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Abstract—In  high-throughput  applications, accurate
segmentation of biomedical images can be considered as an
important step for recognizing cells that have the phenotype of
interest. In this paper, while conventional fuzzy clustering is not
able to implement the local and global spatial information, a
novel spatial fuzzy clustering cell image segmentation algorithm
is proposed. The segmentation procedure is divided into two
stages: the first stage involves processing the local and global
spatial information of the given cell image and a final
segmentation stage which is based on the idea of conventional
fuzzy clustering. Our idea can be considered as a sequential
integration of region based methods and fuzzy clustering for cell
image segmentation. Experimental results show that the
proposed model yields significantly better performance in
comparison with several existing methods.
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L

Fluorescence staining in combination with fluorescence
microscopy provides useful information about cells in image
cytometry. However, visual assessment of fluorescence
microscopy images is time consuming and inter- and intra-
observer variability is often observed. Fast automated high
throughput detection could be achieved by computer analysis
of images produced by a digital camera attached to a
fluorescence microscope. The first step of all automatic image
analysis in high throughput cell screening applications is cell
image segmentation. In general, in high-throughput tasks,
manual and semi-automatic procedures are not feasible due to
the massive amount of image data. Therefore, automatic
approaches are required which efficiently handle different cell
types and image artifacts such as intensity inhomogeneity and
noise.

INTRODUCTION

The introduction of fuzzy segmentation methods,
especially the fuzzy c-means algorithm (FCM) has advanced
the field of image segmentation [1-7, 31, 32]. Their popularity
and effectiveness is essentially related to the concept of
fuzziness in the membership degree of each image pixel.
Because of this ability, FCM and its variants have the ability to
use more information from the image compared to the crisp or
hard segmentation methods [20] which restrict each pixel to
exactly one cluster. The purpose of clustering is to partition
image pixels into clusters of similar characteristics. Generally,
the number of clusters is determined based on some cluster
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validity methods or prior knowledge. However, the main
drawback of FCM is that it only considers the spectral
properties of the pixels, and ignores the local and global spatial
information, making FCM very sensitive to noise and intensity
inhomogeneity. Recently, the idea of incorporating spatial
information into clustering methods has been widely
investigated, and several algorithms have been reported [3-7,
31, 32].

On the other hand, region-based level set methods [8-11]
have been proposed and applied to image segmentation. Based
on the Mumford—Shah functional [8] for image segmentation,
the Chan—Vese (CV) model is proposed [11] to identify objects
whose boundaries are not accurately identified by the gradient.
The minimal partition problem of the Mumford—Shah model is
solved in the CV model by implementing level set functions,
which use the regional image information inside and outside
the evolving curve, rather than the boundaries’ gradients
information. Although, by using the regional information, the
CV model is generally robust to noise, it often converges to
poor segmentation results for images with intensity
inhomogeneity. Furthermore, since the CV model and its
derivatives are based on the minimal partition problem and are
not convex, the global convex segmentation technique (GCS)
is proposed [12] to show that the non-convex energy of the CV
model can be reformulated as a convex optimization problem.
In [13] the GCS technique and the split Bergman algorithm are
utilized to propose a convex and fast segmentation method
based on the CV model but it is unable to use local information
and handle images with intensity inhomogeneity.

In this study, since reliable cell image segmentation
requires considering the intensity of each pixel, as well as local
and global spatial information in the image, the spatial fuzzy
clustering segmentation is decomposed into two stages. The
idea behind this decomposition is based on the idea of
sequential integration [14, 15] in which the sequential
separability assumption is implemented to ensure reliable
segmentation. In this approach, the final solution is defined as
the set of solutions acquired from solving the objectives in a
cascade way.

The rest of this paper is organized as follows: the CV
approach, the Local Chan-Vese (LCV) and the FCM are
described in the background section. Section three introduces
the proposed Globally Convex Local Chan-Vese model
(GCLCV) as well as our two stages spatial fuzzy clustering



algorithm. Comparison experiments and validation are
provided in Section 4. Finally, Section 5 concludes this paper
and highlights possible future work.

IL.

A. Chan-Vese model

Let Q c R? denotes the image domain and Ip:Q — R
denotes a given grey level image. The main idea of the CV
models, as an alternative solution to the Mumford—Shah
problem [8], is to find the smooth curve C c Q which
segments the image into non-overlapping regions, and two
constant functions c; and c, that estimate the mean image
intensities inside and outside the curve C, respectively. The
CV energy functional can be written as:

BACKGROUND

ECV(Cl' ¢, 0) = finside(c)llo(x) — ¢ |Pdx + foutside(C)llo (x) -
C,|?dx + p. Lengt €))

where u denotes a positive constant and inside(C) and
outside(C) denote foreground and background regions,
respectively, and Length(C) denotes the length of curve C.

