
1

Visual Servo Control of the Hexapod Robot With

Obstacle Avoidance
Wen-Shyong Yu and Chiau-Wei Huang

Abstract—This paper is to design a visual servo control for
a hexapod robot with obstacle avoidance. The implementation
of the motion control for the hexapod robot using the inverse
kinematics and visual recognition system is used to achieve the
trajectory tracking with obstacle avoidance. The control structure
is composed of three parts: a tilt camera based on the concepts
of mechanical geometry, visual servo control systems, and motion
dynamics for trajectory tracking and obstacle avoidance. First,
the depth between the obstacle and robot based on the proportion
of the size of the area is constructed. Then, the image processing
is used to identify whether there are any obstacles in the front,
and make it as a feedback to the servo control system. For
image recognition, we use OpenCV to process environment to
the grayscale and binarization, filter noise through erosion and
dilation, and then fill all of the contours using Sobel edge
detection, and finally calculate the area and compare that with
each other. Finally, some experiments for a hexapod robot with
obstacle avoidance are used to validate the performance of the
proposed control scheme.

Index Terms: Hexapod robot, visual servo control, motion

dynamics, trajectory tracking, obstacle avoidance.

I. INTRODUCTION

Multi-legged robots are a hot research field in recent years

since they have the advantages of higher stiffness, higher

payload capacity and lower inertia to the manipulation than

single legged ones at the price of a smaller workspace,

more complex mechanism and inverse kinematics. Due to

the properties, the motion control design of the robots are

relatively complex, but their motions will be relatively flexible

with a more complex terrain. The purpose of our study is to

pursue multi-function, high performance, and simple control

for the Multi-legged robots.

In the era of more frequently natural and manmade disasters,

the robot applications which can overcome the complex terrain

are particularly compelling, and it can be used in complex

terrain for transportation and supply of materials or personnel

rescue action. It can also be developed into small and fast

multi-legged robots used in the security of surveillance, and its

effectiveness is better than wheeled robots in complex terrain

areas, and the hexapod robots are one of their applications that

can achieve the basic functions with visual obstacle avoidance.

Wilson [1] described the characteristics of movement pat-

terns of American cockroaches, studying their gaits by using

the methods of experiment and observation. Holk Cruse [2]

developed artificial neural network (ANN) by studying the

neural system of insect: Walknet, who successfully applied

Wen-Shyong Yu and Chiau-Wei Huang are with the Department of Elec-
trical Engineering, Tatung University, 40 Chung-Shan North Rd. 3rd. Sec.,
Taipei, Taiwan 10451 Taiwan, E-mail: wsyu@ctr1.ee.ttu.edu.tw.

to gait motion control of the hexapod robots. Visual-servo

control is an approach that operates robots by using feedback

image signals of visual system. Since the images are captured

by cameras, single-eye camera has been used for different

goals [3]– [5]. The main advantage of the single-eye cameras

is the low cost and low computations, and can be used for real

time image recognition [6]. There were numerous visual-servo

controls used in robotic control. Takahama used mobile ma-

nipulator to grab a book on the table and place it into shelves.

With the use of onmidirection wheels, the upper platform

was equipped with two manipulators and has CCD camera to

acquire environmental informations. It divides the tasks into

eight parts and then using sequential implementation method

to operate two manipulators to perform the action of returning

the book cooperatively. In [7], Hutchinson, Hager, and Corke

proposed the classic of image feedback control, which has laid

two orientations of image feedback control, i.e. position-based

visual servo (PBVS) and image-based visual servo (IBVS).

Under the framework of PBVS, it can estimate the coordinates

of the target positions through the 3D visual system, and

feedbacking them to the manipulator to perform the captured

behavior. To properly capture the object, the estimation of

target positions must be exact enough. IBVS framework does

not require estimation of the target coordinates, but calculating

error signals of the image characteristics at different time

through 2D visual system, and finally feedbacking Image-

Jacobian of IBVS to accomplish the conversion operation

between images and manipulators. Since the image distortion

problem will increase the error signals [7], the 2D visual

servo system requires good image processing and tracking

technologies to enhance the robustness of IBVS framework.

In this paper, we design a visual servo control for an

autonomous hexapod robot with obstacle avoidance. It is an

insect inspired robot with six legs that enable it to move

flexibly on various terrains. The main advantage of this type

of robot is its higher stiffness, higher payload capacity, and

lower inertia. The control structure is composed of three parts:

image recognition, visual servo control systems, and motion

dynamics for trajectory tracking and obstacle avoidance. Un-

like bipedal robots, insect inspired robots with six legs are

statically stable and not dependent on balance mechanisms,

but need feedback and positive reaction to acquire smoother

walk. First, the depth between the obstacle and robot based

on the proportion of the size of the area is constructed. Then,

the image processing is used to identify whether there are any

obstacles in the front, and make it as a feedback to the control

system. For image recognition, we use OpenCV to process

environment to the grayscale and binarization, filter noise

2

through erosion and dilation, and then fill all of the contours

using Sobel edge detection, and finally calculate the area and

compare with each other. Finally, some experiments for a

hexapod robot with obstacle avoidance are used to validate

the performance of the proposed control scheme.

