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Abstract—Although electromyography (EMG) signals and 
interaction force have been widely used in patient cooperative 
or interactive training, the conventional EMG based control 
usually breaks the process into a patient-driven phase and a 
separate passive phase, which is not desirable. In this research, 
an active interaction controller based on motion recognition 
and adaptive impedance control is proposed and implemented 
on a six-DOFs parallel robot for lower limb rehabilitation. The 
root mean square (RMS) features of EMG signals integrating 
with the support vector machine (SVM) classifier were used to 
online predict the lower limb intention in advance and to 
trigger the robot assistance. The impedance control strategy 
was adopted to directly influence the robot assistance velocity 
and allow the exercise to follow a physiological trajectory. 
Moreover, an adaptive scheme learned the muscle activity level 
in real time and adapted the robot impedance in accordance 
with patient’s voluntary participation efforts. Experimental 
results on several healthy subjects demonstrated that the lower 
limb motion intention can be precisely predicted in advance, 
and the robot assistance mode was also adjustable based on 
human-robot interaction and muscle activity level of subjects. 
Comparing with the conventional EMG-triggered assistance 
methods, such a strategy can increase patient’s motivation 
because the subject’s movement intention, active efforts as well 
as the muscle activity level changes can be directly reflected in 
the trajectory pattern and the robot assistance speeds. 

Keywords—rehabilitation robot; EMG; motion recognition; 
impedance control; active interaction control  

I. INTRODUCTION 

It is evident that there is a strong trend that our society is 
fast-aging than expected. According to the official statistical 
data from the United Nations, the proportion of the world’s 
population over 60 years old will be doubled from 11% to 
22% between 2000 and 2050. Meanwhile, limb fractures 
commonly occur because of sports injuries, car accidents and 
other accidental injuries. With the tendency of aging society, 
there is a considerable increase in the needs of health care 
and rehabilitation, especially among old and disabled people 
[1]. The rehabilitation training with robot assistance plays a 
significant role in recovering the limb motor functions. 
Moreover, evaluation for patient’s recovery condition and an 
active interaction control strategy that provide appropriate 

assistance is essentially necessary during the rehabilitation[2]. 
A systematic review of methods and techniques for assistive 
strategies based on patient’s participant performance had 
been summarized by Marchal-Crespo et al. [3]. 

Since the EMG signals contain much crucial information 
of the muscle activity, and can imply people’s movement 
action 30~100ms in advance [4], they have been widely used 
in clinical diagnosis, rehabilitation, prosthetic control, and 
the human-robot interaction. In recent years, many methods 
have been proposed to extract useful information from EMG 
signals [5]. However, a majority of research was conducted 
on upper limbs [6]. For example, Kiguchi et al. proposed an 
EMG signals-based method to control an upper-limb robot 
according to the user’s motion intention. In this situation, 
sixteen channels of EMG signals were used to estimate the 
upper-limb motion [7]. Krebs et al. described a performance- 
based progressive therapy using EMG to initiate the robot 
assistance [8]. In this research, the EMG signals in fourteen 
muscles of the upper limb were collected, and the robot was 
triggered when the one muscle’s activity increased above a 
threshold. This EMG-triggered assistance encourages self 
initiated movement by patients, however, this approach may 
not receive satisfactory rehabilitation outcomes, because it 
breaks the movement into two separate phases, a active 
phase driven by patient, and a passive phase driven by robot, 
rather than providing a seamless assistance to subject [9]. 

