
 
 

 

  

Abstract—Biologically a gene or a sample could participate in 
multiple biological pathways, and only few genes are 
concurrently involved in a cellular process under some specific 
experimental conditions. Hence, identification of a subset of 
genes showing similar regulations under subsets of condition in 
microarray data has become an important research issue. Many 
investigators develop bi-clustering methods to attack this 
problem. In this study, we adopt fuzzy co-clustering concept and 
design a procedure to iteratively extract bi-clusters with 
co-expressed gene patterns (here the entire proposed process is 
called a modified fuzzy co-clustering (MFCC) approach). We 
have applied synthetic data and compared our MFCC’s 
performance with four well-known state-of-the-art methods. 
Here we have not only shown that our MFCC approach can 
successfully extract each designed bi-clusters in the synthetic 
data sets, but also have demonstrated the better performance by 
our MFCC approach. 

I. INTRODUCTION 
FTER finishing the Human Genome Project, one of the 
most urgent and important tasks for scientists in the 
post-genomics era has been to understand the function of 

tens of thousands of genes, especially for deciphering the 
relationship between genes and diseases in biomedical 
research. Microarray (also called gene chip) is a widely used 
tool for measuring gene expression values in genomics 
research. Microarray is composed of thousands of probes 
which can specifically bind to their corresponding gene target 
based on the principle of pairing complementarity of 
nucleotide bases. Hence, the microarray technique can 
simultaneously measure expression values of a large number 
of genes, and some of the most important research topics in 
bioinformatics have been how to process and analyze 
microarray high-throughput data, and then further discover 
marker genes to investigate oncogenic factors, study the 
biochemical mechanisms of drug-resistance, or evaluate the 
elements of prognosis. 
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Previous statistical methods involving clustering analysis  
of microarray data have mostly focused on data representing 
the axiality of genes or axiality of experimental conditions (or 
samples) in order to identify the relationship among genes or 
the relationship among experimental conditions (or samples). 
However, many genes show high/low expression values only 
under certain specific experimental conditions, such that 
these genes have similar expression levels under the 
regulation of specific conditions but have other gene 
expression patterns under other conditions. Hence, many 
researchers have developed various bi-clustering methods to 
effectively identify bi-clusters which can represent some 
genes only highly related to “partial” specific experimental 
conditions (or samples) [1]-[5]. For example, Cheng and 
Church’s (CC) algorithm [2] was a pioneering approach to 
bring bi-clustering into gene expression data analysis. The 
CC algorithm introduced the mean squared residue measure 
to identify bi-clusters. The Iterative Signature Algorithm 
(ISA) [6] first normalized the data points of row and column, 
respectively, and then chose the greatest Z scores of row and 
of column simultaneously as the criteria for selection of 
bi-clusters. The Order Preserving Sub Matrix (OPSM) [7] 
algorithm used a stochastic model to identify a subset of 
genes with a coherently relative order among a subset of 
experimental conditions. The Statistical-Algorithmic Method 
for Bi-cluster Analysis (SAMBA) [8] first converted a gene 
expression matrix into a weighted bipartite graph. Then the 
problem of discovering the most significant bi-clusters was 
transformed into finding the densest subgraphs in a bipartite 
graph. 

In addition, some bi-clustering approaches have also been 
successfully applied to text mining. This study applied the 
fuzzy co-clustering with Ruspini’s condition (FCR) method 
[9] from text mining to extract bi-clusters from microarray 
data. The FCR method determines the importance of data 
points in a bi-cluster in row and column dimensions, 
respectively, by simultaneously using two fuzzy conditions in 
its objective function to calculate the corresponding weights 
of each row and each column. Here, we not only applied the 
FCR method to microarray data analysis, but also proposed 
an automatic bi-cluster extraction strategy to identify 
bi-clusters as well. The details are shown in the following 
sections.  