A main disadvantage of the CV model is that since it
assumes that the image intensity is piecewise constant, it
generally considers global image information in the
segmentation procedure. Therefore, the CV model yields poor
segmentation results for images with intensity inhomogeneity,
due to wrong movement of evolving curves guided by global
image information.

B. Local Chan—Vese model
The local CV model [16] is proposed to handle images
with intensity inhomogeneity. It uses global regional image
information and local intensity information in the LCV energy
functional as follows:

ELCV(C]_, Cz, dl' dz, C) = El + EZ (2)

where E; and E, are defined as follows:

= -alac [ - ol
inside(c) outside(C)
and

E,

f (@ * o) — To(x) — dy)?dx
inside(c)

+ f (a1 * Io () — o) — dy)2dx
outside(C)

where gy is the averaging operator, with a kxk size window
which is implemented to consider local intensity information.
d; and d, are constant functions and approximate the mean
intensities difference image inside(C) and outside(C),
respectively .

By applying the level set method and replacing the unknown
curve C with signed distance function, @(x), (2), can be
reformulated as follows:

ELCV(Cli CZP dl! dZI @) =
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(J,H(B(0))F dx) + (J,(1 = HBX)F,dx) + uL(B(x)) +
PB(x)) 3)

where

{Fl = (Il = c11* + (g * [(x) = [(x) — dy)?)
Fp = ([Iy(®) = c;* + (g * [o(x) = [,(x) — d;)?)

and H(z), L(@(x)) and ?(Q(x)) denote Heaviside function,
length functional and level set regularization term,
respectively. They are defined as follows:

( _(lifz=0
H(Z)_{OifZSO

L(B) = [,8(6(x))IV (B(x))|dx
| P(Bx) = [,5(IVEC0| - 1)2dx

“4)

0H(z)

in which &(z) denotes the Dirac delta function §(z) = >,

The Heaviside function H(z) can be approximated by
smooth function H,(z), which is defined as [16]:

a

1 2 Z
H.(z) = > [1 +— arctan (;)] (5)
where € is a positive constant.
According to (5), the energy functional (3) can be
approximated as follows:

E"Y (¢, ¢5,dy, dy, @) = (J, He(B())F,dx) +

(Jo(1 = He(B(x))F,dx) + nLe(B(x) + P ((x)) (6)
where L.(@(x)) and P.(F(x)) denote the approximated
version of L(@(x)) and P (D(X)), respectively.

To minimize E.“¢V with respect to @ for fixed (c;, c,, d;, dy),
an artificial time variable t = 0 is used to obtain the following
gradient descent equation:

o9

5 = 8@ [ (o) —c)? = (Io(x) — c)*) —
(g * To() — Lo(x) = dp)? = (gx * 1o (%) = [p(x) — d2)?)]

. (0) v (22) + (v - an (22) ) )

[vel vl

where 8.(z) = %(Szizz).

C. Split Bergman Method

The general form of L,-regularized minimization problems
can be written as follows:

®)

where |.|; denotes L, -norm, and both |A(.)|; and H(.) are
convex functionals.

muinlA(u)l1 + H(u)



To solve (8), the split Bergman method [17, 18] utilizes
splitting to “de-couple” the L, and L, terms in (8). Therefore
(8) can be reformulated as follows:

min|d|; + H(u) ©)
u,d

where d = A(u).

Using a quadratic penalty function, (9) can be converted to an
unconstrained minimization problem as follows:
min, a(|d|; + H(W) +>[1d — A(W)I|?) (10)
where v and ||. || denote a positive constant and the L, -norm,
respectively. To enforce the constraint d = A(u), a vector b is
added inside the quadratic penalty function and Bergman
iteration is performed. Then (10) can be considered as a

sequence of unconstrained optimization problems and
Bergman updates:

(uk+1, d5+1) = arg min(|d|; + H(u) + % ld —AC) - bk“z)
u,d

bk+1 — bk + A(uk+1') _ dk+1 (11)

The existence of convergence for the above iterations (11)
which was named the Split Bergman algorithm has been
considered in [13, 17, 18].