II. DESCRIPTION OF THE SYSTEM CONSTRUCTION AND

HARDWARE

Consider the designed hexapod system shown in Fig. 1 in

which the body is equipped with embedded systems, servo

controllers, eighteen DC servos and one CCD camera. Fig. 2

is the schematic diagram of our control system flowchart.

Fig. 1. The hexapod system.

Microcontroller

Image Processing

C Program

Motion Control of

Inverse Kinematics

Servo Controller

DC ServoDC Servo DC Servo DC Servo

(Programong In Linux)

Laptop

Bluetooth

R/W data

Video In

CCD

Pusle Signals

PWM Signals

(a)

(b)(c)

(d)

(e)

(g)

total servo numbers=18

Fuzzy Controller

(f)

Fig. 2. Schematic diagram of the control system.

The specifications of the robot are shown in Table I and

the configurations of the servos for each leg are shown in

Figs. 3 and 4. HBE-KROBO is equipped with Marvell’s

PXA272 processor, where the PXA272 processor is a kind of

XScale core with RISC (Reduced Instruction Set Computer)

Embedded processors. It has the properties of the low-power

environment, high-speed transmission, and it’s often used

in small and diversified application of the intelligent robot

platform. We use this board to do the image processing and

compute the inverse kinematics.

We use the UART serial communication as the communi-

cation way between microcontroller and servo controller, and

TABLE I
SPECIFICATIONS OF ROBOT.

Hexapod’s information

Size 39.5cm(L)×39.5cm(W)×30.5cm(H)

Weight 2 kg

Material 3mm ABS / 3mm PF / 1mm Carbon

DC servos Hitec HS-475HB × 6
Hitec HS-645MG × 12

Camera SHINEHAW 3.6mm CCD

Controller HBE-KROBO-Marvall XScale PXA272 ARM
Mini Maestro 24-Channel Servo Controller

Bluetooth 2.4GHz Work range < 10 meters

Battery pack 7.4V Li-poly 900mAh × 2
11.1V Li-poly 1600mAh × 1

Fig. 3. Model of leg.

Fig. 4. Appearance of leg.

TABLE II
HARDWARE SPECIFICATIONS.

Mini Maestro Polulu 24

Channels 24

Analog Input Channels 12

Digital Input Channels 12

Configurable Pulse Rate 1-333 Hz

Pulse Range 64-4080 µs

Control Resolution 0.25 µs Output Pulse Width

Script Size 8KB

Power 5V Battery or USB Mini Cable

PCB Size (L)×(W)×(H) 58.4×27.9×1.6 (mm)

the baud rate is 9600 bps. We want to accurately compute the

movements with assembling plurality of servos, so we need to

select a mode which can simultaneously transmit commands

to the servo controller to avoid the delays between servos.

The following is a kind of protocol we used, as shown in

Fig. 5: mode, number of targets, first channel number, first

target low bits, first target high bits, second target low bits,

second target high bits, · · · . For example, if channel 1 is

configured as a servo and one wants to set its target to 1500

µs (1500 × 4 = 6000 = 0101110 1110000 in binary), then

one can send the following byte sequence:

• low bits: 01110000

• high bits: 00101110

The eighteen servos produced by the Hitec company are

twelve HS-645MG and six HS-475HB, and each servo has

three wires that stick out from the servo casing, one is for

power, another is for ground, and the other is for signal input

line. There are three servos for each limb connected by serial.

Servo with reduction gears is controlled by pulses of variable

3

tmp[0] tmp[1] tmp[2] tmp[3] tmp[4] tmp[5] tmp[6] tmp[38]tmp[37]tmp[35] tmp[36]

0x9F

0x12

0x00

first low bits

first high bits

second low bits

second high bits

Fig. 5. Command protocols of our servo control.

width (pulse width modulation (PWM)) from the servo control,

and feedback the position from potentiometer to test if it has

reached the desired position.

By sending the image captured by the CCD camera with

Pixels 640(H) × 480(V) to the microcontroller to perform

image recognition, the controller will generate the movement

commands for the hexapod.

III. PROGRAMMING ENVIRONMENT

Fig. 6 is the schematic diagram of our programming. In

programming, we use VMware player to simulate Linux oper-

ating system in Windows operating system, and write the servo

control program in Fedora. Then, transmit the compiled file

from Fedora to Windows, and use HyperTerminal to transfer

it to the microcontroller by the bluetooth.

Fig. 6. Schematic diagram of the programming.

In recent years, in addition to ultrasonic, infrared sensors,

and laser range finders, many studies use visual image pro-

cess and recognition to handle environmental obstacle in the

trajectory tracking, because the hardware cost of the imaging

process devices such as CCD camera is cheaper than the others

and can capture more detailed features of the environment.

So, the digital image processing method can be applied to

recognize and process by the microcontroller if there are any

obstacles on the path.

There are six steps for the image processing: Capture images

from camera, Pre-Processing, Image Binarization, Mathemat-

ical Morphology, Edge Detection, and Area Comparison after

filling contours as shown in Fig. 7.

