
On the Resilience of an Ant-based System in Fuzzy
Environments. An Empirical Study

Gloria Cerasela Crişan

Faculty of Sciences
 Vasile Alecsandri University

Bacău, Romania
ceraselacrisan @ ub.ro

Camelia-M. Pintea, Petrică C. Pop
Faculty of Sciences

Technical University Cluj-Napoca
Baia-Mare, Romania

cmpintea @ yahoo.com, petrica.pop @ ubm.ro

Abstract—The current work describes an empirical study
conducted in order to investigate the behavior of an optimization
method in a fuzzy environment. MAX-MIN Ant System, an
efficient implementation of a heuristic method is used for solving
an optimization problem derived from the Traveling Salesman
Problem (TSP). Several publicly-available symmetric TSP
instances and their fuzzy variants are tested in order to extract
some general features. The entry data was adapted by
introducing a two-dimensional systematic degree of fuzziness,
proportional with the number of nodes, the dimension of the
instance and also with the distances between nodes, the scale of
the instance. The results show that our proposed method can
handle the data uncertainty, showing good resilience and
adaptability.

Keywords—ant system; uncertain data; fuzziness

I. INTRODUCTION
Massive data handling, communication and storage are
features of the current computer processing: in 2010 the
humans broke for the first time the barrier of 1 zettabyte of
information and a forecast of 40 zettabytes is made for 2020
[1]. The new world - facing new data management approaches
as Big Data or NoSQL, and technological developments as the
Internet of Things or the cloud storage - challenges us by
opening new perspectives on data processing, transfer or
storage, etc.

The concept of Data Quality is extremely important
nowadays, when objective characteristics (as inconsistencies,
inaccuracies, lack of structure, incompatible formats) and also
subjective traits (like personal norms and desires of the people
interacting with such a huge amount of data) need to be
assessed. One of the widely-used definitions of Data Quality
describes it as the fitness for use: “The quality data meet the
requirements of its authors, users, and administrators.” [2].
This definition makes this concept context-dependant, so
uncertain and therefore hard to formalize. Data stakeholders
have separate views on what quality data means; these views
may overlap, but they are never the same.

Two strategies are manifested when facing low quality data:
one is to use supplementary resources (hardware [3], software,
humans) in order to improve the data quality (for example the
errors could be detected using hash functions [4] or corrected
using cyclic redundancy check codes [5]). The other one is to
use the supplementary resources in order to cope with the low

quality of data – one such example is the struggle for resilient
algorithms and data structures, able to tolerate some degree of
errors in data without losses in correctness, performance and
storage space [6, 7]. The current paper follows the second
path, by investigating the stability of an optimization
algorithm when fed with uncertain, fuzzy data.

The contribution of this work is two-folded: at first it
describes the behavior of the chosen solving method from the
stability point of view and secondly, more important, it shows
that the natural features as stigmergy or synergy make the bio-
inspired solving method stable and offer the premises of
smooth recovery and good adaptation.

The structure of the paper follows. The second section
describes the problem addressed. Section 3 presents the
description of the method used to solve this problem, followed
by the computation results and their analysis from Section 4.
Several conclusions and research directions are shown in the
last section of the paper.

II. THE PROBLEM
 Most of the optimization algorithms assume that the input

data are certain. This is not always the case, as faults could
appear during the by-hand data input or internet file
transmissions. Memory errors (bits read differently from how
they were last written) could manifest due to external causes
(radiations) or internal causes (permanent damage of a
memory chip). Moreover, our current life needs efficient
strategic (long-term) decisions, taken in extremely volatile
(dynamic) environments. This means that strategies must be
resilient, producing results with acceptable and predictable
quality in most of the cases. Temporal Logic [8] and Semantic
Web [9] are important domains that consider the same ideas.