The potential problem with EMG-triggered assistance is 
that it does not consider the participation of patient’s efforts. 
The patient’s recovery level can be reflected by EMG, while 
the voluntary participation is related to the interaction force 
between patient and robot. Several control strategies have 
been developed to provide robotic assistance according to the 
patient’s disability level and his/her voluntary participation. 
An interactive training strategy is mostly achieved by using 
impedance controller. An assist-as-needed gait training based 
on impedance control was developed in [10] to provide 
interactive robotic gait training. However, a fixed treadmill 
speed was applied during the whole experiments. Similarly, 
Duschau-Wicke et al. presented a path control strategy with a 
virtual wall to keep the patient’s legs within a tunnel around 
the desired path, again, a constant treadmill speed was used 
throughout the experiments [11]. It is well known that the 
basis of adaptive impedance assistance is to modify the robot This work was funded by the Fundamental Research Funds for the 
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motion in a way that is desired by the patient, which is 
believed to be the most appropriate for rehabilitation. 
However, the issue of reference trajectory adaptation has 
some drawbacks, for example, the extent of the trajectory 
adaptation can not be well determined and the changes in 
trajectory may result in an un-physiological pattern. In order 
to tackle this problem, the robot assistance speed can be 
adjusted according to human-robot interaction. Duchaine et 
al. designed a variable impedance controller using the force 
to sense human intention, and this work also demonstrated 
why velocity control should be used in a robot rather than 
typical position control [12]. Since in this situation, the 
desired physiological trajectory can be strictly followed, and 
the velocity changes influenced by the patient can also be 
obtained. And it may provide better opportunity for the 
patient to actively contribute his muscular efforts during the 
training process as compared to trajectory based training. 

In this paper, an active interaction control strategy based 
on motion recognition and adaptive impedance controller is 
proposed and implemented on a six-DOF parallel robot for 
lower limb rehabilitation. A simple but effective recognition 
controller based on RMS features and SVM classifier is 
established to predict lower limb motion intention in advance. 
In order to increase patient’s motivations during the exercise 
and keep the path physiological, an impedance controller is 
designed to make the robot speeds adaptable to patient’s 
efforts. Furthermore, an adaptive scheme is developed for 
providing assist-as-needed robotic assistance. The controller 
takes into account the patient’s muscle activity level and 
human-robot interaction to adapt robot compliance and the 
assistance speed accordingly. The proposed strategy allows 
patients to determine the trajectory pattern by recognizing 
EMG signals and influence the speed of their leg movements 
along a physiological path during the rehabilitation. 

II. MATERIALS AND METHODS 

A. 6-DOF Parallel Robot for Lower Limb Rehabilitation 

Recently, parallel robots have drawn a lot of interests in 
the robotic community due to their superiority over the 
classical serial structures in terms of stiffness, accuracy, and 
high payloads. It has been found that parallel robots are good 
candidates for lower limb rehabilitation [13]. The lower limb 
rehabilitation robot designed in this paper is also a parallel 
mechanism with six transitional and rotational DOFs. The 
platform shown in Fig. 1(a) was designed by the authors’ 
research group for the purpose of investigating lower limb 
rehabilitation. Specifically, the system mainly included a PC, 
six motion controllers based on DSPs, and Panasonic servo 
drivers, as well as the platform. Linear position and velocity 
of each actuator were measured by photoelectric encoders. 
The robot controller was implemented on a PC. The device 
was interfaced to a PC through a CAN BUS interface, and 
six actuators of the robot were controlled simultaneously to 
achieve full degrees of freedom for lower extremities. 

The geometric diagram of Stewart platform is shown in 
Fig. 1(b), where the radius of the upper platform is defined 
as rb, and the angle is θ2, likewise, the parameters of the 
fixed platform are defined as ra and θ1, respectively. The 
radius of the upper moving plate is 180 mm, and the radius 

of the fixed base plate is 270 mm. Several safety features 
were also incorporated in the robotic mechanism and control 
hardware. Mechanical limit switches were placed on each 
joint to avoid the robot to go beyond the physiological ranges 
of motion. And an emergency switch was wired such that a 
single push can stop the whole system, which was held by 
the person invigilating the training process. 
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Fig. 1. (a) is the 6-DOF parallel robot for lower limb rehabilitation, (b) is 
its geometric diagram. 