Image Source

Pre-Processing

(Sub-Sampling,Gray Scale)

Image Binarization

Mathematical Morphology

(Erosion,Dilation)

Edge Detection

Fill the Contours

Area Comparison

Check if the area ≥ 2200 pixels

Obstacle Avoidance

Yes

Keep Going Forward

No

Fig. 7. Flowchart of image processing

Furthermore, representation of Y UV color space is used
in luminance and chrominance information, i.e. Y represents
luminance, UV represents chrominance. According to the
resolution and transmission of the image of Y UV format, it
can be divided into Y PbPr and Y CbCr. Y PbPr is mainly
used in HDTV TV, and Y CbCr is in SDTV TV. In HBE-
KROBO, representation of each pixel is used for RGB mode.
But the output format from the video decoder is Y CbCr.
Therefore, they must be able to convert into each other. The
equations that transform Y CbCr into RGB are given by:







R = 1.164Y − 16 + 1.596Cr − 128
G = 1.164Y − 16− 0.813Cr − 128r
B = 1.164Y − 16 + 2.017Cb− 128

(1)

The equations for RGB to Y CbCr are:
{

Y = 0.257R+ 0.504G+ 0.098B + 16
Cb = −0.148R− 0.291G+ 0.439B + 128

(2)

The dynamic image processing flowchart of HBE-KROBO

is shown in Fig. 8. First, the dynamic image data will be sent to

the video decoder (SAA7113), then video processor(FPGA),

finally CPU(PXA272) for computation.

Video Decoder

(SAA7113)

Video Processor

(FPGA)

*Subsampling

*Video Format Converting

CPU

(PXA272)

SRAM

(Video Frame Memory)

Video In Video

Analog Video Digital Video

Video

Processed Video

(RGB 16bits)

(YCbCr 16bits)

(Gray Scale 8bits)

(YCbCr 16bits)

Fig. 8. Dynamic image processing flowchart of HBE-KROBO.

The Image Binarization uses threshold value to convert gray

images value to a low and a high values. All of the pixels after

the Image Binarization processing are divided into black and

white colors, and the general equation g(x, y) for the threshold

4

value is as follows:

g(x, y) =

{

0, when f(x, y) ≥ T

255, otherwise
(3)

where T denotes the threshold value, f(x, y) the original pixel

value, and g(x, y) the final pixel value.

The noise of Binary image is known as salt and pepper

noise. The noise is distributed like sprinkling salt. By the

characteristics of Binarization, we use methods of dilation and

erosion to remove the noise.

Mathematical morphology uses the image component to

define tool of regional patterns, such as contours and boundary.

Therefore, the method of process to takle the images through

the shape is very effective and direct. For the purpose of image

recognition, more informations such as complex background

will result in slow recognition and low recognition rate. If we

want to obtain the informations about the object in the image,

such as shape, size, distribution, etc., determining from the

edge is the most direct way. Therefore, the method of edge

detection of the object for the image processing is an important

issue since it can effectively and accurately detect the edge of

the target information. The commonly used methods of edge

detection in image processing are: Roberts, Prewitt, Sobel,

Laplace, and Canny.

Edge detection is a first order derivative of the direction,

i.e. the gradient variation in the x, y direction of the image

f(x, y).

∇f(x, y) =

[

Gx

Gy

]

=

[

∂f
∂x
∂f
∂y

]

(4)

We use Sobel edge detection to detect the edges of objects in

which there’s a mask operator used to find the gradient value of

the image. We should first fill the contours after edge detection,

then do area calculation in each pixel as a unit. Under the

premise that frame background can not be too complicated,

we can take the largest area as an obstacle.

IV. MODELING OF THE HEXAPOD ROBOTIC SYSTEM AND

KINEMATICS DERIVATION

In this section, we should calculate the joint angles of the

robot legs with respect to the positions of the robot, and then

obtain the joint torques from the dynamic equations for the

overall hexapod robot. It is seen from Fig. 9 that the hexapod

robot has 3-dof with 6 limbs, one moving platform, 18 joints,

and 18 links.

Fig. 9. The model of hexapod.

First, we derive the location of each limb in terms of the
location of the moving platform. When the leg raise and the

end-effector is not on the ground, we will treat the leg as
the serial manipulator with 3 links. Fig. 10 shows the link
frame for each link in the leg. When all coordinate frames
are defined, it is possible to derive the kinematic for each
leg of the hexapod. As for limb i, the Denavit Hartengberg
parameters for link 1 (coxa) are αi1 = −90◦, ℓi1 = 25mm,
qi1, and di1 = 109mm, for link 2 (femur) are αi2 = 0◦,
ℓi2 = 57.5mm, qi2, and di2 = 0, and for link 3 (tibia) are
αi3 = 0◦, ℓi3 = 106.5mm, qi3, and di3 = 0. Then, we can
obtain the end-effector of the limb with respect to the joint
angles as follows:

pix = ℓ3cqi1cqi23 + ℓ2cqi1cqi2 + ℓ1cqi1 (5)

piy = ℓ3sqi1cqi23 + ℓ2sqi1cqi2 + ℓ1sqi1 (6)

piz = −ℓ3sqi23 − ℓ2sqi2 + di1 (7)

where pix, piy, and piz are the end-effector parameters in the
coordinate frame for limb i, and cqij = cos qij , sqij = sin qij ,
j = 1, 2, 3, cqi23 = cos(qi2 + qi3), sqi23 = sin(qi2 + qi3).
From (5), (6), and (7), the inverse kinematics can be shown
as follows:

qi1 = arctan

(

piy

pix

)

(8)

qi3 = arccos

(

k2

i1 + k2

i2 − ℓ22 − ℓ23
2ℓ2ℓ3

)