Consequently, the results of classic optimization methods
when uncertain data are fed are biased. When choosing
between multiple optimization methods, one could be
interested in their behavior from the stability point of view:
how stable the method is, when uncertain data is used? This is
the starting point of our investigation, which drove us to the
following problem, central in Software Engineering:

What is the behavior of an optimization method, when the
quality of the input data modifies?
In order to address this very general problem, we decided to

pick a difficult optimization problem, the Traveling Salesman
Problem (TSP), and to investigate the behavior of a heuristic

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2588

solving method, a variant of the Ant Colony Optimization
(ACO) meta-heuristic. The reasons for these choices are
multiple:

• TSP is a well-known, easy to formalize, and intensively
studied NP-hard problem, taking advantage of a broad
set of solving methods; there are many types of
publicly-available TSP instances [10, 11]; the interest
of worldwide researchers is very high, as TSP has
many generalizations, including generalized TSP and
generalized vehicle routing problems [12-14] with
important financial and social impact.;

• the ACO class of heuristic solving methods constantly
provides very good results when applied to classic
TSP, manifesting fault-tolerance;

• the software package from [15] is efficient, simple to
use in command line, with multiple implementations
(Ant System, Elitist Ant System, MAX-MIN Ant System
(MMAS), Rank-based version of Ant System, Best-
Worst Ant System, and Ant Colony System [16] are
available), is designed for multiple types of symmetric
instances (Euclidian 2D, with explicit distances, etc.),
and is offered under the GNU General Public License.

To our knowledge, the first attempt to use fuzzy data as
input for an Ant-based application is [17]. Other papers on the
same idea are Ref [18, 19]. Opposed to this approach, there
are several works that modify the application, by introducing
the fuzziness in the solving method itself [20, 21], with very
promising results.

Basic descriptions of TSP and ACO meta-heuristic are
given in the Section 3, which also contains the pseudocode of
the method that alters the TSP instances, by introducing some
degree of fuzziness in data.

Our main goal is to observe how a heuristic multi-agent
application (which fundamentally offers no guarantee on the
quality of the result, as exact or approximate methods do)
behaves when deploying its artificial agents in an uncertain
(fuzzy) environment. This behavior is compared with the
situation when the same application runs in classic way (using
certain data). The details of our repeated runs and the specific
instances we chose from [10] and consequently transformed for
our investigation needs are also presented in next section.

III. THE EMPIRICAL STUDY-METHOD
 In order to illustrate the behavior of an optimization

procedure when two dimensions of the data quality are
cumulatively investigated, we have chosen the Traveling
Salesman Problem (TSP) that basically seeks for the
Hamiltonian tour with minimum length connecting all the
cities on a map [22]. TSP is a difficult problem, as there are
very low chances that a polynomial time solving algorithm
will ever be found (it is shown that TSP belongs to the NP-
Hard class of combinatorial optimization problems [23]).

The TSP is important besides its academic concern. As it
has many applications in industry (drilling problems), logistics
(efficient asset deployment), transportation (vehicle routing),
and communications (package routing), it affects the entire

society (for example, by lowering the need for transportation
fuels), and receives attention from managers and decision-
makers. The real life situations faced by firms rarely are
perfectly and totally known – so the managers are forced to
operate in imperfect knowledge, taking decisions that could
have great financial and social impact. This empirical study
describes the behavior of an optimization method for
approaching TSP with imperfect knowledge features, so the
decisional factors (human or automatic procedures) could
wisely choose the appropriate solving method for the specific
situation they face.

As exact methods become impractical for solving large TSP
instances, we focus on a heuristic method, inspired by the way
a colony of ants manages to find the shortest path from nest to
food. Although the ant is an almost blind insect, which does
not directly communicate with peers (instead, they deposit on
the ground a specific chemical substance called pheromone,
which is used as a support for indirect communication), the
colony (seen like a whole) quickly and repeatedly succeeds in
minimizing the travel length.

Based on the characteristics which the real ants exhibit, the
Ant Colony Optimization framework describes a collection of
artificial agents that cooperate and indirectly communicate in
order to solve problems represented by graphs. Even most of
the agents do not find very good paths, the few that do signal
their successful attempt by enforcing the trace of artificial
pheromone they lay when constructing their tour. The
following agents most likely prefer to use the edges with high
amount of pheromone, and so they more likely use the shorter
paths, exploiting the previous knowledge [16].

