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Abstract—The current work describes an empirical study 
conducted in order to investigate the behavior of an optimization 
method in a fuzzy environment. MAX-MIN Ant System, an 
efficient implementation of a heuristic method is used for solving 
an optimization problem derived from the Traveling Salesman 
Problem (TSP). Several publicly-available symmetric TSP 
instances and their fuzzy variants are tested in order to extract 
some general features. The entry data was adapted by 
introducing a two-dimensional systematic degree of fuzziness, 
proportional with the number of nodes, the dimension of the 
instance and also with the distances between nodes, the scale of 
the instance. The results show that our proposed method can 
handle the data uncertainty, showing good resilience and 
adaptability.  

Keywords—ant system; uncertain data; fuzziness     

I. INTRODUCTION   
Massive data handling, communication and storage are 
features of the current computer processing: in 2010 the 
humans broke for the first time the barrier of 1 zettabyte of 
information and a forecast of 40 zettabytes is made for 2020 
[1]. The new world - facing new data management approaches 
as Big Data or NoSQL, and technological developments as the 
Internet of Things or the cloud storage - challenges us by 
opening new perspectives on data processing, transfer or 
storage, etc. 

The concept of Data Quality is extremely important 
nowadays, when objective characteristics (as inconsistencies, 
inaccuracies, lack of structure, incompatible formats) and also 
subjective traits (like personal norms and desires of the people 
interacting with such a huge amount of data) need to be 
assessed. One of the widely-used definitions of Data Quality 
describes it as the fitness for use: “The quality data meet the 
requirements of its authors, users, and administrators.” [2]. 
This definition makes this concept context-dependant, so 
uncertain and therefore hard to formalize. Data stakeholders 
have separate views on what quality data means; these views 
may overlap, but they are never the same. 

Two strategies are manifested when facing low quality data: 
one is to use supplementary resources (hardware [3], software, 
humans) in order to improve the data quality (for example the 
errors could be detected using hash functions [4] or corrected 
using cyclic redundancy check codes [5]). The other one is to 
use the supplementary resources in order to cope with the low 

quality of data – one such example is the struggle for resilient 
algorithms and data structures, able to tolerate some degree of 
errors in data without losses in correctness, performance and 
storage space [6, 7]. The current paper follows the second 
path, by investigating the stability of an optimization 
algorithm when fed with uncertain, fuzzy data. 

The contribution of this work is two-folded: at first it 
describes the behavior of the chosen solving method from the 
stability point of view and secondly, more important, it shows 
that the natural features as stigmergy or synergy make the bio-
inspired solving method stable and offer the premises of 
smooth recovery and good adaptation. 

The structure of the paper follows. The second section 
describes the problem addressed. Section 3 presents the 
description of the method used to solve this problem, followed 
by the computation results and their analysis from Section 4. 
Several conclusions and research directions are shown in the 
last section of the paper. 

II.  THE PROBLEM 
 Most of the optimization algorithms assume that the input 

data are certain. This is not always the case, as faults could 
appear during the by-hand data input or internet file 
transmissions. Memory errors (bits read differently from how 
they were last written) could manifest due to external causes 
(radiations) or internal causes (permanent damage of a 
memory chip). Moreover, our current life needs efficient 
strategic (long-term) decisions, taken in extremely volatile 
(dynamic) environments. This means that strategies must be 
resilient, producing results with acceptable and predictable 
quality in most of the cases. Temporal Logic [8] and Semantic 
Web [9] are important domains that consider the same ideas. 

Consequently, the results of classic optimization methods 
when uncertain data are fed are biased. When choosing 
between multiple optimization methods, one could be 
interested in their behavior from the stability point of view: 
how stable the method is, when uncertain data is used? This is 
the starting point of our investigation, which drove us to the 
following problem, central in Software Engineering: 

What is the behavior of an optimization method, when the 
quality of the input data modifies? 
In order to address this very general problem, we decided to 

pick a difficult optimization problem, the Traveling Salesman 
Problem (TSP), and to investigate the behavior of a heuristic 
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solving method, a variant of the Ant Colony Optimization 
(ACO) meta-heuristic. The reasons for these choices are 
multiple:  

• TSP is a well-known, easy to formalize, and intensively 
studied NP-hard problem, taking advantage of a broad 
set of solving methods; there are many types of 
publicly-available TSP instances [10, 11]; the interest 
of worldwide researchers is very high, as TSP has 
many generalizations, including generalized TSP and 
generalized vehicle routing problems  [12-14] with 
important financial and social impact.;  

• the ACO class of heuristic solving methods constantly 
provides very good results when applied to classic 
TSP, manifesting fault-tolerance;  

• the software package from [15] is efficient, simple to 
use in command line, with multiple implementations 
(Ant System, Elitist Ant System, MAX-MIN Ant System 
(MMAS), Rank-based version of Ant System, Best-
Worst Ant System, and Ant Colony System [16] are 
available), is designed for multiple types of symmetric 
instances (Euclidian 2D, with explicit distances, etc.), 
and is offered under the GNU General Public License. 

