
Lattice-valued Fuzzy Residual Finite Automata
Fugang Zhang1, Yongming Li2

1School of Mathematics and Statistics
Huangshan University, Huangshan, 245021, China

Email: fugang@hsu.edu.cn
2College of Mathematics and Information Science, College of Computer Science

Shaanxi Normal University, Xi’an, 710062, China
Email: liyongming@snnu.edu.cn

Abstract—In this paper, we introduce the notion of lattice-
valued fuzzy residual finite automaton (LRFA) and the LRFA-
regular language with membership values in a complete residu-
ated lattice. Next, we define saturation operator and reduction
operator on lattice-valued finite automata(LFA), which provide
a way to simplify LRFA based on their closure properties in
LRFA. At last, we define the canonical LRFA based on the
notion of irreducible residual language, prove that every LRFA-
regular language is recognized by a unique canonical LRFA
which has a minimal number of states and largest initial and
transition functions.

I. INTRODUCTION

Automata Minimization of automata is one of the most
important research fields of automata theory. Deterministic and
nondeterministic finite automata are computationally equiva-
lent, and nondeterministic finite automata can offer exponen-
tial state savings compared to deterministic ones. Contrary
to the problem of minimizing DFAs, which is efficiently
possible, the minimization of NFA is computationally hard,
namely NP-complete. Denis, Lemay and Terlutte defined an
important type of finite automata, residual finite state automata
(RFSA), based on Myhill- Nerode theorem in [1,2], proved
that for every regular language L, there exists a unique mini-
mal RFSA that recognizes L and which has both a minimal
number of states and a maximal number of transitions.

As for the classical automata, the minimization of fuzzy
automata is still an important issue. Unlike deterministic fuzzy
automata, whose minimization is efficient, the problem of
minimization of non-determinatic fuzzy automata is still NP-
complete. The minimization of fuzzy automata was researched
by left and right invariant fuzzy equivalences with membership
values in a complete residual lattice in [23], the minimiza-
tion of fuzzy automata with membership values in a lattice-
ordered monoid was researched by Li and Lei in [19,21], the
minimization by considering bisimulations for fuzzy automata
was researched in [27], and the quotient minimization of
fuzzy automata was researched in [26]. The purpose of the
present paper is to provide another effective method for the
minimization of fuzzy finite automata.

We consider the minimization of fuzzy finite automata by
defining fuzzy residual finite automata. First, we introduce
the notion of lattice-valued fuzzy residual finite automata
(LRFA): an LRFA is a lattice-valued fuzzy finite automata

(LFA) in which its states define lattice-valued residual lan-
guages of the lattice-valued language that it recognizes, and the
notion of LRFA-regular language which is an lattice-valued
language recognized by an LRFA with membership values in
a complete residuated lattice, and we discuss some properties
of the LRFA. Second, we study saturation operator and
reduction operator of lattice-valued fuzzy finite automata, and
obtain some useful results. It shows that LRFAs are closed
under saturation operator and reduction operator. Last, we
define the canonical LRFA based on the notion of irreducible
lattice-valued residual languages, and prove that every LRFA-
regular language is recognized by a unique canonical LRFA
which has a minimal number of states and largest initial and
transition functions.

The organization of this paper is as follows. In section 2,
we introduce the notion of lattice-valued fuzzy finite automata,
L-language and other basic concepts. In section 3, we define
the lattice-valued residual finite automata (LRFA) and the
LRFA-regular language, discuss some properties of LRFA.
In section 4, we define saturation operator and reduction
operator on lattice-valued finite automata. In section 5, we
define the canonical LRFA, prove that every LRFA-regular
language is recognized by a unique canonical LRFA. In
section 6, we summarize this paper.

II. PRELIMINARIES

In this paper we will use complete residuated lattices as
the structures of membership values. A residuated lattice is an
algebra L = (L,∧,∨,⊗,→, 0, 1) such that

(L1) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the
greatest element 1,

(L2) (L,⊗, 1) is a commutative monoid with the unit 1,
(L3) ⊗ and → form an adjoint pair, i.e., they satisfy the

adjunction property: for any x, y, z ∈ L,

x⊗ y ≤ z ⇔ x ≤ y → z.

If, in addition, (L,∧,∨, 0, 1) is a complete lattice, then L is
called a complete residuated lattice. From now on we assume
that L is a complete residuated lattice.