(9)

qi2 = arctan

(

−ki1ℓ3sqi3 + ki2(ℓ2 + ℓ3cqi3)

ki1(ℓ2 + ℓ3cqi3) + ki2ℓ3sqi3

)

(10)

where ki1 = pixcqi1 + piysqi1 − ℓ1 and ki2 = −piz + di1.
Next, the equations between the end-effector of each limb and
the centroid of the moving frame can be obtained as





Dx1

Dy1

Dz1



 =





cφ sφ 0
−sφ cφ 0
0 0 1









Px + ℓp
Py

Pz



 (11)





Dx2

Dy2

Dz2



 =





c(φ+ 60◦) −s(φ+ 60◦) 0
s(φ+ 60◦) c(φ+ 60◦) 0

0 0 1









Px + ℓp
Py

Pz



 (12)





Dx3

Dy3

Dz3



 =





c(φ+ 120◦) −s(φ+ 120◦) 0
s(φ+ 120◦) c(φ+ 120◦) 0

0 0 1









Px + ℓp
Py

Pz



 (13)





Dx4

Dy4

Dz4



 =





c(φ+ 180◦) −s(φ+ 180◦) 0
s(φ+ 180◦) c(φ+ 180◦) 0

0 0 1









Px + ℓp
Py

Pz



 (14)





Dx5

Dy5

Dz5



 =





c(φ− 120◦) −s(φ− 120◦) 0
s(φ− 120◦) c(φ− 120◦) 0

0 0 1









Px + ℓp
Py

Pz



 (15)





Dx6

Dy6

Dz6



 =





c(φ− 60◦) −s(φ− 60◦) 0
s(φ− 60◦) c(φ− 60◦) 0

0 0 1









Px + ℓp
Py

Pz



 (16)

where [Dxi Dyi Dzi]
⊤ is the new end-effector coordinate,

[Px Py Pz]
⊤ is the original end-effector coordinate, and ℓp

is the length between the centroid of the moving frame and

coxa.

V. VELOCITY AND JACOBIAN ANALYSIS

Next, we compute the linear and angular velocities of
each limb in terms of the velocity and angular velocity of
the moving platform by Conventional Jacobian. To simplify
the analysis, the origin of the fixed coordinate frame is
located at the point of the joint coxa. Referring to Fig. 10
for the hexapod robotic system, the input vector is q̇ =
[q̇11 q̇12 q̇13 · · · q̇61 q̇62 q̇63]

⊤
1×18, and the output vector can

5

qi3
qi2

Ai

qi1

zcoxa

Bi

z

x

l1l2

l3
Ci

zp

φ

lp
P

O

Di

Fig. 10. Schematic diagram of the ith limb.

Fig. 11. The workspace of each leg.

be described by the velocity of the centroid P and the angular
velocity of moving platform:

ẋ =

[

vp

ωB

]

(17)

A loop-closure equation for the ith limb can be written as

OP + PDi = OAi +AiBi +BiCi + CiDi (18)

Differentiating equation (18) with respects to time yields

vp + ωB × di = ωi3 × ai + ωi2 × bi + ωi1 × ci (19)

where ai = AiBi, bi = BiCi, ci = CiDi, di = PDi, and ωij

is the angular velocity of the jlink of the ith limb. Expressing
equation (19) in terms of the (xi, yi, zi) coordinate frame, we
have

i
ai = ℓ3





−cqi1c(−qi2 + qi3)
sqi1c(−qi2 + qi3)
s(−qi2 + qi3)



 ,
i
bi = ℓ2





−cqi1cqi2
sqi1cqi2
sqi2



 ,

i
ci=ℓ1





−cqi1
sqi1
0



 ,
i
di=ℓp





−cφi

sφi

0



 ,
i
ωi1=





0
0
q̇i1



 ,
i
ωi2=





0
−q̇i2
0



 ,

i
ωi3 =





0
−q̇i3
0



 ,
i
vp =





vp,xcφi + vp,ysφi

−vp,xsφi + vp,ycφi

vp,z





Substituting the above expressions into equation (19), we
obtain the Jacobian of the hexapod robotic system as

J = [J1 J2 J3] (20)

where

J1 =















(ℓ1 + ℓ2sqi2)cqi1
(ℓ1 + ℓ2sqi2)sqi1

ℓ1 + ℓ2sqi2 − ℓpcφisqi1 + ℓpsφicqi1
−cqi1
−sqi1
0















(21)

J2 =















0
0

ℓpsφisqi1 + ℓpcφicqi1
−cqi1
−sqi1
−1















, J3 =















−ℓpcφi

−ℓpsφi

0
0
0
−1















(22)

VI. DYNAMICS OF THE HEXAPOD SYSTEM

In this section, the dynamics of the hexapod robotic system is
considered. We assume that every link of the robotic system is a
rigid body. Consider the dynamic equation of each limb. Let Di be
the fixed point of a serial manipulator of the hexapod robotic system
when one of limb’s end effector was not on the ground. Assuming
that all link of each limb are homogeneous with relatively small cross
section, the position vector of the center of mass for limb i are given
by

1
pci1=

[

−
ℓ1

2
,−

di

2
, 0

]

⊤

,
2
pci2=

[

−
ℓ2

2
, 0, 0

]