B. Motion Recognition 

EMG is often used to control the power-assist robot 
according to the user’s intention since it directly reflects the 
user’s movement intention and his muscle activity level in 
real time. Nowadays, there seems sufficient works have been 
done on EMG triggered assistance for upper limbs [14]. 
However, the lower limb robots have not yet been widely 
applied to the clinical rehabilitation. The problem is that the 
requirement of the real-time control for the lower limb is 
different from that of the upper limb. The lower limb has 
more freedoms and the muscle structure is complicated, it is 
difficult to accurately estimate the intended motions from 
multichannel EMG patterns using a fixed classifier [15]. In 
recent years, a number of methods have been proposed to 
extract useful information from EMG. These studies tried to 
extract the features in time, frequency or time-frequency 
domains, such as using AR coefficients, wavelet transform 
coefficients, and spectrum coefficients as feature variables 
[5]. The existing methods tend to be complicated or require 
huge amount of samples, most of them for lower limb EMG 
signal are less than ideal. In order to extract the features from 
raw EMG signals of lower limbs, the RMS of the EMG 
signal is calculated and used as an input for the recognition 
controller in this paper. The RMS calculation is written as 

 2

1

1 N

i
i

RMS
N




   

where N is the number of the segments (N = 512) and i  is 

the voltage at ith sampling. 

SVM has gained wide acceptance in pattern recognition 
fields recently. It has been shown that SVM is superior to 
other traditional learning machines such as BPN, since SVM 
is able to gain better generalization ability for unseen data 
[16]. In this study, a method based on RMS features of EMG 
is proposed in combination with the SVM classifier, which is 
quite effective for solving nonlinear problems and reducing 
the computation burden. The feature extraction and SVM 
classification rules in this practice can be implemented and 
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thus appropriate for real-time robot control applications. The 
structural diagram of classifier applied in our work is shown 
in Fig. 2. More detailed descriptions of SVM in can be found 
in papers [17, 18]. The major advantage of the approach 
applied in this paper is that it can be utilized in real-time 
action recognition during movements of the lower limb and 
provide robot assistance accordingly. 
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Fig. 2. Classification scheme for EMG-based motion recognition. 

C. Adaptive Impedance Model 

In order to provide a compliment environment after the 
robot being triggered, a flexible assistance can be provided 
by monitoring the interaction force between the user and the 
robot. Therefore, an admittance or position-based impedance 
controller is established. By measuring the interaction force 
applied by the user to the footplate, it is possible to compute 
reference position and speed required to render certain mass, 
stiffness, and damping features [19]. The impedance model 
of the mechanism with human interaction is expressed as: 

 ( ) ( ) ( )d d d d d d d eM x x B x x K x x F F           

where Md, Bd and Kd represent the desired inertia, damping, 
and stiffness matrices, x and xd are the actual and the desired 
positions in the Cartesian space. Fe is the interaction force 
exerted upon the end-effector, and Fd is the desired force. 

Classical impedance controller imposes fixed parameters 
on the patient and can not provide different impedance 
modes to different users. If the impedance setting is too stiff, 
patients feel passively moved; if it is too soft, patients might 
move in undesired patterns [11]. Therefore, the rehabilitation 
should be considered by monitoring the patient’s muscle 
condition and updating the impedance parameters in real 
time. In this paper, the muscle activity level of patient is 
considered during the movement. The normalized RMS of 
EMG signals is used to evaluate the muscular activity ratio: 


1

( )
( )

( )

n
i

i i

RMS t
mar t

init RMS

  

where RMSi(t) presents the RMS value of channel i at time t, 
init(RMSi) is the initial value (in the training stage) of ith 
channel, and four channels of EMG signals are used (n=4). 

In order to guarantee the training to be physiological, this 
controller works with a constant reference trajectory while 
adapts the velocities. Therefore, the damping coefficient of 
controller is the parameter to be adjusted. When there is little 
muscle activity ratio detected, the impedance (damping here) 
is set low in order to enforce the robot assistance speed easily 
changed to patient’s efforts. The impedance is increased as 
soon as an increased muscle activity ratio is detected so that 

the patient can try his/her best to overcome the challenge. 
The reference trajectories are not modified and only the 
damping parameter B is adjusted as follows: 

 0( ) ( ( ))B t B c sat mar t    

where B0 is initial viscous damping coefficient, c is the 
coefficient of the EMG effects, and mar(t) is the muscle 
active ratio affected by the EMG signals. sat( ) is a saturation 
function to linear the regions between the maximum and the 
minimum saturation levels. Thus, the amount of damping 
parameters B is increased when the activity level of related 
lower-limb muscles is simultaneously increased. 