It can be easily verified that with respect to ≤, ⊗ is mono-
tonic in both arguments, → is monotonic in the second and
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anti-monotonic in the first argument, and for any x, y, z ∈ L
and any {xi}i∈I , {yi}i∈I ⊆ L, the following hold:

(1)
∨
i∈I

(x⊗ xi) = x⊗
∨
i∈I

xi,
∨
i∈I

(xi ⊗ x) =
∨
i∈I

xi ⊗ x,

(2) (
∨
i∈I

xi) → x =
∧
i∈I

(xi → x),

(3) x → (
∧
i∈I

xi) =
∧
i∈I

(x → xi),

(4) (x⊗ y) → z = x → (y → z),
(5) (x → y)⊗ (x → z) ≤ x → z.

For other properties of complete residuated lattices we refer
to [29,30].

The most studied and applied structures of truth values,
defined on the real unit interval [0, 1] with x∧y = min(x, y),
x ∨ y = max(x, y), are equipped with ⊗ being a left-
continuous t-norm and the residuum is defined by x → y =∨{u ∈ [0, 1]|u ⊗ x ≤ y}. For example, the well-known
structures are the Lukasiewicz structure (x ⊗ y = max(x +
y − 1, 0), x → y = min(1 − x + y, 1)), product structure
(x⊗ y = x · y, x → y = 1 if x ≤ y and = y/x otherwise) and
Gödel structure (x⊗ y = min(x, y), x → y = 1 if x ≤ y and
= y otherwise).

Definition 2.1([16]): A lattice-valued fuzzy finite automaton
(LFA) is a 5-tuple, A = (Q,Σ, δ, I, F ), where Q,Σ are two
finite nonempty sets, δ : Q × Σ × Q −→ L is an L-fuzzy
subset of Q×Σ×Q, and I, F : Q −→ L are L-fuzzy sets of
Q. The elements of Q are called states, and the elements of
Σ are called input symbols, respectively. δ is called a fuzzy
transition function, and I , F are called fuzzy initial and final
function, respectively.

Let Σ∗ denote the set of all words of finite letters over Σ. ε
denotes the empty word. For θ ∈ Σ∗, |θ| stands for the length
of θ.

let us extend δ on Q × Σ∗ × Q, denoted also δ, where
q, q′ ∈ Q and θ ∈ Σ∗, in the following ways:

(1) δ(q, ε, q′) =
{

1, q′ = q,
0, q 
= q′,

(2) ∀θ = x1x2 · · ·xn ∈ Σ∗,

δ(q, θ, q′) =
∨

q1,q2,··· ,qn∈Q

[δ(q, x1, q1)⊗ δ(q1, x2, q2)⊗

· · · ⊗ δ(qn, xn, q
′)].

Definition 2.2([16]): A deterministic lattice-valued fuzzy
finite automaton(DLFA) is a 5-tuple, L = (Q,Σ, δ, q0, F ),
such that δ : Q× Σ −→ Q, q0 ∈ Q, F : Q −→ L.

Any L-fuzzy subset in Σ∗ is called an L-language on Σ.
An L-language accepted or recognized by an LFA A =
(Q,Σ, δ, I, F ), denote as |A | : Σ∗ −→ L, which is expressed
in the form

|A |(θ) =
∨

q,q′∈Q

[I(q)⊗ δ(q, θ, q′)⊗ F (q′)]

for any θ ∈ Σ∗. An L-language which is accepted by an
LFA is called an LFA-regular language. Let LLFA denote
all LFA-regular language.

An L-language which is accepted by an DLFA is called
an DLFA-regular language. Let LDLFA denote all DLFA-
regular languages.

Let A = (Q,Σ, δ, I, F ) be an LFA. For any q ∈ Q, u ∈
Σ∗, We define some special L-language R,Ru : Q −→ L,
|A |(q) : Σ∗ −→ L as follows: ∀ q ∈ Q, u ∈ Σ∗,

R(q) =
∨

q′∈Q,v∈Σ∗
[I(q′)⊗ δ(q′, v, q)],

Ru(q) =
∨

q′∈Q

[I(q′)⊗ δ(q′, u, q)],

|A |(q)(θ) =
∨

q′∈Q

[δ(q, θ, q′)⊗ F (q′)].

For any q ∈ Q, u ∈ Σ∗, if R(q) > 0, we say that q is a
reachable state. If Ru(q) > 0, we say that q is a reachable state
by word u. If there exists θ ∈ Σ∗, such that |A |(q)(θ) > 0, we
say that q is a accessible state. If q is reachable and accessible,
then we say q is trimmed. We say an LFA is trimmed if its
all states are trimmed.

III. LRFA AUTOMATA

Definition 3.1([1]): Let f be an L-language over Σ∗, u is
a word in Σ∗. The Lattice-valued residual language, denoted
as L-residual language, of f with regard to u is defined as

u−1f(θ) = f(uθ), ∀θ ∈ Σ∗.