⊤

,
3
pci3=

[

−
ℓ3

2
, 0, 0

]

⊤

(23)
The link inertia matrices about their center of mass and expressed in
their respective link frames as

1
Ii1=

1

12
m1l

2

1





0 0 0
0 1 0
0 0 1



 ,
2
Ii2=

1

12
m2l

2

2





1 0 0
0 1 0
0 0 0



 ,

3
Ii3=

1

12
m3l

2

3





1 0 0
0 1 0
0 0 0



 (24)

The link inertia matrices about their center of mass expressed in the
base frame can be obtained by substituting equations (24) along their
rotation matrices, and they are

Ii1 =
1

12
m1l

2

1





−s2qi1 −sqi1cqi1 0
−sqi1cqi1 c2qi1 0

0 0 1



 ,

Ii2 =
1

12
m2l

2

2





c2qi1 2cqi1sqi1cqi2sqi2 0
2cqi1sqi1cqi2sqi2 s2qi1 0

0 0 1



 ,

Ii3 =
1

12
m3l

2

3





c2qi1 sqi1cqi1 0
sqi1cqi1 s2qi1 0

0 0 1



 (25)

The position vectors of the center of mass of link, i = 1, 2 , 3, with
respect to the various link frames expressed in the base frame are

0
p
∗

ci1 =





1

2
ℓ1cqi1

1

2
ℓ1sqi1
1

2
di1



 ,
0
p
∗

ci2 =





ℓ1cqi1 +
1

2
ℓ2cqi1cqi2

ℓ1sqi1 +
1

2
ℓ2sqi1cqi2

1

2
ℓ2sqi2 + di1



 ,

0
p
∗

ci3 =





ℓ1cqi1 + ℓ2cqi1cqi2 +
1

2
ℓ3cqi1cqi23

ℓ1sqi1 + ℓ2sqi1cqi2 +
1

2
ℓ3sqi1cqi23

di1 + ℓ2sqi2 +
1

2
ℓ3sqi23



 (26)

By substituting the above equations into

Jvi =
[

J
1

vi,J
2

vi, . . . ,J
i
vi, 0, 0, . . . , 0

]

(27)

Jωi =
[

J
1

ωi,J
2

ωi, . . . ,J
i
ωi, 0, 0, . . . , 0

]

(28)

6

the link Jacobian submatrices, Jvi and Jωi, can be obtained as
follows:

Jv1 =





− 1

2
ℓ1sqi1 0 0

1

2
ℓ1cqi1 0 0
0 0 0



 ,Jω1 =





0 0 0
0 0 0
1 0 0



 (29)

Jv2 =





−ℓ1sqi1 −
1

2
ℓ2sqi1cqi2 − 1

2
ℓ2cqi1sqi2 0

ℓ1cqi1 +
1

2
ℓ2cqi1cqi2 − 1

2
ℓ2sqi1sqi2 0

0 1

2
ℓ2cqi2 0



 (30)

Jω2 =





0 0 0
0 1 0
1 0 0



 ,Jω3 =





0 0 0
0 1 1
1 0 0



 (31)

Jv3=





(1, 1) −ℓ2cqi1sqi2 −
1

2
ℓ3cqi1sqi23 − 1

2
ℓ3cqi1sqi23

(2, 1) −ℓ2sqi1sqi2 −
1

2
ℓ3sqi1sqi23 − 1

2
ℓ3sqi1sqi23

0 ℓ2cqi2 +
1

2
ℓ3cqi23

1

2
ℓ3cqi23



(32)

where (1, 1) = −ℓ1sqi1 − ℓ2sqi1cqi2 − 1

2
ℓ3sqi1cqi23 and (2, 1) =

ℓ1cqi1 + ℓ2cqi1cqi2 + 1

2
ℓ3cqi1cqi23. From equations (25)–(32), the

kinetic energy and potential energy equations of the system can
obtained as

K =
1

2
q̇
⊤

[

3
∑

i=1

(

J
⊤

vimiJvi + J
⊤

ωiIiJωi

)

]

q̇ (33)

and

U = −

3
∑

i=1

Ui = −
(

m1g
⊤
pc1 +m2g

⊤
pc2 +m3g

⊤
pc3

)

(34)

respectively. By substituting equations (23)– (32) into (33) and (33),
and acquiring the Lagrange’s equation of motion, we can obtain the
Lagrangian as

(1

3
ℓ
2

1m1 +m2ℓ
2

1 +m2ℓ
2

2(
1

12
+

1

4
c
2
qi2) +m2ℓ1ℓ2cqi2

+m3ℓ
2

1 +m3ℓ
2

2c
2
qi2 +m3ℓ

2

3(
1

12
+

1

4
c
2
qi23) + 2m3ℓ1ℓ2cqi2

+m3ℓ1ℓ3cqi23 +m3ℓ2ℓ3cqi2cqi23
]

q̈1 +
(

−
1

2
m2ℓ

2

2cqi2sqi2

−m2ℓ1ℓ2sqi2 −
1

2
m2ℓ1ℓ2c(2qi1)sqi2 −

1

2
m2ℓ

2

2c(2qi1)sqi2cqi2

−2m3ℓ
2

2cqi2sqi2 −
1

2
m3ℓ

2

3sqi23cqi23 − 2m3ℓ1ℓ2sqi2

−m3ℓ1ℓ3sqi23 −m3ℓ2ℓ3s(qi2 + qi23)
)

q̇1q̇2 −
1

12
m3ℓ

2

3sqi1cqi1q̇
2

2

+
(

−
1

2
m3ℓ

2

3sqi23cqi23 −m3ℓ1ℓ3sqi23 −m3ℓ2ℓ3cqi2sqi23
)

q̇1q̇3

+
(

m3ℓ3s(2qi1)
]

q̇2q̇3 +
(

−
1

12
m3ℓ

2

3sqi1cqi1
)

q̇
2

3 = τi1 (35)