II. MATERIALS AND METHODS 

A. Fuzzy Co-clustering with Ruspini’s Condition (FCR) 
In clustering, the fuzzy concept is usually adopted to show 

that a data point can belong to different groups with a 
different degree of memberships. This fuzzy concept 
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significantly enhances capability of representation of 
overlapping clusters. In bi-clustering processes (also called 
co-clustering processes) especially for text mining (to 
co-cluster documents and words simultaneously), the fuzzy 
concept is widely utilized to bring a degree of membership to 
data representation. In this study, we apply a fuzzy 
co-clustering concept from text mining [9], called FCR (fuzzy 
co-clustering with Ruspini’s condition), to extraction of 
bi-clusters (BCs, also called co-clusters) from microarray 
data. In addition, we design a process to iteratively and 
efficiently extract each BC. Note that, here FCR is designed 
to find bi-clusters with consistently high gene expression 
values for the selected genes under subsets of experimental 
conditions. The objective function JR in the FCR algorithm is  
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Fig. 1.  An illustration of the bi-cluster (BC) determination process. 
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The values of uci and vcj shall iteratively update using Eqs. (2) 
and (3) respectively until convergence is achieved. 

The related parameters in (1) for microarray data are 
explained as follows. N represents the number of genes, K is 
the number of experimental conditions, C is the predefined 
number of BCs, and xij denotes the expression value of the ith 
gene under the jth experimental condition. In a BC c, uci and vcj 
represent the degree of membership for the ith gene and jth 
experimental condition to cluster c, respectively. Tu and Tv are 
pre-defined degree of fuzziness parameters. Also note that the 
main difference between FCR and other fuzzy bi-clustering 
methods is that FCR creates a degree of membership for both 
bi-axial variables (e.g., degree of membership for gene axis, 
uci, and degree of membership for experimental condition axis, 
vcj) in order to produce better bi-clustering results, whereas 
other fuzzy bi-clustering methods only bring a degree of 
membership to one bi-axial variable.  

B. Illustration of Determination of Bi-clusters (BCs) 
As mentioned above, after performing the fuzzy 

co-clustering process (FCR), and assuming we want to find C 
bi-clusters (BCs) in the data, we get the degree of 
membership for the ith gene (uci) and the degree of 
membership for the jth experimental condition (vcj) to the cth 

BC. Next we should identify the members (both genes and 
experiments) of the cth BC based on both uci and vcj values. An 
illustration of this complete BC determination process and 
identification of members in each BC is shown in Fig. 1 and 
explained below. 

In Fig.1, we use a synthetic example with 20 genes and 10 
experimental conditions (20×10 data matrix), and seek 3 BCs 
in the data. Then FCR is used to produce two matrices: U 
matrix (3×20) represents the degree of membership for 20 
genes in 3 BCs and V matrix (3×10) represents the degree of 
membership for 10 experimental conditions in 3 BCs. As 
mentioned earlier, the constraints should be satisfied by U and 
V; i.e., in the U matrix, for each gene the sum of the degrees of 
membership for 3 BCs (i.e. the sum across each row) should 
be equal to 1; in the V matrix for each experimental condition 
the sum of the degrees of membership for 3 BCs (i.e. the sum 
down each column) should also be equal to 1. Next, for each 
gene and each experimental condition in the U and V matrices 
respectively, the degrees of membership for 3 BCs are further 
processed: the maximum value is kept and the other values 
are set to 0 (i.e., to keep the strongest degree and discard the 
weaker degrees of membership for every gene and 
experimental condition among the specified BCs). From this 
step, we also obtain numbers of genes and experimental 
conditions belonging to each BC (e.g., in this case BCs 1~3 
have 8, 6, 6 genes, respectively, and 4, 3, 3 experimental 
conditions, respectively). Finally, we can use a different 
threshold value, α, to further filter out weaker members for 
BCs from gene and experimental condition perspectives (i.e., 
the degree of membership for every gene and experimental 
condition≥α). For example, in this case when α=0.5, no 
change happens for BCs 1~2, but the number of genes and 
experimental conditions in BC 3 have been reduced to 4 and 2, 
respectively. However, when α=0.8, all three BCs have been 
influenced (actually, BC 3 is lost because no experimental 

condition satisfies the constraint). Note that, for simplifying 
the visualization of the satisfied members for BCs, in Fig. 1 
the members of the resulting U and V matrices are set to only 
two values, 1 and 0, where 1 represents those genes and 
conditions which meet the α threshold and 0 represents those 
that do not. From the resulting U and V matrices, because we 
know the members of genes and experimental conditions for 
each BC, we can also easily visualize the resulting BCs from 
the original data matrix, as shown in the blocks furthest to the 
right in Fig.1.  