Definition 3.2([1]): A lattice-valued fuzzy residual finite
automaton(LRFA) is an LFA A = (Q,Σ, δ, I, F ) such
that, for any state q ∈ Q, |A |(q) is an L-residual language
of |A |. More formally, ∀q ∈ Q, ∃u ∈ Σ∗, such that
|A |(q) = u−1|A |.

Example 3.1: Let L be the Gödel structure, Σ = {a, b}.
We denote r

θ (r ∈ L, θ ∈ Σ∗) as an Lattice language f ,ie.
f(θ) = r . Let us consider the following LFA.

(1) A1 in Fig.1 is an LFA, |A1| = 0.5
a , |A1|(q1) = 0.5

a ,
|A1|(q2) = 1, a−1|A1| = 0.5

ε , ε−1|A1| = 0.5
a . Obviously,

there does not exist u ∈ Σ∗, s.t u−1|A1| = |A1|(q2),
hence, A1 isn’t an LRFA.

1q 2q
1

a

5.0
1

Fig. 1. A1 isn’t an LRFA.

(2) A2 in Fig.2 is an LFA, we have A2 is an LRFA by
Definition 3.2.

An L-language is accepted by an LRFA is called an
LRFA-regular language. Let LLRFA denote the set of
all LRFA-regular languages. We can easily prove that an
LRFA-regular language is also an LFA -regular language.
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Fig. 2. A2 is an LRFA.

Let f be an L-language, λ ∈ L and let A,B be two sets of
L-languages. We define λ⊗ f as λ⊗ f(θ) = λ⊗ (f(θ))(∀θ ∈
Σ∗). If there exist {λi}i∈I ⊆ L, {fi}i∈I ⊆ A, such that f 
= fi
for any i ∈ I and such that f =

⋃
i∈I λi ⊗ fi, then we say f

is linear generated by A. We say B be linearly generated by
A if every g in B as linear generated by A.

Definition 3.3: Let f is an L-language, we define Res(f) =
{u−1f |u ∈ Σ∗} is the set of all L-residual languages of f .
For any u−1f ∈ Res(f), if there exists a finite subset C of
Res(f) and u−1f 
∈ C such that u−1f is linear generated
by C, then we say u−1f is a composed L-residual language;
otherwise, we say u−1f is an irreducible L-residual language.
We say a state q is a composed state if the L-residual language
|A |(q) is a composed L-residual language; otherwise, we say
q is an irreducible state.

Theorem 3.1: Let A = (Q,Σ, δ, I, F ) be an LRFA. For
any irreducible L-residual language u−1|A |, there exists state
q ∈ Q, such that u−1|A | = |A |(q).
Proof: Let Q0 = {q|Ru(q) > 0}, then we have u−1|A |
=

∨
q′∈Q0

[Ru(q
′) ⊗|A |(q′)]. Since A is an LRFA, then, for

any state q′ ∈ Q0, there exists vq′ ∈ Σ∗, such that v−1
q′ |A | =

|A |(q′). Hence, we have u−1|A | =
∨

q′∈Q0

[Ru(q
′) ⊗|A |(q′)]=

∨
q′∈Q

[(Ru(q
′) ⊗v−1

q′ |A |]. Since u−1|A | is irreducible, then

there exists vq ∈ Σ∗, such that u−1|A | = v−1
q |A |, that is

u−1|A | = v−1
q |A | = |A |(q). Therefore the conclusion hold.

�

IV. SATURATION AND REDUCTION OPERATION

In this section, we will define two operators. the first
is saturation operator which will add initial and transition
functions in an automaton without modifying the language
it recognizes. and We can get a unique LFA which has a
largest transition and initial functions. the second is reduction
operation which may delete some states in an LFA without
changing the language it recognizes.

Definition 4.1: Let A = (Q,Σ, δ, I, F ) be an LFA, for
any q, q1, q2 ∈ Q, u ∈ Σ∗, we define two sets GI = {θ ∈
Σ∗||A |(q)(θ) > |A |(θ) > 0}, Gδ = {θ ∈ Σ∗||A |(q2)(θ) >
u−1|A |(q1)(θ) > 0}. The saturated of A is the LFA A s =
(Q,Σ, δs, Is, F ), where

(1) the initial function I is defined as

⎧⎨
⎩

1, if GI = ∅,∧
θ∈GI

[|A |(q)(θ) → |A |(θ)], if GI 
= ∅,

(2) the transition function δs(q1, x, q2) is defined as

⎧⎨
⎩

1, if Gδ = ∅,∧
θ∈Gδ

[fA ,q2(θ) → x−1|A |(q1)(θ)], if Gδ 
= ∅.