(

m2ℓ1ℓ2sqi1cqi1sqi2 +
1

2
m2ℓ

2

2sqi1cqi1sqi2cqi2
)

q̈1 +
(1

3
m2ℓ

2

2

+m3ℓ
2

2+m3ℓ
2

3(
1

4
+

1

12
s
2
qi1)+m3ℓ2ℓ3cq3

)

q̈2+
1

12
m3ℓ

2

3s
2
qi1q̈3

+
(

m2ℓ1ℓ2c(2qi1)sqi2 −
1

2
m2ℓ

2

2c(2qi1)sqi2cqi2 −
1

4
m2ℓ

2

2cqi2sqi2

−
1

2
m2ℓ1ℓ2sqi2 −m3ℓ

2

2cqi2sqi2 −
1

4
m3ℓ

2

3cqi23sqi23 −m3ℓ1ℓ2sqi2

−
1

2
m3ℓ1ℓ2sqi23−

1

2
m3ℓ2ℓ3s(qi2+qi23)

)

q̇
2

1+
(1

2
m2ℓ1ℓ2sqi1cqi1cqi2

+
1

4
m2ℓ

2

2sqi1cqi1c(2qi2) +
1

12
m3ℓ

2

3sqi1cqi1
)

q̇1q̇2

+
(1

6
m3ℓ

2

3sqi1cqi1
)

q̇1q̇3 +
(

−m3ℓ2ℓ3sq3
)

q̇2q̇3 +
1

2
m2ℓ2cqi2gc

+m3ℓ2cqi2gc +
1

2
m3ℓ3cqi23gc = τi2 (36)

(1

2
m3ℓ2ℓ3cq3 + ℓ

2

3(
1

4
+

1

12
s
2
qi1)

)

q̈2 +
1

2
m3ℓ2ℓ3sq3q̈2

+
(1

6
m3ℓ

2

3sqi1cqi1
)

q̇1q̇2 +
(1

6
m3ℓ

2

3sqi1cqi1
)

q̇1q̇3

+
(1

4
m3ℓ2ℓ3sq3

)

q̇2q̇3 +
1

2
m3ℓ3cqi23gc = τi3 (37)

Finally, calculating the integral dynamic equations of the hexapod
robotic system and by considering the gait generations, we can simply
calculate that for the three legs with the platform.

In order to design the visual servo control for τ =
[τ11 τ12 τ13 · · · τ61 τ62 τ63]

⊤, an adaptive PID-type control law is
given by

τ = kP e(t) + kI

∫

e(t)dt+ kDė(t) (38)

where the tracking error vector e = q − qr =
[e11 e12 e13 · · · e61 e62 e63]

⊤ ∈ R
18, where qr =

[qr11 qr12 qr13 · · · qr61 qr62 qr63]
⊤ ∈ R

18 is the desired input, kP ,
kI , and kD are the proportional, integral, and derivative gains of the
controller, respectively. From (38), the PID-type controller can be
rewritten in a matrix as

τ(ξ|θ) = θ
⊤
ξ(e) (39)

where θ = [kP kI kD]⊤ and ξ = [e1 e2 e3]
⊤ = [e eI eD]⊤ for

which eI =
∫

e(t)dt and eD = ė(t). The PID-type controller (38)
or (39) can uniformly approximate the controller τ∗. Hence, there
exists an optimal gain vector θ∗ such that the approximation error
between τ and τ∗ can be bounded by a prescribed constant δ, i.e.,
τ∗ = τPID(ξ|θ∗) + δ(ξ) where |δ(ξ)| ≤ δ, ∀t.

The fuzzy PID system is characterized by fuzzy IF-THEN rules
and a fuzzy inference engine. The fuzzy inference engine uses the
fuzzy IF-THEN rules to perform a mapping from an input linguistic
vector ξ to an output linguistic variable z(ξ) ∈ R. Since there is no
mature guidance in fuzzy set theory for the determination of the best
shapes for fuzzy sets, it is suggested that different shapes for different
set points need to be studied to obtain an optimum solution for various
ranges of the system states. In addition, the choice of equal-width
intervals entails no loss of generality, particularly in applications.
The sinusoidal membership functions with equal-width intervals of
the means are thus proposed to eliminate the sharp boundary and
defined as

µi1(eij) =







0 if eij < −ǫj
| cos(π

2ǫj
eij)|, if − ǫj ≤ eij ≤ ǫj

0 if eij > ǫj

(40)

µi2(eij) =







1 if eij < −ǫj
| cos(π

2ǫj
eij +

π
2
)|, if − ǫj ≤ eij ≤ ǫj

1 if eij > ǫj

(41)