In this active interaction training, voluntary participation 
of patients is required. The robot velocities are proportional 
to active interaction force, and the conversion formula can be 
presented by using impedance model [20]. The architecture 
for adaptive impedance controller is shown in Fig. 3. The 
lower loop is the impedance control with damping parameter, 
and the upper loop is a position/velocity controller. This 
architecture shows that more active interaction forces are 
required to achieve higher training velocities. Meanwhile, 
the damping coefficient can be changed for different training 
resistances according to the muscle activity level calculated 
from EMG signals. The higher the muscle ability is, the 
larger damping is, and more active force contributions are 
needed to reach the same exercise velocities. 
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Fig. 3. Adaptive impedance control based on muscle activity evaluation. 

D. Active Interaction Control 

In this paper, we proposed a multi-DOF parallel robot for 
human lower-limb motion assistance, in which the EMG 
signals and active interaction force are integrated with the 
adaptive impedance controller to realize the effective motion 
assistance for the robot user. The active interaction control 
process in this study contains four steps as shown in Fig. 4: 
(1) EMG signals acquisition and preprocessing, including 
filtering and amplification; (2) limb intention prediction and 
motion decoding by the integration of RMS features of EMG 
and SVM classifier; (3) real-time updating of impedance 
parameters and joint velocity commands. A control law was 
proposed to relate the muscle activity ratio to the damping 
parameters in order to adjust the training speed in accordance 
with the human interaction force; (4) follow the predefined 
smooth trajectory based on inverse kinematics and fuzzy 
adaptive controller. The parallel rehabilitation robot has six 
DOFs, and a trajectory tracking approach based on a fuzzy 
controller was implemented as a position/velocity controller 
to guide the subject’s limb on reference trajectories [1]. As 
the involvement of human control will necessarily promote 
patient activity during the exercise, such strategies can 
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increase the patient’s motivation because muscle activation 
changes and the interaction efforts will be directly reflected 
in the training speed and cause a consistent feeling of success. 

 
Fig. 4. The proposed active interaction controller for rehabilitation robot. 

III. EXPERIMENTS AND RESULTS 

A. Experimental Protocol 

In order to evaluate the ability of the rehabilitation robot 
to provide interactive rehabilitation for lower limbs, the 
previously described robot and controller were implemented 
in preliminary experiments. The surface EMG signals were 
acquired by a portable EMG signals acquisition equipment 
(DataLOG MWX8, Biometrics Ltd. UK), as shown in Fig. 
5(a). Moreover, a Futek force sensor was mounted between 
the moving platform and the footplate to sense the equivalent 
interaction force acting between human and robot. 

 
Fig. 5. (a) is the EMG acquisition equipment, (b) is the location of EMG 
electrodes, and (c) is the experimental setup. 

The experiments were carried out with nine subjects aged 
range from 20 to 42, including both male and female subjects. 
Six motions including dorsiflexion, plantarflexion, inversion, 
aversion, adduction, and abduction [13], were implemented. 
Before the experiment, four pairs of electrodes were attached 
on each muscle. The subject’s gastrocnemius medialis (GM), 
tibialis anterior (TA), flexor digitorum longus (FDL) and 
soleus (SL) muscles of the right leg were selected in this 
experiment. The location of electrodes is shown in Fig. 5(b). 
After a familiarization period, the subject stood on a chair 
with right foot constrained to the orthotics, as illustrated in 
Fig. 5(c). Considering the safety issue, the preliminary test 
was performed with healthy subjects. In the future, the robot 
will be changed to suit injured people and a height-adjustable 
chair will be equipped to comfort the participants. 