If A = A s, then we say A is saturated.
Proposition 4.1: Let A be an LFA, A s be its saturated,

then A and A s are state-equivalent, i,e: ∀q ∈ Q,|A |(q) =
|A s|(q), and |A | = |A s|.
Proof: For any q, q′ ∈ Q, x ∈ Σ. If |A |(q′) ≤ x−1|A |(q),
then δs(q, x, q′) = 1 ≥ δ(q, x, q′); otherwise, for any ω ∈ Gδ ,
we have

δ(q, x, q′)⊗ |A |(q′)(ω) ≤ x−1|A |(q)(ω),
i.e.,

δ(q, x, q′) ≤
∨

ω∈Gδ

[|A |(q′)(ω) → x−1|A |(q)(ω)]

= δs(q, x, q′),

so, δ ≤ δs. Similarly, we have I ≤ Is. This shows |A |(q)
≤ |A s|(q) and |A | ≤ |A s|.

We prove |A s|(q)(ω) ≤ |A |(q)(ω) and |A s| ≤ |A | for
any ω ∈ Σ∗ by induction.

When ω = ε, clearly, fA ,q(ε) = F (q) = |A s|(q)(ε).
Assume now that for any word ω of |ω| ≤ n, |A |(q)(ω) ≥
|A s|(q)(ω). Let x ∈ Σ∗,

(1) when Gδ = ∅ or ω /∈ Gδ , we have

|A s|(q)(xω) =
∨

q′∈Q

[δs(q, x, q′)⊗ |A |(q′)(ω)]

≤ |A |(q)(xω)
(2) when Gδ 
= ∅ and ω ∈ Gδ, we have

|A s|(q)(xω)
=
∨

q′∈Q

[δs(q, x, q′)⊗ |A |(q′)(ω)]

=
∨

q′∈Q

∧
θ∈Gδ

[|A |(q′)(θ) → x−1|A |(q)(θ)] ⊗ |A |(q′)(ω)

≤
∨

q′∈Q

[|A |(q′)(ω) → x−1|A |(q)(ω)]⊗ |A |(q′)(ω)

= x−1|A |(q)(ω) = |A |(q)(xω).
Hence, we have |A s|(q) (xω) ≤ |A |(q)(xω). Similarly, we

can prove |A s| ≤ |A |. Therefore we have |A |(q) = |A s|(q)
and |A | = |A s|. �

Proposition 4.2: Let A1, A2 are two state-equivalent LFAs,
i.e.,|A1| = |A2|, |A1|(q) = |A2|(q) (∀q ∈ Q), then we have
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A s
1 = A s

2 .
Proof: By the definition of saturation operator, for any q ∈ Q,
|A1|(q) ≤ |A1| if and only if |A2|(q) ≤ |A2|, that is, Is1 (q)
= Is2 (q) = 1; otherwise, GI

1 = GI
2 is not empty, hence, we

have

Is1 (q) =
∧

θ∈GI
1

|A1|(q)(θ) → |A1|(θ)]

=
∧

θ∈GI
2

[|A2|(q)(θ) → |A2|(θ)] = Is2(q).

Therefore, Is1 = Is2 .
By the definition of saturation operator, for any q1, q2 ∈ Q,

x ∈ Σ, |A1|(q2) ≤ x−1 |A1|(q1) if and only if |A2|(q2) ≤
x−1 |A2|(q1), hence, δs1 (q1, x, q2) = δs2 (q1, x, q2); otherwise,
Gδ

1 = Gδ
2 is not empty, that is, we have

δs1(q1, x, q2) =
∧

θ∈Gδ
1

[|A1|(q1)(θ) → x−1|A1|(q2)(θ)]

=
∧

θ∈Gδ
2

[|A2|(q1)(θ) → x−1|A2|(q2)(θ)]

= δs2(q1, x, q2),

hence, we have δs1 = δs2. Since |A1|(q) = |A2|(q) (∀q ∈ Q),
then we have F1(q) = |A1|(q)(ε) = |A2|(q) (ε) = F2(q),
hence, F1 = F2.

Therefore A s
1 = A s

2 . �
Theorem 4.1: Let A be an LFA, A s be its saturated, then

we have A s = (A s)s.
Proof: For any q ∈ Q, we have |A |(q) = |A s|(q) and |A |
= |A s| by Proposition 4.1, hence, we have A s = (A s)s by
Proposition 4.2. �

Theorem 4.2: If A is an LRFA, then A s is also an LRFA.
Proof: By definition of LRFA, for any q ∈ Q, there
exists u ∈ Σ∗, such that |A |(q) = u−1|A |. Since |A |(q) =
|A s|(q), |A s| = |A |, we have |A s|(q) = |A |(q) = u−1|A |
= u−1|A s|. Hence, A s is also an LRFA. �

Definition 4.2: Let A = (Q,Σ, δ, I, F ) be an LFA,
for any q ∈ Q, we define a set N(q) = {q′ ∈
Q\{q}|Supp(|A |(q′)) ⊆ Supp(|A |(q))}.