TSP was the first problem tackled with ACO methods.
Today, ACO metaheuristic is successfully applied to static and
dynamic problems in scheduling, transportation, assignment,
routing, folding, classification, data mining, communications,
image processing etc. [24-28].

With such a broad range of interest raised by TSP, the
researchers designed and coded several successful TSP
solvers. Concorde [29] is the most-known exact solver, used
for computing the optima for all the instances from [10] (free
for academia use). LKH solver [30] is a state-of-the-art
implementation of the heuristic described in [31]. Google
Maps API developers could base their applications for route
planning on (under a MIT license) the code from [32]. The
current paper uses the ACOTSP implementation [15] created
and maintained by the author of MAX-MIN Ant System, a very
successful ACO method [33].

Fuzzy numbers generalize the numbers, expressing the
possibility (the vagueness), as random values express the
probability. The fuzzy number is a set of possible values, each
with its own weight between 0 and 1 [34]. Like classic
numbers, fuzzy numbers support algebraic operators, and can
easily be handled in applications as data structures. If the
result of an application designed for fuzzy numbers need to be
compared with the result offered by an application handling
numbers, then a defuzzification final step (providing a
particular number) is needed for the first application.
Conversely, as is used here, one could choose to model the

2589

fuzzy data by repeating the executions of a classic application
and different values of entry data, and taking a statistic of the
set of results.

The fuzziness is introduced here by modeling the real life
situations, when local events (like bad weather, road closing,
broken car) could affect the travel cost (measured in time,
length, or money). Instead of using a single value for each
edge length, we executed the same application several times,
with entry data slightly modified: some selected nodes glided
in their neighborhood, in order to explore the impact of other
possible values for the distances connecting those nodes with
all the other nodes.

As entry data 32 Euclidean 2D instances from [10] are used,
with number of nodes between 51 and 439. The basic entries
were modified in order to introduce some degree of fuzziness,
affecting each instance in the same way. After several
attempts we have chosen an altering function that takes as
input a TSP instance inst from [10] and two parameters
denoted by a and b and returns a modified instance new-inst as
follows: new-inst is an Euclidean 2D instance, with the same
number of nodes as inst, but some nodes having different
positions on the map.

Two parameters were used for globally expressing the
fuzziness of an instance (both a and b store positive integer
values, less than 100):

• the dimension regularity: how many nodes change their
position with the same impact irrespective of the
number of nodes; randomly a% of nodes move;

• the scale regularity: how far these nodes are moved for
maintaining the same impact irrespective of the distance
from one selected node to the nearest; each node i is
randomly relocated in a disc with the center in the old
position of i and the radius the product between b% and
the smallest distance from i to other possible nodes. We
used the same idea as in [35].

The pseudocode for the function Alter introducing the
fuzziness in data is presented next.

Function Alter (instance inst, int a, int b)
n = nodes(inst)
k = n * a/100
repeat k times

 randomly choose an unselected node i
 from inst

x is the minimum of the distances from i
to any other nodes from inst
y = x * b/100
 randomly choose a new position for i
 within the disc with center i, radius y

end-repeat
new-inst = inst with new positions for all k
nodes previously chosen

 return new-inst

The design of our experiment is presented in Figure 1. It
starts with inst, one TSP classic instance. The procedure Alter
already described transforms it in new-inst, a new “close”
instance, depending on inst, a and b. The original instance and

the new, modified ones are independently fed into the classic
MMAS, and the results are statistically analyzed.

 Fig. 1. Experiment design

IV. COMPUTATIONAL RESULTS

As specified in the previous Section, our empirical study
uses the ACOTSP package from [15], executed both on the
basic instances from [10] and on the instances returned by the
procedure Alter, with }25,10{∈a and }50,25{∈b . The results
of these tests are further illustrated in Table 1. For each TSP
instances of first column, five runs are made using the
original dataset [10] and four modified datasets, using a close-
distance move (b = 25%) or a medium-distance move (b =
50%) performed on few nodes (a = 10%) or on a medium
number of nodes (a = 25%).