Two forms of experiments were carried out to evaluate 
the effectiveness of the proposed control method. In the first 
experiment, all subjects performed the lower-limb motions 
with the passive assist of robot. This passive mode of the 

rehabilitation was investigated wherein the subject was asked 
not to exert any force and remain relaxed after the robot 
being triggered, and the robot was controlled to follow 
predefined trajectories. Then, experiments on active control 
based on real-time muscle activity evaluation and parameters 
updating were performed, where impedance parameters were 
adjusted to allow the patients to change the compliance by 
themselves. In the first stage, EMG signals were sampled, 
and recorded data were used as the training samples to 
modify the SVM classifier. In the second stage, the EMG 
signals with force feedback items were used to control the 
robot to follow the subject’s specified motions and influence 
the movement in real-time. The subject was instructed to 
perform voluntary movements and participate in the training. 

B. Results 

The experimental results of three subjects were selected 
from nine participants to discuss the comparison between 
proposed and traditional methods. The experimental results 
of both EMG-triggered passive control and active interaction 
compliance control suggest that the robot can follow the 
subject’s movement intention. The RMS features of captured 
EMG signals and SVM analysis method make it possible to 
predict human motion intention precisely. Fig. 6 shows the 
EMG signals and motion classification results of the selected 
subjects, where a satisfactory recognition accuracy (about 
91.22%-95.44%) can be obtained. 
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Fig. 6. RMS features extraction and motion recognition results. (a) is the 
results of subject 1 (S1) and (b) is the results of subject 2 (S2). Both figures 
(from top to bottom) show the RMS (mV) of SL, TA, FDL and GM 
muscles during the movement. And the classification results, in which the 
numbers from 1 to 6 present the six motions including dorsiflexion, 
plantarflexion, inversion, aversion, adduction, and abduction, respectively, 
showing that the recognition accuracy is satisfied. 
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For the second experiment, the effect of the adjustment of 
impedance parameters was evaluated. In order to encourage 
patient’s participation in the training, robot compliance can 
be adjusted according to his/her muscle activity level. Fig 7(a) 
presents how patient’s muscle activity ratio was evaluated 
during the exercise. And the experimental results in Fig. 7(b) 
show that the robot impedance parameters can be adjusted in 
accordance with the muscle activity ratio. When the muscle 
activity level is reduced, the impedance parameters will be 
properly adjusted to make the robot much “easier” to control. 
Afterwards, the subject was asked to take voluntary efforts 
that yielded a change of the motion velocity. The robot can 
not only follow subject’s motion intention, but also influence 
the robot assistance speed based on interaction force and 
updating the impedance parameters according to muscle 
activity level, meeting the requirement of active and adaptive 
interaction control. The parameters of impedance controller 
can be updated based on the adaptation law mentioned above. 
The adjustment of the controller is simple and intuitive, since 
only a parameter is required and the effect of impedance can 
be interpreted as a compliant deviation from the desired 
speeds caused by patient’s efforts. 
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Fig. 7. (a) is the muscle activity evaluation results of S1 and (b) is the 
adaptive impedance control results of S1. From top to bottom of (a), the 
first one is the RMS of four channels (the blue, red, magenta, green line 
refer to channel 1, 2, 3, 4, respectively) during the exercise; the second one 
is the initial RMS value of four channels (init(RMSi), i=1,2,3,4, from left to 
right) for six motion modes in the training stage, since different motions 
activate different muscles, the average RMS and its deviation are shown for 
each channel in each mode,; the last one is the muscle of activity ratio 
evaluated by using (3). From top to bottom of (b), the first one is the 
resultant force of the active interaction in the x, y, z directions measured by 
force sensor; the second is the adaptive impedance parameter (damping 
here) which is shaped by the muscle activity ratio using (4); the last one is 
the average robot velocity in joint space (the blue line is the desired 
velocity and the green one is the actual one) determined by the interaction 
force and the damping coefficient. 