To our knowledge, the first attempt to use fuzzy data as 
input for an Ant-based application is [17]. Other papers on the 
same idea are Ref [18, 19]. Opposed to this approach, there 
are several works that modify the application, by introducing 
the fuzziness in the solving method itself [20, 21], with very 
promising results.  

Basic descriptions of TSP and ACO meta-heuristic are 
given in the Section 3, which also contains the pseudocode of 
the method that alters the TSP instances, by introducing some 
degree of fuzziness in data. 

Our main goal is to observe how a heuristic multi-agent 
application (which fundamentally offers no guarantee on the 
quality of the result, as exact or approximate methods do) 
behaves when deploying its artificial agents in an uncertain 
(fuzzy) environment. This behavior is compared with the 
situation when the same application runs in classic way (using 
certain data). The details of our repeated runs and the specific 
instances we chose from [10] and consequently transformed for 
our investigation needs are also presented in next section. 

III. THE EMPIRICAL STUDY-METHOD 
 In order to illustrate the behavior of an optimization 

procedure when two dimensions of the data quality are 
cumulatively investigated, we have chosen the Traveling 
Salesman Problem (TSP) that basically seeks for the 
Hamiltonian tour with minimum length connecting all the 
cities on a map [22]. TSP is a difficult problem, as there are 
very low chances that a polynomial time solving algorithm 
will ever be found (it is shown that TSP belongs to the NP-
Hard class of combinatorial optimization problems [23]).  

The TSP is important besides its academic concern. As it 
has many applications in industry (drilling problems), logistics 
(efficient asset deployment), transportation (vehicle routing), 
and communications (package routing), it affects the entire 

society (for example, by lowering the need for transportation 
fuels), and receives attention from managers and decision-
makers. The real life situations faced by firms rarely are 
perfectly and totally known – so the managers are forced to 
operate in imperfect knowledge, taking decisions that could 
have great financial and social impact. This empirical study 
describes the behavior of an optimization method for 
approaching TSP with imperfect knowledge features, so the 
decisional factors (human or automatic procedures) could 
wisely choose the appropriate solving method for the specific 
situation they face. 

As exact methods become impractical for solving large TSP 
instances, we focus on a heuristic method, inspired by the way 
a colony of ants manages to find the shortest path from nest to 
food. Although the ant is an almost blind insect, which does 
not directly communicate with peers (instead, they deposit on 
the ground a specific chemical substance called pheromone, 
which is used as a support for indirect communication), the 
colony (seen like a whole) quickly and repeatedly succeeds in 
minimizing the travel length.  

Based on the characteristics which the real ants exhibit, the 
Ant Colony Optimization framework describes a collection of 
artificial agents that cooperate and indirectly communicate in 
order to solve problems represented by graphs. Even most of 
the agents do not find very good paths, the few that do signal 
their successful attempt by enforcing the trace of artificial 
pheromone they lay when constructing their tour. The 
following agents most likely prefer to use the edges with high 
amount of pheromone, and so they more likely use the shorter 
paths, exploiting the previous knowledge [16]. 

TSP was the first problem tackled with ACO methods. 
Today, ACO metaheuristic is successfully applied to static and 
dynamic problems in scheduling, transportation, assignment, 
routing, folding, classification, data mining, communications, 
image processing  etc. [24-28]. 

With such a broad range of interest raised by TSP, the 
researchers designed and coded several successful TSP 
solvers. Concorde [29] is the most-known exact solver, used 
for computing the optima for all the instances from [10] (free 
for academia use). LKH solver [30] is a state-of-the-art 
implementation of the heuristic described in [31]. Google 
Maps API developers could base their applications for route 
planning on (under a MIT license) the code from [32]. The 
current paper uses the ACOTSP implementation [15] created 
and maintained by the author of MAX-MIN Ant System, a very 
successful ACO method [33]. 