Each time the MAX-MIN Ant System [33] used ten artificial
ants, with a time limit of sixty seconds for any iteration. The
distinct features of MMAS are:

• only the ant that found the (historical) best tour is
allowed to deposit pheromone;

• the amount of pheromone on each edge is always
lower- and upper-bounded;

• at the beginning, all the edges receive the maximum
pheromone quantity [33].

The MMAS implementation [15] also uses 3-opt, a
powerful local search procedure, that repeatedly tries to lower
the length of a tour by deleting 3 edges and replacing them (if
this lowers the total length) with the best re-connection from
all the possible ones [31].

As we intended to collectively address the behavior of the
considered Euclidean-2D TSP instances [10] the following
data were collected: the best tour found in ten iterations, the
average of the best tours, the average step that finds the best
value each time, the standard deviation of the best values
found and the standard deviation of the iterations that find the
best values, taken from ten iterations. Based on these data, the
standard deviation between the best value found for each
specific pair of values of parameters a and b, and the optimum
known for the classic variant of each instance were computed.
The last four columns of Table 1 describe the deviation from
optimum when a data uncertainty is introduced – one column
for each possible combination when }25,10{∈a and

}50,25{∈b .

2590

As a global behavior, the average value for each column
was computed on the last line. The small difference between
the average values for 10=a (columns 2 and 3 - Table 1)
show the stability of the application: few perturbations have
almost the same impact, even if their scale differs. As the
average value from column 3 is less than the corresponding
one from column 4, we can say that is more desirable from the
stability point of view to have few large data uncertainties,
instead of having more small ones. The very large last value
from Table 1 entitles us to conjecture that the two dimensions
of inconsistency do not linearly compose. The effect of
combining both high levels of inconsistencies is dramatic: the
average deviation more than doubles when only a changes and
b is high, and almost doubles when only b changes and a is
high. This means that when a certain threshold is exceeded,
the system begins to express unstable behavior.

TABLE 1 STANDARD DEVIATION BETWEEN BEST VALUES AND OPTIMAL

Instances StdDev(%) (a, b)
(10, 25) (10, 50) (25,25) (25, 50)

ch130 0.0283 0.0849 0.2758 0.8061
ch150 0.1344 0.6223 0.0849 0.5303
eil51 0.0424 0.1273 0.0141 0.0566
eil76 0.0212 0.0849 0.0071 0.0636

eil101 0.0071 0.0283 0.0495 0.0424
gil262 0.0778 0.1344 0.0424 0.0495

kroA100 0.5091 2.7506 0.7212 0.8627
kroB100 0.2121 0.2687 0.0778 1.9516
kroC100 0.6859 1.0819 0.6081 0.6152
kroD100 0.2899 0.2758 0.9829 1.9870
kroE100 0.5445 0.0849 1.3294 0.5515
kroA150 1.1809 0.1768 0.8768 0.2616
kroB150 0.0849 0.2828 0.4313 0.8273
kroA200 0.3182 0.6647 5.5720 2.5032
kroB200 0.0000 0.0000 0.8061 1.2587
lin105 0.4101 0.3818 0.1626 0.8202
lin318 1.0182 0.6576 1.9304 0.7071
pr76 1.4708 1.5768 1.4779 3.9739

pr107 0.3465 0.6010 0.7566 0.3677
pr124 0.2616 1.5274 0.5020 2.7931
pr136 1.9304 4.3275 2.4607 16.2635
pr144 0.6010 0.4596 0.8485 0.5303
pr152 2.2132 0.1980 1.7041 1.0889
pr226 2.0930 0.8273 0.2828 4.8154
pr264 0.8485 0.7142 0.9263 0.0990
pr299 0.4738 0.5869 0.3960 1.3364
pr439 2.4112 1.8243 0.0000 6.8165
rd100 0.1344 0.2687 0.3111 0.1061
rd400 0.3536 0.2616 0.4172 0.5162
st70 0.0212 0.0071 0.0424 0.0283

ts225 1.3435 2.5244 5.6922 3.0406
tsp225 0.0424 0.0141 0.1061 0.1344

Average 0.6284 0.7321 0.9343 1.7439

Fig. 2. Standard deviations: instances with dimensions between 50 and 100

Fig. 3. Standard deviations: instances with dimensions between 100 and 200.