µi3(eij) =







1 if eij < −ǫj
| cos(π

2ǫj
eij + π)|, if − ǫj ≤ eij ≤ ǫj

1 if eij > ǫj

(42)

for j = 1, 2, 3, where ǫj is variable of the membership functions
corresponding to the fuzzy PID controller’s inputs eij . Since a fuzzy
system can always be approximated by a group of multi-input single-
output (MISO) fuzzy systems, we assume that the fuzzy systems are
MISO systems consists of N = Π3

j=1Nj rules in the following form:

Ri1i2i3 : IF ei1 is G1

i1
AND ei2 is G2

i2
AND ei3 is G3

i3

THEN zij(ξ) is Ci1i2i3 ,
i1 = 1, . . . , N1, i2 = 1, . . . , N2, i3 = 1, . . . , N3

where eij , j = 1, 2, 3, and zij(ξ) denote the linguistic variables as-
sociated with the inputs and output of the fuzzy system, respectively,

G
j
ij

and Ci1i2i3 are linguistic values of linguistic variables ξ and

zij(ξ) in the universes of discourse U ∈ R
3 and R, respectively. Let

U = U1 × U2 × U3, where Ui ∈ R, i = 1, 2, 3. The defuzzifier
maps a fuzzy set in V to a crisp point in V . By using the singleton

7

fuzzifier, product inference engine and the center average defuzzifier,
the inferred outputs of fuzzy system are

zij(ξ) =

N1
∑

i1=1

N2
∑

i2=1

N3
∑

i3=1

∏

3

k=1
µij(eij)

∑N1

il=1

∑N2

i2=1

∑N3

i3=1

∏

3

j=1
µij(eij)

ci1i2i3

=

N1
∑

i1=1

N2
∑

i2=1

N3
∑

i3=1

ai1i2i3(ξ)ci1i2i3 (43)

where ci1i2i3 ’s are the center of the ij th fuzzy set and are the points
in V at which ci1i2i3 achieves their maximum values or equal to 1,
and the following nonlinear mapping

ai1i2i3(ξ) =

∏

3

j=1
µij(eij)

∑N1

i1=1

∑N2

i2=1

∑N3

i3=1

∏

3

k=1
µij(eij)

(44)

Because
∑N1

i1=1

∑N2

i2=1

∑N3

i3=1
ai1i2i3(ξ) = 1, ai1i2i3(ξ) can be

viewed as a weighting function. Hence, these fuzzy inferences can
be described in the form of a linear equivalent neural network:

θ = Ξc (45)

where ci1i2i3 ’s are free (adjustable) parameters and Ξ =
diag{a⊤,a⊤,a⊤} with dimension 3 × (3N) for which a =
[a111 a112 · · · a11N3

· · · aN1N2N3
]⊤ is an N×1 fuzzy basis function

vector and ai1i2i3 ’s are defined in (44), and c = [c1 c2 c3]
⊤ for

which cℓ = [c111ℓ c112ℓ · · · c11···N3ℓ · · · cN1N21ℓ · · · cN1N2N3ℓ]
⊤,

ℓ = 1, 2, 3
Hence, the fuzzy system is used to approximate the controller τ∗ in

(38) by using the update laws derived to tune the adjustable parameter
vector θ. Because the unknown parameters of the controlled plant
represented as the parameter vector θ are absorbed partly into the
fuzzy system, θ can be obtained more accurately by further estimating
the unknown but constant weight vector c according the tracking error
and the coefficients of the fuzzy system. Let θ = Ξĉ be the estimate
of θ∗ due to ĉ and c̃ = ĉ− c∗ the error vector. Then, the certainty
equivalent PID controller of (38) can be re-defined as

τPID(ξ|θ) = ξ
⊤Ξĉ (46)

VII. THE GAIT GENERATION OF HEXAPOD ROBOTIC

SYSTEM

In this section, the generation of the robot gait will be described.
To provide the fastest movement speed, the robot is chosen to focus
on a tripod gait, . The gait to be generated is based on the tripod gait
in two states. State one is when legs 1, 3, and 5 are lifting while legs
2, 4, and 6 are set as the supporting whole platform. State two is the
reverse where legs 2, 4, and 6 are lifting and legs 1, 3, and 5 are
supporting the whole platform. The movement of the robot happens
when the center of gravity is moved from one stable state to another,
as shown in Fig. 12. The gait cycles are illustrated in Fig. 13.

Fig. 12. The movement of the
center of gravity.

Leg 1

Leg 2

Leg 3

Leg 4

Leg 5

Leg 6

Lift state Support state

Tripod Gait

Fig. 13. The schematic diagram
of tripod gait.

VIII. EXPERIMENTAL RESULTS

The control system architecture is shown in Fig. 2. There are three
parts needed to be considered during the experiments:

• As for the robotic hardware, consider the mechanical lim-
itations, such as limited joint angles, weight, and location
configuration of the powers and control boards.

• As for the motion programming, drive the 18 servos for all
links simultaneously and obtain inverse kinematics without any
delays.

• As for the visual programming, capture source images and do
some preliminary processing, and select the desired algorithms
of image recognition.