For any q′ ∈ N(q), if there exists λq′ ∈ L, such that
|A |(q) =

∨
q′∈N(q)

λq′ |A |(q′), we say q is erasable. When q

is erasable, we define reduction operator A ′ = φ(A , q) =
(Q′,Σ, δ′, I ′, F ′), where
(1) Q′ = Q\{q},
(2) the initial function is defined as: for any q′ ∈ Q′,

I(q′) =
{

I(q′), if q′ /∈ N(q),
I(q′) ∨ λq′I(q), if q′ ∈ N(q),

(3) For any q1, q2 ∈ Q′, x ∈ Σ, the transition function
δ′(q1, x, q2) is defined as:

=

{
δ(q1, x, q2), if q2 /∈ N(q),

δ(q1, x, q2) ∨ λq′δ(q1, x, q), if q2 ∈ N(q),

(4) F ′ = F .

If q is not erasable, we define φ(A , q) = A . If LFA A
has no erasable state, we say that LFA A is reduced.

Proposition 4.3: Let A be an LFA, for any q ∈ Q, if A ′ =
φ(A , q), then for any q′ ∈ Q′, we have |A ′|(q′) = |A |(q′),
and |A ′| = |A |.

Proof: When q is not erasable, the conclusion is clear.

When q is erasable, let A = (Q,Σ, δ, I, F ) be an LFA,
φ(A , q) = A ′ = (Q′, Σ, δ′, I ′, F ). We prove ∀q′ ∈ Q′,
|A ′, q′| = |A , q′| by induction on ω.

If ω = ε, then |A ′|(q′)(ε) = F (q′) = |A |(q′)(ε).

When ω′ = xω, we have

|A ′|(q′)(xω)
=

∨
q′′∈Q′

[δ′(q′, x, q′′)⊗ |A ′, q′′|(ω)]

=
∨

q′′∈Q′\N(q)

[δ(q′, x, q′′)⊗ |A ′|(q′′)(ω)]

∨
∨

q′′∈N(q)

[δ′(q′, x, q′′)⊗ |A ′|(q′′)(ω)]

=
∨

q′′∈Q′\N(q)

[δ′(q′, x, q′′)⊗ |A ′|(q′′)(ω)]

∨
∨

q′′∈N(q)

[(δ(q′, x, q′′) ∨ λq′′δ(q
′, x, q))⊗ |A ′|(q′′)(ω)]

=
∨

q′′∈Q′\N(q)

[δ(q′, x, q′′)⊗ |A ′, q′′|(ω)]

∨
∨

q′′∈N(q)

[δ(q′, x, q′′)⊗ |A ′|(q′′)(ω)]

∨
∨

q′′∈N(q)

[δ(q′, x, q)⊗ λq′′ |A ′|(q′′)(ω)]

=
∨

q′′∈Q′\N(q)

[δ(q′, x, q′′)⊗ |A |(q′′)(ω)]

∨
∨

q′′∈N(q)

[δ(q′, x, q′′)⊗ |A |(q′′)(ω)]

∨ [δ(q′, x, q)⊗ |A |(q)(ω)]
=
∨

q′∈Q

[δ(q′, x, q′′)⊗ |A |(q′′)(ω)] = |A |(q′)(xω).

Hence, we have |A ′|(q′) = |A |(q′), ∀q′ ∈ Q′.

By the definition of L-language accepted by an LFA, we
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have

|A ′| =
∨

q′∈Q′
[I ′(q′)⊗ |A ′|(q′)]

=
∨

q′∈Q′\N(q)

[I ′(q′)⊗ |A ′|(q′)] ∨
∨

q′∈N(q)

[I ′(q′)⊗ |A ′|(q′)]

=
∨

q′∈Q′\N(q)

[I(q′)⊗ A |(q′)]

∨
∨

q′∈N(q)

[I(q′)⊗ |A |(q′)] ∨
∨

q′∈N(q)

[I(q)⊗ λq′′ |A |(q′)]

=
∨

q′∈Q′\N(q)

[I(q′)⊗ |A |(q′)]

∨
∨

q′∈N(q)

[I(q′)⊗ |A |(q′)] ∨ [I(q)⊗ |A |(q)] = |A |.