Fig. 4. Standard deviations: instances with dimensions greater than 200.

At a global level too, we notice that 115 from the total
number of the transformed instances (128432 =⋅) were
solved each time to the optimum, showing the method stability
as it each time (from 10 iterations) finds the optimum in 90%
of the cases.

Figures 2-4 illustrate the results based on the instance
dimensions. For Figure 2, with the number of nodes between
51 and 100, the uncertainty can be considered at a low level
and persistent. Figure 3 presents the instances with the number
of nodes between 101 and 200, and exhibits a low uncertainty,
clustered for the group kro and pr; the instance pr136 has an
extreme result, and it was excluded from the group. The large
instances with more than 200 nodes, shown in Figure 4 have a
systematic higher uncertainty, mainly the largest instance
pr439 and ts225, specially designed to be difficult.The next
step of the investigation was to consider the variation on one
dimension of uncertainty: the standard deviations between the
results when one parameter has a constant value, and the
optimum value for the classic variant were computed (Table
2). For example, the column 2 holds the standard deviation
between the results when 10=a and }50,25{∈b and the
optimum.

The last line represents again the average values for each
column. Its values show that, at a global level, the sensitivity
along the first dimension of the uncertainty (how many nodes
do not have certain data) is higher than the sensitivity along
the second dimension (how big the uncertainty is). This
conclusion came up as the interval between the first two
values (meaning that a can vary) is bigger than the interval
between the last two ones (when only b can vary). So, if the
programmer can lower the data uncertainty, then it is better to
spend computing resources on totally eliminating some
uncertainties, instead of lowering their average scale (of
course, at an affordable trade-off). But, when uncertainty
becomes low, it is better to concentrate on its scale, as the last

2591

value from column 4 is higher than that from column 2.
Again, there is a threshold that can orient the programmer’s
effort, and so the application can perform better with the same
computing costs.

TABLE 2 STANDARD DEVIATION WITH A CONSTANT PARAMETER.

Instances StdDev(%) (a, b)
(10, 25) (10, 50) (25,25) (25, 50)

ch130 0.0611 0.5794 0.2376 0.6954
ch150 0.4631 0.4029 0.1563 0.8159
eil51 0.1249 0.0416 0.0416 0.0902
eil76 0.0624 0.0493 0.0153 0.0624

eil101 0.0265 0.0379 0.0379 0.0503
gil262 0.0954 0.0651 0.0551 0.1345

kroA100 2.0696 0.6543 0.5242 1.9895
kroB100 0.2003 1.6262 0.2122 1.4959
kroC100 0.7741 0.4994 0.9156 1.2150
kroD100 0.4000 1.4050 0.7142 1.7459
kroE100 0.4143 1.3674 1.3632 0.4200
kroA150 0.9007 0.8433 0.8671 0.3119
kroB150 0.2053 0.9046 0.3232 0.8159
kroA200 0.7092 3.9468 4.6848 1.8337
kroB200 0.0000 0.9016 0.6582 1.0277
lin105 0.3239 0.6142 0.2921 0.5805
lin318 0.7301 1.3812 1.3657 0.5582
pr76 1.2464 3.9874 2.0850 2.8299

pr107 0.4267 0.8107 0.5356 0.6916
pr124 1.3665 2.5107 0.3551 1.9779
pr136 3.0659 12.3972 1.8315 11.9121
pr144 0.7522 0.9836 1.0300 0.7006
pr152 1.7319 1.2204 2.7778 0.9800
pr226 1.4908 3.8215 1.6060 3.6413
pr264 0.6450 0.7998 0.7267 0.6275
pr299 0.7514 1.2838 0.3593 0.9473
pr439 3.0046 5.5657 1.9688 6.4409
rd100 0.2902 0.2237 0.2207 0.2732
rd400 0.4366 0.3874 0.5456 0.3650
st70 0.0208 0.0306 0.0300 0.0265
ts225 1.7862 4.0281 4.2078 2.3010