Fuzzy numbers generalize the numbers, expressing the 
possibility (the vagueness), as random values express the 
probability. The fuzzy number is a set of possible values, each 
with its own weight between 0 and 1 [34]. Like classic 
numbers, fuzzy numbers support algebraic operators, and can 
easily be handled in applications as data structures. If the 
result of an application designed for fuzzy numbers need to be 
compared with the result offered by an application handling 
numbers, then a defuzzification final step (providing a 
particular number) is needed for the first application. 
Conversely, as is used here, one could choose to model the 
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fuzzy data by repeating the executions of a classic application 
and different values of entry data, and taking a statistic of the 
set of results.  

The fuzziness is introduced here by modeling the real life 
situations, when local events (like bad weather, road closing, 
broken car) could affect the travel cost (measured in time, 
length, or money). Instead of using a single value for each 
edge length, we executed the same application several times, 
with entry data slightly modified: some selected nodes glided 
in their neighborhood, in order to explore the impact of other 
possible values for the distances connecting those nodes with 
all the other nodes. 

As entry data 32 Euclidean 2D instances from [10] are used, 
with number of nodes between 51 and 439. The basic entries 
were modified in order to introduce some degree of fuzziness, 
affecting each instance in the same way. After several 
attempts we have chosen an altering function that takes as 
input a TSP instance inst from [10] and two parameters 
denoted by a and b and returns a modified instance new-inst as 
follows: new-inst is an Euclidean 2D instance, with the same 
number of nodes as inst, but some nodes having different 
positions on the map.  

Two parameters were used for globally expressing the 
fuzziness of an instance (both a and b store positive integer 
values, less than 100):  

• the dimension regularity: how many nodes change their 
position with the same impact irrespective of the 
number of nodes; randomly a% of nodes move; 

• the scale regularity: how far these nodes are moved for 
maintaining the same impact irrespective of the distance 
from one selected node to the nearest; each node i is 
randomly relocated in a disc with the center in the old 
position of i and the radius the product between b% and 
the smallest distance from i to other possible nodes. We 
used the same idea as in [35].  

The pseudocode for the function Alter introducing the 
fuzziness in data is presented next.  

Function Alter (instance inst, int a, int b) 
n = nodes(inst) 
k = n * a/100 
repeat k times 

     randomly choose an unselected node i  
     from inst 

x is the minimum of the distances from i 
to any other nodes from inst 
y = x * b/100 
 randomly choose a new position for i   
 within the disc with center i, radius y  

end-repeat 
new-inst = inst with new positions for all k 
nodes previously chosen 

 return new-inst 

The design of our experiment is presented in Figure 1. It 
starts with inst, one TSP classic instance. The procedure Alter 
already described transforms it in new-inst, a new “close” 
instance, depending on inst, a and b. The original instance and 

the new, modified ones are independently fed into the classic 
MMAS, and the results are statistically analyzed. 

 Fig. 1. Experiment design 

IV. COMPUTATIONAL RESULTS 

As specified in the previous Section, our empirical study 
uses the ACOTSP package from [15], executed both on the 
basic instances from [10] and on the instances returned by the 
procedure Alter, with }25,10{∈a and }50,25{∈b . The results 
of these tests are further illustrated in Table 1. For each TSP 
instances of  first column, five runs are made using the 
original dataset [10] and four modified datasets, using a close-
distance move (b = 25%)  or a medium-distance move (b = 
50%) performed on few nodes (a = 10%)  or on a medium 
number of nodes (a = 25%). 

Each time the MAX-MIN Ant System [33] used ten artificial 
ants, with a time limit of sixty seconds for any iteration. The 
distinct features of MMAS are: 

• only the ant that found the (historical) best tour is 
allowed to deposit pheromone; 

• the amount of pheromone on each edge is always 
lower- and upper-bounded; 

• at the beginning, all the edges receive the maximum 
pheromone quantity [33]. 

The MMAS implementation [15] also uses 3-opt, a 
powerful local search procedure, that repeatedly tries to lower 
the length of a tour by deleting 3 edges and replacing them (if 
this lowers the total length) with the best re-connection from 
all the possible ones [31].  