D. The fuzzy c-means clustering algorithm

The fuzzy c-means clustering algorithm was first suggested
by Dunn [19], and further developed by Bezdek [20]. FCM
aims to partition & = (§,...,§ ), the set of voxel or pixel
locations in €2, into 1 clusters 2 < 1 < n that are determined by

II1. SPATIAL FUZZY CLUSTERING AS A TWO-STAGE

PROCEDURE

Our segmentation algorithm involves the following two
stages.

Stage 1: a) Image pre-segmentation based on the globally
convex local Chan—Vese model (GCLCV)

The GCS and split Bergman methods are used to pre-
segment the cell image based on the local and global region
information.

b) Finding the prior memberships of each pixel

The Classical Bayes classifier is used to estimate the
membership degrees of each pixel based on the segmentation
result in (a).

Stage 2: Spatial FCM using local and global region
information for final segmentation

A cell image and the prior membership degrees of each
pixel computed in stage 1 are taken as inputs to the spatial
FCM for final segmentation.

A. Globally convex local Chan—Vese model (GCLCYV)

Since the LCV energy functional is non-convex, it might
tend towards undesirable local minima. Chan et al. [12]
proposed the GCS technique to show that the non-convex
energy of the CV model can be reformulated as a convex
optimization problem. Goldstein et al. [13] utilized the GCS
technique and the Split Bergman algorithm to propose a
globally convex and fast segmentation model based on the CV
model (GCCV) which is unable to use local information and
handle images with intensity inhomogeneity. This section
proposes the globally convex energy functional (GCLCV)
based on the LCV model, the GCS technique and the split
Bergman algorithm.

prototypes v= (vy, ..., v,). With fuzzy clustering, every pixel éj In order to utilize the GCS technique for the gradient flow
equation (7), we drop the last term in the gradient flow equation.
Dropping the last term guarantees the global minima of the GCS
technique and the efficiency of applying Split Bergman

Algorithm for the minimization procedure [13]. We get:

i1s a member of all clusters at the same time, but with different
membership degrees. The FCM algorithm performs clustering
by solving:

(12)
(13)

2
Minimize Jgem (U, V) = XL, T, uif ”é} - Vi”
Subject to U € M

0
6_? = 8D [~ (U () — ¢1)? = ([,(x) — ¢z)?)

Where M = = ((ag * Io(x) — [H(x) — d1)2 = (G *Io(x) -, (x) - dz)z)]

AL
n n +|J.5€(Q) div (w) (14)
U= [uij].izl,...,k u;; € [0,1],2 U = 1'2 ujj > 0 With no loss of generality, we take p = 1. Therefore (14) can be
J=1.n i=1 i=1 written as follows:

%= 5.@) [P+ P, +div (o]

and d is the distance metric based on the Euclidean norm and (15)
the parameter m, 1< m < oo, influences the fuzziness of the
partition. As can be seen from (12) every pixel has the same
overall weight in the image’s data set. The fuzzy clustering
method under the mentioned constraint is often named

probabilistic clustering and uj can be considered as the
posterior probability p(ni|§j) [21]. Alternating optimization,

where

Py (%) = =41 ((Io(x) — ¢1)? = (I,(®) = ¢2)?)

and
P (%) = =22 (g * [o(¥) — [p(x) —d;)?
= (Gx * Ip(®) — I,(x) — dz)?)

Following the idea of the GCS technique, we find that the
simplified flow of (15) has the same stationary solution as the

which alternates between optimizations of Jpcy(U|V) over U
with fixed v and Jgcym (v|U)over v with fixedU, would converge
to a minimizer or a saddle point of Jgcm[22].
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original gradient flow equation. Note that H, is a non-
compactly supported, smooth approximation of H. Therefore
by removing &, the following gradient descent equation which
has the same stationary solution as (15) results:

[Pl + Py +div (|\7®|)]

The equation above is the gradient descent for the following
energy functional:

(16)

ECCLV (@) = [ [VB(x)|dx + [, B)P(x)dx
(17)

where @®(x) = —(Pl(x) +P, (x)) . Now (17) can be
reformulated as follows:
ECLYV(g) = 19|, +< 0, @ > (18)

Since EGCCV is homogeneous of degree 1 in @ and its
representation with level sets is not unique, the minimization
procedure does not yield a global minimum. To guarantee the
global minimum [12], the minimization of @ can be restricted
such that:
a<@(x)<B vx € Q (19)
Hence, the minimization problem for GCLCV can be written
as follows:

Jmin EGCLCY (20)

min, (@) = mingeq (|81 +< G, @ >)

The Split Bergman algorithm can be utilized to solve the
minimization problem given above. We use splitting for “de-
coupling” the L, and L, terms, so (20) becomes:

(@*,d*) = arg m1n(|d|1 + <@, > +—||d vol? @1
gefa,B]d

where d is an auxiliary variable andd = V@, (@*,d*) is the
solution, [|.]| is L,-norm and v denotes the positive constant
parameter.