Hence, |A ′| = |A |. The proof is completed. �
Theorem 4.3: Let A = (Q, Σ , δ, I, F ) be an LRFA. For

any state q ∈ Q, A ′ = φ(A, q) is also an LRFA.
Proof: For any state q ∈ Q, there exists u ∈ Σ∗, such that
|A |(q) = u−1|A |. By Proposition 4.3, we have |A ′|(q) =
|A |(q),|A ′| = |A |, that is, |A ′|(q) = u−1|A ′|. Therefore,
A ′ is an LRFA. �

Theorem 4.4: Let A = (Q, Σ, δ, I, F ) be an LRFA. For
any q ∈ Q, if A is saturated, then φ(A , q) is saturated.
Proof: If q′ /∈ N(q), then I ′(q′) = I(q′). Since A is saturated,
we have Is(q′) = I(q′), hence, (I ′)s(q′) = Is(q′) = I(q′) =
I ′(q′), that be (I ′)s(q′) = I ′(q′). If q′ ∈ N(q), then I ′(q′) =
I(q′)∨ λq′ I(q). (I ′)s(q′) = [I(q′) ∨ λq′ I(q)]s = Is(q′) ∨
λq′I

s(q) = I(q′) ∨ λq′ I(q) = I ′(q′). Therefore, (I ′)s = I ′.
If q2 /∈ N(q), since A is saturated, we have

(δ′)s(q1, x, q2) = δs(q1, x, q2) = δ(q1, x, q2) = δ′(q1, x, q2).
If q2 ∈ N(q), since A is saturated, we have (δ′)s(q1, x, q2) =
[δ(q1, x, q2) ∨ λq2 δ (q1, x, q)]

s = δs(q1, x, q2) ∨ λq2

δs(q1, x, q) = δ′ (q1, x, q2), hence, we have (δ′)s = δ′.
Therefore, (A ′)s = A ′, i.e., φ(A , q) is saturated. �

Theorem 4.5: Let A = (Q,Σ, δ, I, F ) be an LFA. For any
state q ∈ Q, we have [φ(A , q)]s = φ (A s, q).
Proof: By definitions of saturation and reduction operator,
A ′ and (A s)′ have the same states set Q′ = Q\{q}, for
any q ∈ Q. By Theorem 4.1, we have ((A s)′)s = (A s)′.
By Proposition 4.1, 4.3, we have |A ′| = |(A s)′|, |A ′|(q′) =
|(A s)′|(q′), ∀q′ ∈ Q′. By Proposition 4.2, we have (A ′)s =
((A s)′)s = (A s)′. Hence, we have [φ(A , q)]s = φ(A s, q).
�

V. CANONICAL LRFA

Definition 5.1: Let f be an LRFA-regular language. We
define the canonical LRFA of f as the following way A =
(Q,Σ, δ, I, F ), where

(1) Σ is the alphabet of f ,
(2) Q is the set of irreducible L-residual languages, i.e., Q =

{u−1f |u−1f is a irreducible },
(3) we define a set G = {θ ∈ Σ∗|u−1f(θ) > f(θ) > 0}, the

initial function I(u−1f) is defined as

⎧⎨
⎩

1, if G = ∅,∧
θ∈G

[u−1f(θ) → f(θ)], if G 
= ∅,

(4) the final function is defined as F (u−1f) = u−1f(ε),
(5) we define a set G = {θ ∈ Σ∗|v−1f(θ) > (ux)−1f(θ) >

0}, the transition function δs(u−1f, x, v−1f) is defined
as

⎧⎨
⎩

1, if G = ∅,∧
θ∈G

[v−1f(θ) → (ux)−1f(θ)], if G 
= ∅.

The above definition also gives a method for constructing
the canonical LRFA from a given L-regular language.

Example 5.1: Let L be the Gödel structure, Consider
L-language f = 0.5

ab∗ + 1
ba∗ . ε−1f = f , a−1f = 0.5

b∗ ,
b−1f = 1

a∗ are irreducible residual L-languages, there exists
{q1, q2, q3}, such that |A |(q1) = ε−1f , |A |(q2) = a−1f ,
|A |(q3) = b−1f . The canonical of f is defined as shown in
Fig.3.

1q2q 3q

1

5.0 1

b

1

a

1

b

1
a

1

Fig. 3. A3 is the canonical LRFA recognizing f .