As we intended to collectively address the behavior of the 
considered Euclidean-2D TSP instances [10] the following 
data were collected: the best tour found in ten iterations, the 
average of the best tours, the average step that finds the best 
value each time, the standard deviation of the best values 
found and the standard deviation of the iterations that find the 
best values, taken from ten iterations.  Based on these data, the 
standard deviation between the best value found for each 
specific pair of values of parameters a and b, and the optimum 
known for the classic variant of each instance were computed. 
The last four columns of Table 1 describe the deviation from 
optimum when a data uncertainty is introduced – one column 
for each possible combination when }25,10{∈a and 

}50,25{∈b .  
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As a global behavior, the average value for each column 
was computed on the last line. The small difference between 
the average values for 10=a  (columns 2 and 3 - Table 1) 
show the stability of the application: few perturbations have 
almost the same impact, even if their scale differs. As the 
average value from column 3 is less than the corresponding 
one from column 4, we can say that is more desirable from the 
stability point of view to have few large data uncertainties, 
instead of having more small ones. The very large last value 
from Table 1 entitles us to conjecture that the two dimensions 
of inconsistency do not linearly compose. The effect of 
combining both high levels of inconsistencies is dramatic: the 
average deviation more than doubles when only a changes and 
b is high, and almost doubles when only b changes and a is 
high. This means that when a certain threshold is exceeded, 
the system begins to express unstable behavior. 

TABLE 1 STANDARD DEVIATION BETWEEN  BEST VALUES AND OPTIMAL  

Instances StdDev(%) (a, b) 
(10, 25) (10, 50) (25,25) (25, 50) 

ch130 0.0283 0.0849 0.2758 0.8061 
ch150 0.1344 0.6223 0.0849 0.5303 
eil51 0.0424 0.1273 0.0141 0.0566 
eil76 0.0212 0.0849 0.0071 0.0636 

eil101 0.0071 0.0283 0.0495 0.0424 
gil262 0.0778 0.1344 0.0424 0.0495 

kroA100 0.5091 2.7506 0.7212 0.8627 
kroB100 0.2121 0.2687 0.0778 1.9516 
kroC100 0.6859 1.0819 0.6081 0.6152 
kroD100 0.2899 0.2758 0.9829 1.9870 
kroE100 0.5445 0.0849 1.3294 0.5515 
kroA150 1.1809 0.1768 0.8768 0.2616 
kroB150 0.0849 0.2828 0.4313 0.8273 
kroA200 0.3182 0.6647 5.5720 2.5032 
kroB200 0.0000 0.0000 0.8061 1.2587 
lin105 0.4101 0.3818 0.1626 0.8202 
lin318 1.0182 0.6576 1.9304 0.7071 
pr76 1.4708 1.5768 1.4779 3.9739 

pr107 0.3465 0.6010 0.7566 0.3677 
pr124 0.2616 1.5274 0.5020 2.7931 
pr136 1.9304 4.3275 2.4607 16.2635 
pr144 0.6010 0.4596 0.8485 0.5303 
pr152 2.2132 0.1980 1.7041 1.0889 
pr226 2.0930 0.8273 0.2828 4.8154 
pr264 0.8485 0.7142 0.9263 0.0990 
pr299 0.4738 0.5869 0.3960 1.3364 
pr439 2.4112 1.8243 0.0000 6.8165 
rd100 0.1344 0.2687 0.3111 0.1061 
rd400 0.3536 0.2616 0.4172 0.5162 
st70 0.0212 0.0071 0.0424 0.0283 

ts225 1.3435 2.5244 5.6922 3.0406 
tsp225 0.0424 0.0141 0.1061 0.1344 

Average 0.6284 0.7321 0.9343 1.7439 
 
   

 
 

 

 

Fig. 2. Standard deviations: instances with dimensions between 50 and 100 

 

 

 

 

 

Fig. 3. Standard deviations: instances with dimensions between 100 and 200. 

 
 
 
 
 
 
 
 
 
Fig. 4. Standard deviations: instances with dimensions greater than 200. 

At a global level too, we notice that 115 from the total 
number of the transformed instances ( 128432 =⋅ ) were 
solved each time to the optimum, showing the method stability 
as it each time (from 10 iterations) finds the optimum in 90% 
of the cases.  

Figures 2-4 illustrate the results based on the instance 
dimensions. For Figure 2, with the number of nodes between 
51 and 100, the uncertainty can be considered at a low level 
and persistent. Figure 3 presents the instances with the number 
of nodes between 101 and 200, and exhibits a low uncertainty, 
clustered for the group kro and pr; the instance pr136 has an 
extreme result, and it was excluded from the group. The large 
instances with more than 200 nodes, shown in Figure 4 have a 
systematic higher uncertainty, mainly the largest instance 
pr439 and ts225, specially designed to be difficult.The next 
step of the investigation was to consider the variation on one 
dimension of uncertainty: the standard deviations between the 
results when one parameter has a constant value, and the 
optimum value for the classic variant were computed (Table 
2). For example, the column 2 holds the standard deviation 
between the results when 10=a and }50,25{∈b and the 
optimum.  