tsp225 0.0306 0.1002 0.1082 0.1159
Average 0.7690 1.6710 0.9641 1.4898

V. CONCLUSIONS AND FUTURE WORK
The main goal of our work is to measure the bias (the

average distance from the optimum in the classic way) and the
variance (the variation of these distances when the application
runs for ten times) when two types of uncertainty are
considered for several Euclidean TSP instances, with number
of nodes ranging from 51 to 439 and with different scales.
Two parameters for implementing the data uncertainty were
used to globally study such diverse instances.

The computational results show a general resilience and
adaptability of the ant-based solving method. We also
observed that is more desirable to have few large
uncertainties, instead of having many small uncertainties, and
that the two dimension of uncertainty do not linearly compose.

At each dimension of uncertainty level, our experiment
shows that it is desirable to totally eliminate some
uncertainties, instead of lowering their average scale.

When the resilience of an application tackling uncertain
data is apriori known, the computing resources can be
intelligently used. The paper describes such a behavior and the

decision-makers can use it when choosing between several
optimization methods.

As future investigation, we plan to add the dimension of
time to data uncertainty and to study the behavior of ant-based
application when the data fuzziness goes dynamic. Also further
investigations on other meta-heuristics including bio-inspired
computing techniques will be developed.

ACKNOWLEDGMENT
Author G.C. Crişan. This paper was developed within the project “Bacau

and Lugano - Teaching Informatics for a Sustainable Society”, co-financed by
Switzerland through the Swiss-Romanian Cooperation Programme to reduce
economic and social disparities within the enlarged European Union.

Author P.C. Pop. The work was supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI, project
number PN-II-RU-TE-2011-3-0113.

REFERENCES
[1] J. Gantz, D. Reinsel, “The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the Far East”, Framingham:
IDC iView, Analyze the Future, 2012.

[2] M. J. Eppler, Managing Information Quality: Increasing the Value of
Information in Knowledge-intensive Products and Processes, 2nd Ed,
New York/Heidelberg: Springer, 2006.

[3] M. M. Balas, V.E. Balas, World Knowledge for Control Applications,
11th IEEE International Conference on Intelligent Engineering Systems,
225--228, 2007

[4] T. H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms (3rd ed.), Cambridge, MS: MIT Press, 2009.

[5] W. W. Peterson, E. J. Weldon, Error-correcting codes. 2nd Ed.
Cambridge, MS: MIT Press, 1972.

[6] J. von Neumann, Probabilistic logics and the synthesis of reliable
organisms from unreliable components, in C. Shannon, J. McCarty
(Eds.), Automata Studies, Princeton University Press, 1956, pp. 43–98.

[7] I. Finocchi, F. Grandoni, G. F. Italiano, “Designing Reliable Algorithms
in Unreliable Memories Algorithms”, Lecture Notes in Computer
Science vol. 3669, 2005, pp 1-8

[8] P. Øhrstrøm, P. F. V. Hasle, Temporal logic: from ancient ideas to
artificial intelligence. New York/Heidelberg: Springer 1995.

[9] Semantic web. Available: http://www.w3.org/standards/semanticweb/
[10] Library of sample instances for the TSP. Available:

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
[11] 8th DIMACS Implementation challenge: The Traveler Salesman

Problem. Available: http://dimacs.rutgers.edu/Challenges/TSP/
[12] C-M. Pintea, P. Pop, C. Chira, “The Generalized Traveling Salesman

Problem solved with Ant Algorithms”, Computing Research Repository
1310.2350, 2013.

[13] C-M. Pintea, C. Chira, D. Dumitrescu, P.C. Pop, “Sensitive Ants in
Solving the Generalized Vehicle Routing Problem”, Int. J. Comput.
Commun., vol. 6, no. 4, pp.731-738, 2011.