Theorem 5.1: Let f be an LRFA-language. If A = (Q,Σ,
δ, I, F ) is a reduced and saturated LRFA recognizing f , then
A is the canonical LRFA of f .
Proof: As A is an LRFA, every irreducible L-residual
language u−1f can be defined as an L-language |A |(q) asso-
ciated with some states q ∈ Q. As there are no erasable state in
Q. For any state q, |A |(q) is a irreducible L-residual language
and distinct states define distinct L-residual languages. Since
A is saturated, then it has the same initial and transition
functions with the canonical LRFA. �

Theorem 5.2: The canonical LRFA of an LRFA-regular
language f is an LRFA which recognizes f and which is
minimal LRFA regarding the number of states.
Proof: Let A0, A1, · · · , An be a sequence of LRFA such
that for any index i ≥ 1, there exists a state qi of Ai, such
that Ai = φ(Ai−1, qi). Theorem 4.5 and 5.5 show that An

is the canonical LRFA of the language recognized by A0 if
A0 is a saturated LRFA and An is reduced. So the canonical
LRFA can be obtained from any LRFA that recognizes f
using saturation and reduction operators. Theorem 3.1 implies
that it has a minimal number of states. �

Theorem 5.3: The canonical LRFA of an LRFA-regular
language f is the unique LRFA that has a largest transition
and initial functions among the set of LRFA which have a
minimal number of states.
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Proof: Let A = (Q,Σ, δ, I, F ) be the canonical LRFA of
an LRFA-language f and let A ′ = (Q′,Σ, δ′, I ′, F ′) be an
LRFA which has a minimal number of states. Hence, A ′ is
reduced. From Theorem 5.2, the saturated automaton of A ′

is A . Therefore, A ′ has at most as large transition and initial
functions as A . �

Theorem 5.4: LDLFA � LLRFA � LLFA.
We have the conclusion of LDLFA ⊆ LLRFA ⊆ LLFA

in section 3, we can proof LDLFA � LLRFA � LLFA by
example as follows.

Example5.2: Let L be the Gödel structure.
(1) f = (0.5a )∗ is an L-language, {(an)−1f |n ∈ N ∪ {0}}

is the set of irreducible L-residual languages of f . (an)−1f =
(0.5)n⊗ ε−1f for any n ∈ N∪{0},. Hence, ε−1f is the unique
irreducible L-residual language of f , the canonical LRFA of
f has only a state. we can build the canonical LRFA(Fig4)
of f . f can’t be recognized by a DLFA. therefore LDLFA �

LLRFA.
(2) f = (0.5a )∗(0.5b )∗ is an L-language, A5(Fig.5) is

an LFA recognized f . Then f is LFA-language. g =∑
k≥0

(
0.5

a
)k(

0.5

b
)k is the set of subclass language of f , for

any n ∈ N ∪ {0}, (un)−1g =
∑
k≥n

0.5n(
0.5

a
)k−n(

0.5

b
)k

is L-residual language of g with regard to un. hence,
{un)−1g|n ∈ N∪ {0}} is the set of L-residual language of g,
but {un)−1g|n ∈ N∪{0}} is infinite. so, g can’t be recognized
by an LRFA. Therefore, LLRFA � LLFA.

a

5.0

1 1

Fig. 4. A4(Fig.4) is an LFA recognized f .

a

5.0

1 1

Fig. 5. A5(Fig.5) is an LFA recognized f

In [19], Li gives an algorithm to transform an LFA into an
equivalent DLFA in some more general frames. Consider an
LFA A = (Q,Σ, δ, I, F ), where Q = {q1, q2, · · · , qn}. The
following algorithm build a DLFA A ′ = (Q′,Σ, δ′, q′0, F

′)
which is equivalent to A . For more details, refer to [19, 15].

Algorithm 1.

Step1: Let M = {δ(qi, u, qj)|1 ≤ i, j ≤ n, u ∈
Σ∗} ∪ {I(q) : q ∈ Q}. We generate a finite sublattice
M1 = 〈M〉 = {∨Z|Z is a finite subset of X}, where
X = {a1 ⊗ · · · ak|{a1, · · · , ak} is a finite subset of M}, we
get a finite sublattice M1 of L.

Step2: Let Q′ = {(a1, a2, · · · , an)|ai ∈ M1}, de-
fine δ′ : Q × Σ → Q as δ′((a1, a2, · · · , an), u) =

(b1, b2, · · · , bn), where bi =
n∨

j=1

[aj ⊗ δ(qj , u, qi)].q
′
0 =

(I(q1), I(q2), · · · , I(qn)) and F ′ : Q′ → L as

F1(a1, a2, · · · , an) =
n∨

i=1

[ai ⊗ F (qi)].

In general, the set X in Algorithm 1 is not a finite set, and
thus Q′ is not finite. To guarantee that the DLFA constructed
in Algorithm 1 is finite, we require the algebra (L,⊗) is locally
finite, i.e., the subalgebra generated by any finite set of (L,⊗)
is also finite ([15]).