C. Automatic Bi-cluster (BC) Extraction Strategy 
Fig. 2 shows the automatic bi-cluster (BC) extraction 

process proposed in this study and used on microarray data. 
The main point of this process is to use FCR to determine the 
c BCs, and then to further select only one BC to meet the 
selection criteria that have been set and to remove the selected 
BC from microarray data. The aforementioned procedure is 
repeated to extract all BCs existing in the microarray data. 
The following briefly describes the 2 major functions of this 
flow diagram.  

The first part of Fig. 2 is called preprocessing. It includes 
the following steps. First, the gene expression values in 
microarray data are normalized in [0, 1]. Next, the fuzzy 
c-means approach is used to find C×N initial values of the 
matrix U. The update equations for the matrices U and V are 
derived from (1) and are iteratively used to determine the 
final values of U and V. Note that, the authors of FCR 
randomly initialized U. It may make the algorithm require 
more iterations to converge. 

The second part of Fig. 2 is aimed at extraction of the BCs. 
As mentioned previously, this process finds the BCs one by 
one in the microarray data. Therefore, after the c BCs have 
been identified via FCR, we must select one BC according to 
the following 3 criteria: 

 
1.  Determine the number of genes and experimental 

conditions belonging to each BC: In the c BCs, the uci and 
vcj values respectively represent the degree of each row 
and each column belonging to the cth BC. As shown in Fig. 
2, we can set a threshold value α and decide which genes 
and experimental conditions are worth considering 
members of a BC (uci or vcj ≥α). 

 
Fig. 2.  Flow diagram of the proposed framework for automatic 
bi-cluster (BC) extraction. 
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2.  The residue constraint of each BC: After deciding the 
genes and experimental conditions which belong to each 
BC, whether each BC has consistent high gene expression 
values or not can be determined via the mean squared 
residue measure [2]: 

( )∑
∈∈

+−−=
JjIi

IJIjiJij xxxx
JI

BC
,

21)(Residue
           (4) 

Equation (4) shows that I genes and J experimental 
conditions belong to a certain BC, xij denotes the 
expression value of the ith gene under the jth experimental 
condition, xiJ represents the average expression value of 
the ith gene among those J experimental conditions, xIj 
indicates the average expression value of the jth 
experimental condition among those I genes, xIJ is the 
average expression value among those I genes and those J 
experimental conditions. Here we only select the BCs with 
the residue values less than the set threshold value ε. 
However, if the residue values of all BCs exceed ε, then α 
should be increased to select genes and experimental 
conditions more strictly and re-examine this condition. 
 

3. Output a BC with the maximum size: After the two 
aforementioned steps, the size of each BC is determined 
by calculating the product of the number of associated 
genes and the number of associated experimental 
conditions in each BC. Since we want to identify BCs with 
a bigger size, in this step we only select the BC with 
maximum size. Every time a BC has been selected, we use 
random noisy data points to replace the gene expression 
values in this BC, and then return to the FCR in 
preprocessing to re-calculate uci and vcj.  

III. RESULTS AND DISCUSSION 
Here, we demonstrate that our MFCC approach could 

extract almost every designed bi-cluster (BC) in the synthetic 
data. Then we further compared our MFCC’s performance 
with four well-known state-of-the-art methods using the 
synthetic data with different levels of overlapping conditions 
of designed BCs in both bi-axial variables. Note that, for each 
data set in the following three cases, the expression values of 
designed BCs were randomly set to 0.6~1, and the expression 
values of non-BC regions were randomly set to 0~0.3 to 
simulate background noise. The values of parameters used in 
our MFCC approach are shown in Table I. The details of 
experiments are explained as follows. 