Prior to the active interaction control mode, the subjects 
were trained in an EMG-triggered position control loop. 
Thus, comparisons can be done between the EMG-triggered 
control and active interaction control. Fig. 8(a, b) reports the 
amount of EMG signals required to perform the motion 
during the two trials. When the patient kept passive after 
activating the robot by EMG action recognition, the muscle 
efforts applied by the subject was at a lower level during the 
movement. Differently, in the second trial, the subject had to 
provide a certain effort in terms of muscle activity. It is 
noticed in Fig. 8 that the difference between the two modes 
is significant, especially when subject’s muscle activity ratio 
is considered, and that the muscle efforts in active interaction 
impedance mode show an obvious increase in total EMG 
values. It is confirmed that the adaptive impedance controller 
can generate adaptive assistance speed in agreement with the 
change of the subject’s muscle activity level. Therefore, the 
adaptive impedance controller is able to adjust the desired 
impedance between the robot and impaired limb to generate 
adaptive training speed in agreement with the limb’s muscle 
strength. The advantage of the second trial is that they can 
voluntarily influence the robot speed and can feel the 
changes produced by their own contributions. 
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Fig. 8. Comparisons of the conventional EMG-triggered assistance and 
the active interaction control assistance. (a) is the results of S1 and (b) is 
the results of S3. From top to bottom of both (a) and (b), the top two figures 
are the robot velocity and RMS in EMG-triggered passive assistance; the 
bottom two figures are velocity and RMS recoded during the proposed 
active interaction assistance. It is illustrated that in conventional methods, 
the robot motion can not be influenced by subject after being triggered and 
the muscles are seldom active but just when triggering the robot. Whereas 
in the proposed method, the robot assistance speed can be adjusted 
according to external force and the muscle activity level, and thus the 
muscles are active at most of the time. This allows patient to contribute 
more efforts during the exercise and may increase the training effects. 
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IV. DISCUSSION AND CONCLUSION 

Using impedance control instead of position control, the 
additional efforts by the patient can be reflected in the robot 
assistance pattern, which may increase his/her motivation. 
However, the modification of the reference trajectory may 
increase the risk that the subject and robot start to move out 
of physiological phase. Therefore, the robot assistance in this 
paper adjusted its speed based on patient’s efforts, while 
keep the trajectories fixed. Furthermore, the impedance level 
can vary widely due to different levels of muscle activity 
ratio to match the patient’s capabilities and recovery progress. 
In the proposed strategy, the patient’s movement intention 
was first recognized using EMG signals. The RMS method is 
simple and effective to extract features from the raw EMG 
signals, and the results also demonstrate the effectiveness of 
the SVM classifier. It is suggested that the EMG signals 
recorded from selected muscles can be used to trigger the 
robot assistance. Then, impedance controller in accordance 
with patient’s interactive efforts was applied to make the 
robot compliant; meanwhile, adaptive methods based on the 
muscle activity was used to adjust the impedance parameters 
and influence the robot assistance to individual contribution. 

Experiments with healthy subjects were performed to 
evaluate if the adaptive impedance control scheme could 
modify the robotic assistance speed based on participation 
and muscle activity ratio of subject in the training process. 
The robot was operated in two different modes, namely, 
EMG-triggered mode and adaptive impedance control mode. 
In the first trial, all subjects were instructed to remain passive 
during the robot movement, and allowed robot to guide their 
legs based on intention recognition. In the second experiment, 
the subjects were asked to actively influence the robot 
assistance speed after triggering the robot. The experimental 
results demonstrated that the rehabilitation robot was able to 
move with the user’s intention while the impedance can be 
updated. An increase in participation of subjects resulted in 
an increase of the robot speed and that an increase in muscle 
activity levels resulted in a decrease of the robot compliance. 
Comparing with the traditional EMG-triggered assistance, 
the proposed method not only activates the robot assistance 
when patient intends to move, but also changes the motion 
pattern in accordance with patient’s efforts. Moreover, 
adaptation of robot impedance based on patient’s muscle 
activity level directly responds to velocity changes, and this 
allows the limb move along a physiological trajectory.  

In the future, in order to predict the patient’s motion 
intention more precisely and make the controller more stable, 
the time-frequency domain features of EMG signals need to 
be introduced. In addition, six fixed movement patterns for 
healthy subjects were used during the experiments. However, 
these trajectories may not be suitable for the patients with 
different impairments. The adaptation of reference pattern 
and the construction force prediction based on lower limb 
EMG signals are also important research questions with 
regard to robot rehabilitation in future works. 
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