For an LFA A , we can have the following algorithm
transform it into the canonical LRFA of it based on Algorithm
1.

Algorithm 2.
Step1: We can build a DLFA B from A by Algorithm 1.

Clearly, DLFA B is also an LRFA.
Step2: We obtain its saturated DLFA Bs by the saturation

operator.
Step3: We reduce its all erasable states, we can obtain its

saturated and reduced LRFA C . Clearly, C is the canonical
LRFA of A .

Example 5.3: Let L be the Gödel structure, we consider the
LFA A10(Fig.6) recognizing the LRFA-language f = 0.5

a∗ +
0.7
bb∗ + 0.7

ab∗ . Since A6 has two irreducible residual L-languages
ε−1f = f , b−1f = 0.7

b∗ , the canonical LRFA recognizing A6

has two states. We build the canonical LRFA from LFA A6

by Algorithm 2.
Step1: We build a DLFA by Algorithm 1, reduce all states

which are not reachable or are not accessible, then we can
obtain a trimmed DLFA A7(Fig.7).

Step2: We can obtain its saturated and reduced LRFA
A8(Fig.8) by saturation and reduction operator, and A8 is the
canonical LRFA recognizing the LRFA-language f .

2q
1

1q

a

1

5.0

ba

7.07.0
b

1

1

Fig. 6. A6 is an LFA recognizing the L-language f .

We take the number of states of an automaton as a measure
of its size. LRFA is a subclass of LFA and trimmed DLFA
are special LRFA. The canonical LRFA is the minimal
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1q 3q
1 7.0

2q

5.0

a
ba

5.0

a

b

Fig. 7. Fig.11. A7 is a trimmed DLFA recognizing L-regular language f .

1q 2q
1 7.0

5.0

ba

a b

Fig. 8. A8 is the canonical LRFA recognizing LRFA-regular language
f .

LRFA recognizing the same L-language. Hence, we have the
following proposition.

Theorem 5.6: For a given LRFA-regular language f . The
canonical LRFA recognizing f has the size of the equivalent
minimal DLFA as an upper bound and the size of its
equivalent minimal LFA as a lower bound.

VI. CONCLUSIONS

In this paper, we introduced the notion of LRFA and
LRFA-regular language with membership values in a com-
plete residuated lattice. Then we gave the definitions of
saturation operator and reduction operator of LFA, obtained
closures of two operators in LRFA. There is a unique
saturated and reduced LRFA for an LFA. In particular, we
proved that, for every LRFA-regular language f , there exists
a unique LRFA which has a minimal number of states and
largest initial and transition functions, we call it as canonical
LRFA, and gave a construction method. The study provides
another way for the minimization of states of lattice-valued
finite automata.

The next problem is to consider lattice-valued residual
finite automata with membership valued in a general lattice-
ordered monoid, and further problem is weighted residual
finite automaton. In this paper, the definition of saturation and
canonical LRFA depended on the structure of implication op-
erator in complete residual lattice, where implication operator
was difficult to define in a lattice -ordered monoid or in a
semiring. Therefore, we need to search new method to define
the saturator and canonical LRFA in the case the truth values
taken in a lattice-ordered monoid or in a semiring, which forms
another research topic in the further work.

REFERENCES

[1] F. Denis, A. Lemay, A. Terlutte, Residual finite ftate automata, STACS
2001, 18th Annual Symposium on Theoretical Aspects of Computer

Science, number 2010 in Lecture Notes in Computer Science, Springer
Verlag., (2001) 144–147.

[2] F. Denis, A. Lemay, A. Terlutte, Learning regular languages using RFSA,
In ed., Proceedings of the 12th International Conference on Algorithmic
Learning Theory (ALT-01). Number 2225 in Lecture Notes in Computer
Science,Springer Verlag.,(2001) 348–359.

[3] Y. Esposito, A. Lemay, F. Denis, P. Dupont, Learning probabilistic resid-
ual finite state automata, In: ICGI’2002, 6th International Colloquium
on Grammatical Inference. LNAI, Springer Verlag., (2002) 77–91.

[4] Y. Esposito, A. Lemay, F. Denis, P. Dupont, Learning probabilistic
residual finite state automata, Springer-Verlag Berlin Heidelberg 2002
Informaticae.51 (2002) 77–91.

[5] V.M. Glushkov, The abstract theory of automata, Russian Math. Surveys
16 (1961) 1–53.

[6] L. Ilie, G. Navarro, S. Yu, On NFA Reductions, Springer-Verlag Berlin
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