The last line represents again the average values for each 
column. Its values show that, at a global level, the sensitivity 
along the first dimension of the uncertainty (how many nodes 
do not have certain data) is higher than the sensitivity along 
the second dimension (how big the uncertainty is). This 
conclusion came up as the interval between the first two 
values (meaning that a can vary) is bigger than the interval 
between the last two ones (when only b can vary). So, if the 
programmer can lower the data uncertainty, then it is better to 
spend computing resources on totally eliminating some 
uncertainties, instead of lowering their average scale (of 
course, at an affordable trade-off). But, when uncertainty 
becomes low, it is better to concentrate on its scale, as the last 
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value from column 4 is higher than that from column 2. 
Again, there is a threshold that can orient the programmer’s 
effort, and so the application can perform better with the same 
computing costs.  

TABLE 2 STANDARD DEVIATION WITH A CONSTANT PARAMETER. 

Instances StdDev(%) (a, b) 
(10, 25) (10, 50) (25,25) (25, 50) 

ch130 0.0611 0.5794 0.2376 0.6954 
ch150 0.4631 0.4029 0.1563 0.8159 
eil51 0.1249 0.0416 0.0416 0.0902 
eil76 0.0624 0.0493 0.0153 0.0624 

eil101 0.0265 0.0379 0.0379 0.0503 
gil262 0.0954 0.0651 0.0551 0.1345 

kroA100 2.0696 0.6543 0.5242 1.9895 
kroB100 0.2003 1.6262 0.2122 1.4959 
kroC100 0.7741 0.4994 0.9156 1.2150 
kroD100 0.4000 1.4050 0.7142 1.7459 
kroE100 0.4143 1.3674 1.3632 0.4200 
kroA150 0.9007 0.8433 0.8671 0.3119 
kroB150 0.2053 0.9046 0.3232 0.8159 
kroA200 0.7092 3.9468 4.6848 1.8337 
kroB200 0.0000 0.9016 0.6582 1.0277 
lin105 0.3239 0.6142 0.2921 0.5805 
lin318 0.7301 1.3812 1.3657 0.5582 
pr76 1.2464 3.9874 2.0850 2.8299 

pr107 0.4267 0.8107 0.5356 0.6916 
pr124 1.3665 2.5107 0.3551 1.9779 
pr136 3.0659 12.3972 1.8315 11.9121 
pr144 0.7522 0.9836 1.0300 0.7006 
pr152 1.7319 1.2204 2.7778 0.9800 
pr226 1.4908 3.8215 1.6060 3.6413 
pr264 0.6450 0.7998 0.7267 0.6275 
pr299 0.7514 1.2838 0.3593 0.9473 
pr439 3.0046 5.5657 1.9688 6.4409 
rd100 0.2902 0.2237 0.2207 0.2732 
rd400 0.4366 0.3874 0.5456 0.3650 
st70 0.0208 0.0306 0.0300 0.0265 
ts225 1.7862 4.0281 4.2078 2.3010 

tsp225 0.0306 0.1002 0.1082 0.1159 
Average 0.7690 1.6710 0.9641 1.4898 

V. CONCLUSIONS AND FUTURE WORK 
The main goal of our work is to measure the bias (the 

average distance from the optimum in the classic way) and the 
variance (the variation of these distances when the application 
runs for ten times) when two types of uncertainty are 
considered for several Euclidean TSP instances, with number 
of nodes ranging from 51 to 439 and with different scales. 
Two parameters for implementing the data uncertainty were 
used to globally study such diverse instances.  

The computational results show a general resilience and 
adaptability of the ant-based solving method. We also 
observed that is more desirable to have few large 
uncertainties, instead of having many small uncertainties, and 
that the two dimension of uncertainty do not linearly compose. 

At each dimension of uncertainty level, our experiment 
shows that it is desirable to totally eliminate some 
uncertainties, instead of lowering their average scale.  

When the resilience of an application tackling uncertain 
data is apriori known, the computing resources can be 
intelligently used. The paper describes such a behavior and the 

decision-makers can use it when choosing between several 
optimization methods. 

As future investigation, we plan to add the dimension of 
time to data uncertainty and to study the behavior of ant-based 
application when the data fuzziness goes dynamic. Also further 
investigations on other meta-heuristics including bio-inspired 
computing techniques will be developed.  
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