 

 
A. Case I: Synthetic Data with Simple Overlapping BCs 
As shown in Figs. 3(a), 3(e), and 3(i), we have generated 

three types of synthetic data sets, each with a 100×100 matrix 

and each with 3 designed BCs in different locations with sizes 
of 30×30, 30×30, and 15×15, respectively. Here two BCs 
with the same size (30×30) in each data set separately had an 
overlapping region in the gene axis (15 overlapping genes, 
Fig. 3(a)), in experimental condition axis (15 overlapping 
experimental conditions, Fig. 3(e)), or in two axes (a 10×10 
overlapping region, Fig. 3(i)). As shown in Figs. 3(b)-3(d), 
Figs. 3(f)-3(h), and Figs. 3(j)-3(l), our MFCC approach 
iteratively and correctly extracted each designed BC in each 
data set. Note that, in Fig. 3(k), the specific left and upper 
region showed the extracted BC using a different color (to 
represent those data points with a low expression value). 
Actually, the overlapping region for the two BCs in this case 
was the mentioned specific area. Hence, this overlapping 
region was filled in with the random noise (with values 0~0.3) 
after the first BC was extracted by our MFCC approach as 
mentioned before. In addition, since the size of the specific 
overlapping region was small enough compared to the size of 
the second BC, our MFCC approach could extract the 
complete second BC (30×30). 

B. Case II: Synthetic Data with More Complicated 
Overlapping BCs 
To further demonstrate the ability to extract BCs by our 

MFCC approach, we created another synthetic dataset with 
more complicated overlapping BC conditions. As shown in 
Fig. 4(a), this data set had a 50×50 matrix and 5 BCs in 
different locations with sizes of 20×10, 10×20, 10×9, 8×10, 
and 5×5, respectively. In addition, this data set 
simultaneously had several overlapping regions among the 5 
BCs regarding the gene axis, experimental condition axis, and 
two axes. The extraction of designed BCs by our MFCC 
approach are shown in Figs. 4(b)-4(f). Again, our MFCC 
approach correctly extracted each designed BC in this data 
set, except for the BC in Fig. 4(d). The reason for the 
unsuccessful extraction of this BC was similar to the reason 
mentioned in the previous case. The size of the specific 
overlapping region (3×3) was not small enough compared to 
the original size (8×10) of this BC in Fig. 4(d). Hence, our 

TABLE I 
THE VALUES OF PARAMETERS USED IN MFCC 

Symbols Values Notation 
C 5 Predefined number of BCs used in (1)
Tu / Tv 1 / 1 Degree of fuzziness parameters used in (1)

α 0.3 
Threshold value to determine the members of 
each BC used in (4) 

ε 0.3 Threshold value for residue of each BC used in (4)

 
Fig. 3.  Synthetic data with 3 BCs and the extraction of BCs by our MFCC 
approach. Subfigures (a), (e), and (i) are the three synthetic data sets, each 
with 3 BCs; other subfigures are each corresponding BC interactively 
extracted by our MFCC approach. 
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MFCC approach could only extract a part (6×8) of this BC in 
Fig. 4(d) regardless of the 2 genes and 2 experimental 
conditions in the specific overlapping region. 

