {N(x) : x ∈ U} forms a partition of U
and C is a unary covering, but I(1) 6= N(1) ∪M(1)
and I(2) 6= N(2) ∪M(2).

Example 6: Let U = {1, 2, 3} and
C = {{1, 2}, {2, 3}} be a covering of U . We
have
N(1) = {1, 2} M(1) = {1} I(1) = {1, 2}
N(2) = {2} M(2) = {1, 2, 3} I(2) = {1, 2, 3}
N(3) = {2, 3} M(2) = {3} I(3) = {2, 3}

Since |Md(2)| = 2, we have C is not a unary covering,
but for any x ∈ U , I(x) = N(x) ∪M(x).

In the following part, we present a condition of
covering, under which I(x) is equal to the union of
N(x) and M(x). A proposition is introduced to obtain
the condition as follows.

Proposition 6: Let (U,C) be a covering approxi-
mation space and K a reducible element of C. Let
C = {C′ ⊆ C − {K} : ∪C′ = K}. Then there exists
C′ ∈ C such that K ′ ∈ C′,K ′ − ∪(C′ − {K ′}) 6= ∅
and ∪(C′ − {K ′})−K ′ 6= ∅.

Proof: We prove it using reduction to absurdity.
(1) Suppose for all C′ ∈ C, K1 ∈ C′, we have K1−

∪(C′−{K1}) = ∅. Then K1 ⊆ ∪(C′−{K1}), that is,
∪(C′−{K1}) = K, i.e., C′−{K1} ∈ C. Therefore, for
all K2 ∈ C′−{K1}, K2−∪(C′−{K1∪K2}) = ∅, i.e.,
∪(C′−{K1∪K2}) = K. Hence C′−{K1∪K2} ∈ C.
Let |C′| = m. Similarly, we have Km−∪(C′−{K1 ∪
K2 · · · ∪Km−1}) = ∅, that is, ∪(C′ − {K1 ∪K2 · · · ∪
Km−1}) = K i.e., Km = K which is contradictory
with Km 6= K.

(2) Suppose for all C′ ∈ C, K1 ∈ C′, we have
∪(C′−{K1})−K1 = ∅. We have K1 ⊆ ∪(C′−{K1}),
that is K1 = K which is contradictory with K1 6= K.

To sum up, this completes the proof.
In order to illustrate the above proposition, we present

the following example.
Example 7: Let U = {1, 2, 3}, K1 = {1, 2},

K2 = {1, 3}, K3 = {2, 3}, K4 = {1, 2, 3}, C =
{K1,K2,K3,K4}. C is a covering of U . Since K4

is a reducible element of C, we have K4 = K1 ∪K2,
where K1 −K2 = {1} and K2 −K1 = {2}.
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Proposition 7: Let (U,C) be a covering approxima-
tion space. If I(x) = N(x) ∪M(x) for each x ∈ U ,
then C is irreducible.

Proof: Suppose C is reducible, and K is a re-
ducible element of C. Let C = {C′ ⊆ C − {K} :
∪C′ = K}. According to Proposition 6, there exists
C′ ∈ C such that K ′ ∈ C′, K ′ − ∪(C′ − {K ′}) 6= ∅
and ∪(C′−{K ′})−K ′ 6= ∅. Then, let x ∈ K ′−∪(C′−
{K ′}) and y ∈ ∪(C′ − {K ′})−K ′.
(1) |K ′| = 1
That is, K ′ = {x}. Then N(x) = {x} and K ⊆ I(x).

(1a) If there exists K1 ∈ C such that {x, y} ⊆ K1.
Since y ∈ ∪(C′−{K ′})−K ′, we have K2 ∈ C′−{K ′}
such that y ∈ K2 and x /∈ K2. Therefore, x /∈ N(y),
i.e., y /∈ M(x). That is, y /∈ N(x) ∪ M(x). We see
y ∈ K ⊆ I(x). Hence N(x) ∪M(x) 6= I(x) which
is contradictory with I(z) = N(z) ∪ M(z) for each
z ∈ U .

(1b) If {x, y} * K1 for all K1 ∈ C − {K}, then
x /∈ N(y), i.e., y /∈ M(x). Hence y /∈ N(x) ∪M(x).
Since y ∈ K ⊆ I(x), we have N(x) ∪M(x) 6= I(x)
which is contradictory with I(z) = N(z) ∪M(z) for
each z ∈ U .
(2) |K ′| ≥ 2
Let z ∈ K ′ − {x}. Then we have z ∈ K and N(z) ⊆
K ′.

(2a) If z /∈ ∪(C′ − {K ′}), then z /∈ N(y), i.e., y /∈
M(z). Since y ∈ ∪(C′ − {K ′}) − K ′, we have y /∈
N(z). Then y /∈ N(z) ∪M(z). However, K ⊆ I(z)
and y ∈ K. Therefore, I(z) 6= N(z) ∪ M(z) which
is contradictory with I(x) = N(x) ∪ M(x) for each
x ∈ U .

(2b) If z ∈ ∪(C′−{K ′}), then N(z) ⊆ K ′∩(∪(C′−
{K ′})). So we have x, y /∈ N(z).

(2b’) If z /∈ N(x), i.e., x /∈ M(z), then
x /∈ N(z) ∪M(z). Since z ∈ K, we have K ⊆ I(z).
We see x ∈ K, therefore, I(z) 6= N(z) ∪M(z) which
is contradictory with I(x) = N(x) ∪ M(x) for each
x ∈ U .

(2b”) If z ∈ N(x), we see N(x) ⊆ K ′, then
y /∈ N(x). Since N(y) ⊆ ∪(C′ − {K ′}), we have x /∈
N(y), i.e., y /∈ M(x). Therefore, y /∈ N(x) ∪M(x).
We see y ∈ K ⊆ I(x), then N(x) ∪ M(x) 6= I(x)
which is contradictory with I(z) = N(z) ∪M(z) for
each z ∈ U .

Based on the above results, we easily obtain the
relationships among the three types of covering-based
rough sets.

Theorem 9: Let (U,C) be a covering approximation
space. For any X ⊆ U , we have,
(1) C7(X) ⊆ C6(X) ∩C10(X);
(2) C7(X) ⊇ C6(X) ∪C10(X).

The proof of this theorem is simple, so we omit it.
We use Figure 2 to further illustrate the relationships
among the three types of covering-based rough sets.

C7(X)

C6(X) C10(X)

C7(X)

C6(X) C10(X)

X

Fig. 2: Relationships among three types of covering-
based rough sets

V. CONCLUSIONS

Definable sets play an important role in various gen-
eralized rough set models. In this paper, we presented
some necessary and sufficient conditions of definable
sets in three types of covering-based rough sets which
were proved to be expressed by the neighborhood,
the complementary neighborhood and the indiscernible
neighborhood, respectively. Furthermore, the relation-
ships among these three types of neighborhoods were
investigated.

Some researchers have constructed a one-to-one cor-
respondence between coverings and binary relations.
For example, the 6-th type of covering-based rough
sets and dominance relations are corresponding to each
other, and the 7-th type of covering-based rough sets
and tolerance relations are corresponding to each other.
Dominance relations and tolerance relations have been
defined in set-valued information systems. Based on
these results, we will investigate the matroidal structures
of all definable sets in covering-based rough sets, and
apply them to attribute reduction in set-valued informa-
tion systems in future works.
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