Since the constraint d = V@ is weakly enforced, a vector b
is involved inside the quadratic penalty function and the
Bergman iteration is used to enforce the constraint. Therefore
(21) can be written as sequence of unconstrained
minimization:

(gk+t,d**1) = arg min(|d|; + <@, > +—||d Vo —
gela,pld

bk+1{|2) (22)

bk+1 — bk + V®k+1 _ (23)

Based on the calculus of variations, (22) can be minimized

over @ with fixed d by applying the following Euler-Lagrange

equation:

dk+1
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A =2 +V.(d-b) for @€ [of] (24)
Then the central difference for the Laplace operator and a
backward difference for the divergence operator are performed

to obtain the following numerical scheme:

uj; = dity; — dj — bi_;; + bj; +d3’J 1 dy bf/] .+ b{i
1
Wi = Z(ﬂi—l,j + Biv1j+ Bijo1 + Bijer — 7 + ui,j)
\ @;; = max{min{w;;, B}, a}
(25)

Vector-valued shrinkage operator is used to minimize (22)
with respectto d :

bk +ypk+1

@t = max([b¥+ VK | — v,0) U

v, O} roevgRe] (26)
Note that at each iteration before updating @, for a fixed
function @, the constant functions are needed to be updated as

follows:

_ fQIO(x)f(Q(x))dx
= Qf(ﬂ(x))dx
d = Jo(ai*lo () =1 ()§(@(x))dx
1 Qf(@(x))dx

i=12, @7

where §(@) = H.(9) and §(0) = (1 — H.(9)).

B. Prior membership degree computation

Assume the part of interest in GCLCV results is O(x,y).
C, ={9xy) =0} and €, =Q\C; are defined with
cardinality T, andt,, respectively. Thus for every pixel &, it
can be supposed that

EEC o p(Gle) = p(Gle) vi]j

Based on Bayesian rule, p(G;|§) can be calculated as follows
fori =1, 2:

p(EIC)P(C;)

P(&iIS) = DY) () (28)

In practice, priors P(C;) are estimated on the basis of the
proportion of pixels in class €;.To represent the p(§|E;), it can
be assumed that distribution generated by the class G; is
characterized using a Gaussian kernel as follows:

p(il(ii)f

n

exp(——(& u)F_l(é u))forl-lZ

Fi2

where p, and F; denote the mean value and the covariance
matrix of pixels in €; respectively.
The posterior probability p(€;|&) can thus be formulated as

p(EIC)P(C;)

p(G;l¢) = 3L, PGPS (29)



In which
p(éIGi)P(Gi) =
Zk 1Tk

(--(é n) F (- u)>

|7r1|2

In the same way the membership values of the pixels are
organized in matrix form:

w=v(els))

Spatial fuzzy clustering

(30)

.....

C.

To improve the performance of FCM, prior membership
degrees X are implemented in the objective function (12) as
follows:

] (wv) =

%) g vl

where v is called control parameter whose role is to keep a
balance between the original FCM and GCLCV method in the
optimization procedure.

2ozl e =il v (- (31)

The optimal values of v; and uj; is solved as followed.

Considering the constraint (13) and the Lagrangian multiplier
2, we define the following Lagrangian function £ :

L(UVJ)—Z Zuu ||§ vl

i=1 j=1 .
%) g =il - 3wy =D
i=1

Assume that uy; is the membership degree of &J._belonging

+ y(uij -

to the cluster n, whose centroid is vy. The stationary point of

the optimized ﬁlnctional can be defined as (ukj,vk, ) [23] if

oL
5_0 =0 a

and only if d 2L _y. Taking these

kl
derivatives returns the relatlonshlps as follows:

2

ZZUk]—IZO

i=1

(éj - Vk) +vy (ukj - Nkj>m (g} — Vk) =0

0L

15))

or _,
aVk_

m
uk]-

j=1

The optimal solution of vy is given by:
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n m m
Y1 & +y (ukj - Nkj) §