[14] C-M. Pintea, P.C. Pop, D. Dumitrescu, “An Ant-based Technique for
the Dynamic Generalized Traveling Salesman Problem”, 7-th Int. Conf.
on Systems Theory and Scientific Computation, pp.257-261, 2007.

[15] ACO public software. Available:
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html

[16] M. Dorigo, T. Stüzle, Ant Colony Optimization, Cambridge, MA: MIT
Press, 2004.

[17] G. C. Crişan, E. Nechita, “Solving fuzzy TSP with Ant algorithms”,
Int. J. Comput Commun, vol. 3(S), no. 3, pp. 228-231, 2008.

[18] A. A. Alsawy, H. A. Hefny, F. El-licy, “Fuzzy ant colony optimization
algorithm”. Informatics and Systems (INFOS), pp. 1-5, 2010.

[19] S.A. Khan, A.P. Engelbrecht, "A fuzzy ant colony optimization
algorithm for topology design of distributed local area
networks," IEEE Swarm Intelligence Symposium, 2008. pp. 1-7, 2008.

[20] A. R. G, Ginidi, A. M. A. M. Kamel, H. T. Dorrah, „Development of
new Fuzzy Logic-based Ant Colony Optimization algorithm for
combinatorial problems”, in Proc. of the 14th International Middle East
Power Systems Conference, Cairo, Egypt,. 2010.

2592

[21] A. George, B. R. Rajakumar, “Fuzzy aided Ant Colony Optimization
algorithm to solve optimization problem”. Advances in Intelligent
Systems and Computing vol. 182, pp. 207-215, 2013.

[22] W. J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the
Limits of Computation. Princeton University Press, 2012.

[23] R. M. Karp, “Reducibility among Combinatorial problems”. in R.E.
Miller, J.W. Thatcher (Eds.), Complexity of Computer Computations.
The IBM Research Symposia, pp. 85-103, NY: Plenum. Press 1972.

[24] C. M. Pintea, Advances in Bio-inspired Computing for Combinatorial
Optimization Problem, Springer 2014.

[25] P. C. Pop, Generalized Network Design Problems. Modeling and
Optimization. Walter de Gruyter, 2012.

[26] E. Nechita, C. Muraru, M. Talmaciu, “Mechanisms in social insect
societies and their use in Optimization. A case study for trail laying
behavior”, in Proc. of the 1st International Conference Bio-Inspired
Computational Methods Used for Solving Difficult Problems, Tg.Mureş,
Romania, 2008, AIP Proceedings, NY, 2009, pp. 171-179.

[27] P. C. Pop, C. M. Pintea, C. P. Sitar, “An Ant-based Heuristic for the
Railway Traveling Salesman Problem”, Lecture Notes in Computer
Science vol. 4448, pp. 702-711, 2007.

[28] G. C. Crişan, C. M. Pintea, C. Chira, “Risk assessment for incoherent
data”, Environ. Eng. Manag. J., vol. 11, no. 12, pp. 2169-2174, 2012.

[29] Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/concorde/
[30] LKH TSP solver. http://www.akira.ruc.dk/~keld/research/LKH
[31] S. Lin, “Computer solutions of the Traveler Salesman Problem”, Bell

System Tech J. vol. 44, no. 10, pp. 2245-2269, 1965.
[32] Google TSP solver. https://code.google.com/p/google-maps-tsp-solver/
[33] T. Stützle, H. Hoos, “MAX-MIN Ant System”, Future Generation

Comp. Sys. vol. 16, no. 8, pp. 889-914, 2000.
[34] L. A. Zadeh, “Calculus of fuzzy restrictions”, in L. Zadeh, K. Fu, K.

Tanaka M. Shimura (Eds.), Fuzzy Sets and their Applications to
Cognitive and Decision Processes, NY:Academic Press, 1975, pp.1-39.

[35] A. L. Barabási, E. Bonabeau, “Scale-Free Networks”, Scientific
Amer., vol. 288, no. 5, pp. 60–69, 2003.

2593