C. Case III: Synthetic Data with Different Levels of 
Overlapping BC Conditions in Both Axes 
In this case, we have generated another 10 sets of synthetic 

data, each with a 100×100 matrix and each with 5 designed 
BCs. The 5 designed BCs in each data set were put in order 
along a diagonal, but the size of each overlapping region 
between 2 adjacent BCs in each data set was changed from 
1×1 (denoted overlapping degree = 1, Fig. 5(a)) to 10×10 
(denoted overlapping degree = 10, Fig. 5(b)). We used these 
10 data sets to perform the comparisons for our MFCC 
approach and four other well-known bi-clustering methods 
(SAMBA [8], CC [2], OPSM [7], and ISA [6]). Here we used 
the BicAT package [10] to execute CC, OPSM, and ISA, and 
used the EXPANDER package [11] to run SAMBA. In 
addition, the Prelic’s match score [12], [13] was used as a 
measurement for evaluation. The details of the Prelic’s match 
score was given as follows: 
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(5) 
where Mopt denotes the set of implanted BCs, M1 represents 
the set of BCs extracted by a bi-clustering method, Gopt and 
Copt respectively designate the genes and experimental 
conditions belonging to one of the implanted BCs, G1 and C1 
respectively indicate the genes and experimental conditions 
belonging to one of the BCs extracted by a bi-clustering 
method, optGG ∩1  and optGG ∪1  respectively represent 

the intersection and union of genes between an implanted BC 

and a BC extracted by a bi-clustering method,
 optCC ∩1  

and optCC ∪1  respectively represent the intersection and 

union of experimental conditions between an implanted BC 
and a BC extracted by a bi-clustering method. Furthermore,    

( )optG MMS ,1  and ( )optC MMS ,1  in (5) measure the 
extent to which the BCs extracted by a bi-clustering method 
represent the implanted BCs in the gene axis and 
experimental condition axis, respectively. The Prelic’s match 
score is defined as the geometric mean of ( )optG MMS ,1  

and ( )optC MMS ,1 . 
Results of the comparison of the tools were shown in Fig. 6. 

Here we have observed some interesting phenomena: (1) Our 
MFCC approach extracted almost all designed BCs 
regardless of the size of overlapping regions between 2 
adjacent BCs. The reason is the same as that with case 1: the 
size of the specific overlapping region between two BCs was 
small enough compared to the size of the second extracted 
BC. (2) Some bi-clustering methods, such as CC, OPSM, and 
ISA, had a quite low Prelic’s match score. It may be because 
we used default values for parameters suggested for these 
methods. (3) SAMBA suffers the most severely when 
increasing the overlapping degree followed in order by ISA 
and CC, respectively.  

IV. CONCLUSION 
In order to effectively extract bi-clusters from microarray 

data, this research proposed a modified fuzzy co-clustering 
(MFCC) approach. This approach was applied to several 
synthetic data with various degrees of overlapping conditions. 
The results proved the effectiveness of the proposed approach. 
In addition, when considering the synthetic data with 
different levels of designed overlapping bi-cluster conditions 
in both bi-axial variables, we have further demonstrated that 
our MFCC approach can obtain a better Prelic’s match score 
and is not influenced by the different levels of overlapping 
regions of bi-clusters compared with the four well-known 
state-of-the-art methods. 

 
In the future, we will continue to modify and verify this 

approach. There are two aspects that can be further developed: 

 
Fig. 5.  Synthetic data with different levels of overlapping BC 
conditions in both axes. (a) Each of overlapping regions with 1 gene 
and 1 experimental condition; (b) Each of overlapping regions with 10 
genes and 10 experimental conditions. 

 
Fig. 4.  Synthetic data with 5 BCs and the extraction of BCs by our 
MFCC approach. Subfigure (a) is the synthetic data sets with 5 BCs; 
other subfigures are each corresponding BC interactively extracted by 
our MFCC approach. 
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(1) Although we have demonstrated that our proposed MFCC 
approach can extract almost all designed each bi-cluster in the 
synthetic data, we plan to apply this approach to some real 
microarray data and explore the biological meanings of the 
extracted bi-clusters. (2)  We did not discuss the influence for 
setting the parameters used in this approach. In the future, 
feasible methods will be further explored for tuning the 
parameters to let the proposed system achieve a better 
performance in identification of bi-clusters. 
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Fig. 6.  Performance comparison for our MFCC approach and other 4 
bi-clustering methods regarding 10 sets of synthetic data under different 
levels of overlapping BC conditions in both gene and experimental 
condition axes. 
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