The algorithm of our motion control is shown in Fig. 14. First,
we do initial settings of the robot, such as the size of platforms, the
length of limbs, and the position of end points. Second, we send the
control commands: offsets of any direction, such as how far we want
the robot to move and how high we want it to rise. Then, according
to a given gait sequence, all angles of the robot joints respectively
are calculated by the inverse kinematics for the left-three legs and
the right-three legs. Finally, the calculated angles will be sent to
servo controller to implement the movements before checking if it’s
satisfied by the conditions.

Robotic Initialization

Controlled Commands

Gait Sequence

LegIndex= 0, 1, 2 LegIndex= 3, 4, 5

BodyIK

LegIK

BodyIK

LegIK

Checking Constraints

Servos Control

Fig. 14. The flowchart of motion control.

In these experiments, the robot goes forward with tripod gait by
visual obstacle avoidance using the algorithm shown in Fig. 17.
First, we capture the images, do some preliminary processing, and
determine the size of the area of the contours. Then, the largest size of
the contour can be seen as the obstacle. To reduce the computational
burden, the image is sampled every three seconds. If there is an
obstacle in front of the robot, the hexapod robot would do obstacle
avoidance; otherwise, the hexapod robot would keep going forward
along the default trajectory. Figs. 18 and 19 show the trajectories
for obstacle avoidance and the pictures of the robot doing obstacle
avoidance, respectively. Fig. 15 is the responses of the obstacle
avoidance path tracking. The red line is default path, and the blue
one is actual path. Fig. 16 shows the trajectory of the center of mass
position error of the motion. From above, we can observe that the
maximum error is in turning state, and the position errors of every 3
seconds are always below 10 mm.

IX. CONCLUSIONS

In this paper, we have accomplished visual servo control design
for a hexapod robot with obstacle avoidance. We make use of the
visual recognition system as feedback to achieve the capabilities of
obstacle avoidance and implement the motion control of the hexapod
robot by using the inverse kinematics. Except the visual servo system,
no other sensors are used. The control structure is composed of three
parts: image recognition, visual servo control systems, and inverse
kinematics for trajectory tracking and obstacle avoidance. First, the

8

−400 −300 −200 −100 0 100 200 300
0

100

200

300

400

500

600

700

800

X (mm)

Y
 (

m
m

)

Default Path

Actual Path

Fig. 15. The responses of obstacle avoidance path tracking.

0 3 6 9 12 15 18 21 24 27 30
0

5

10

15

t (sec)

Position Error

Fig. 16. Trajectory of the center of mass position error.

depth between the obstacle and robot based on the proportion of the
size of the area is constructed. Then, the image processing is used to
identify whether there are any obstacles in the front, and make it as a
feedback to the servo control system. For image recognition, we use
OpenCV to process environment to the grayscale and binarization,
filter noise through erosion and dilation, and then fill all of the
contours using Sobel edge detection, and finally calculate the area
and compare that with each other. Finally, some experiments for
a hexapod robot with obstacle avoidance are used to validate the
performance of the proposed control scheme.

ACKNOWLEDGMENT

Financial support of this research by National Science Council,
Taiwan, under the grant NSC 101-2632-E-036 -001 -MY3 is grate-
fully acknowledged.

REFERENCES

[1] Wilson, D.M. , ”Insect walking,” Annual Rev. of Entomology, vol 11,
pp. 103-122, 1996.

[2] Cruse, H., Kindermann, Th., Schumm, M., Dean, J., Schmitz, J.
”Walknet- a biologically inspired network to control six-legged walk-
ing.” Neural Networks. vol 11, pp. 1435-1447, 1998.

[3] C.-C. Hsu, M.-C. Lu, W.-Y. Wang, and Y.-Y. Lu, ”Three-dimensional
measurement of distant objects based on laser-projected CCD images,”
IET Sci. Meas. Technol., vol. 3, Iss. 3, pp. 197-207, 2009.

[4] B. Williams, P. Smith, and I. Reid, ”Automatic Relocalisation for a
Single-Camera Simultaneous Localisation and Mapping System,” IEEE
International Conference on Robotics and Automation, Roma, Italy, pp.
2784-2790, 2007.

[5] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto, ”A Lidar
and Vision-based Approach for Pedestrian and Vehicle Detection and
Tracking,” Proceedings of IEEE on Intelligent Transportation Systems
Conference, Seattle, USA, pp. 1044-1049, 2007.

[6] K. Tsiakmakis, B.P. Jordi, P.-V. Manel, and T. Laopoulos, ”A Camera
Based Method for the Measurement of Motion Parameters of IPMC
Actuators,” IEEE Trans. on Instrumentation and Measurement, vol. 58,
no. 8, pp. 2626-2633, 2009.

[7] S. Hutchinson, G. D. Hager and P. I. Corke, ”A Tutorial on Visual
Servo Control,” IEEE Trans. on Robotics and Automation, vol. 12, pp.
651-670, 1996.

[8] L. W. Tasi, ”Robot Analysis: The Mechanics of Serial and Parallel
Manipulator.” New York: Wiley, 2005.

Start

Image Processing

Determine

the Size of the Obstacle

Check if the area ≥ 2200 pixels

every 3 seconds

Yes

Keep Going Forward

No

System Initialization

Obstacle Avoidance

with Default Trajectory

Fig. 17. The flowchart of obstacle avoidance.

Obstacle

Fig. 18. The trajectories of obstacle avoidance.

Fig. 19. Exploded view of obstacle avoidance.