= (32)
o Z]-n=1 ukmj +v (uk]- — Nkj>m
Similarly:
L 2
2L i [
(g —50)" [~ -3 =0
Let m = 2 we have
2y + 21 (- 5) g~ =
= 1 b} R
T
uy; € M indicates
-1
= 2(1+’Y(1 _Zizzl 1]))< m)
=i
Therefore, the optimal solution of uy is given by:
Zi=1 . 12
\ =il /
1V. EXPERIMENTAL RESULTS

In this section, we compare the performance of our
proposed algorithm GCLCV and our spatial fuzzy clustering
based on the global and local region information(SFCGL) with
conventional FCM [19, 20], CV [11], SFCM [24], SFLS [25]
and region-scalable fitting energy (RSFE) [26], LCV [16],
Otsu thresholding (OT)[27], watershed algorithm(WA)[28],
GCCV[13]. The data set consists of human HT29 colon cancer
cells images with a size of 512 x 512 pixels from image
set BBBC008v1 [29, 30]. The ground truth is available for this
data set. An example of an original image and segmentation
result based on the proposed method is shown in Fig. 1. To
evaluate the performance of our algorithm, recognition error
rate (RER) and Dice coefficient were calculated. RER is
defined as:

RER(%) =

Tcell+Tb:ckground x 100 (34)

where n denotes the total number of pixels in the given
image, Teen and Thackground denote the number of pixels
incorrectly classified as the cell and background, respectively.
Dice coefficient is defined as:



2|RNS|

Dice(R,S) = RIS

(35)

where R denotes the binary reference image, and S denotes the
segmented image.

The number of false positives (FP) and the number of false
negatives (FN) are reported.

v IR

Vi (N /d

Fig 1. Example of (a) Original image, (b) Ground truth and (¢) Segmentation result

(a)

TABLE 1.
QUANTITATIVE RESULTS FOR THE BBBC008V1 AND NOISY BBBC008V1 FOR
THE DIFFERENT APPROACHES

HUMAN HT29 COLON CANCER CELLS

HUMAN HT29 COLON CANCER CELLS WITH 5% GAUSSIAN NOISE

ADDED
Method RER(% Dice FP FN RER (%) Dice FP FN
[9Y 4.68 0.75 0.9 3.1 5.28 0.68 1.1 3.6
FCM 5.39 0.69 1.9 4.1 6.11 0.61 22 39
RSFE 3.12 0.78 1.5 3.6 4.64 0.73 1.8 32
LCV 3.04 0.76 1.6 32 3.55 0.71 1.9 33
SFLS 3.54 0.73 1.6 42 4.39 0.65 2 43
SFCM 4.46 0.71 1.8 39 5.14 0.66 23 39
WA 591 0.67 2.1 4.8 6.41 0.65 2.6 3.8
oT 4.82 0.85 0.8 2.7 6.32 0.81 1.1 3.7
GCCV 2.98 0.79 0.9 32 3.38 0.77 1.3 2.8
GCLCV 2.6 0.92 0.7 33 3.12 0.88 1.1 2.8
SFCGL 1.63 0.94 0.8 3.4 2.33 0.91 0.9 29

Table 1 displays the segmentation results of the proposed
SFCGL and GCLCYV approach averaged over all images in the
data set for both clean and noisy images. As can be seen from
Table 1 the proposed SFCGL approach produces the best
results for the RER (%) and Dice coefficient. In particular, for
the more challenging noisy images significantly better results
is obtained in comparison with existing approaches.
Furthermore, it can be seen that the proposed GCLCV and the
spatial fuzzy clustering yield better results than the GCCV.
Also, the proposed GCLCV approach yields better results than
the RSFE, CV and LCV. In addition, it can be seen that the
convex functionals, GCCV and GCLCYV, yield better results
than the non-convex functionals, CV, RSFE, and LCV.

It is remarkable that, the minimization of the GCLCV
functional for an image of size of 512 x 512 pixels converges
after about 6 iterations and the computation time is
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approximately 215 s per image (using an Intel core i7 CPU
2640 M, 2.8 GHz, with 8 GB RAM, and Windows 7 64 bit).
In comparison, utilizing a standard level set method for the
LCV with gradient descent optimization requires about 60
iterations and the computation time is about 601 s on the same
machine.

V.  CONCLUSION

A new spatial fuzzy clustering algorithm using global and
local region information (SFCGL) is introduced in this paper.
The proposed SFCGL algorithm included as its first stage a
novel GCLCV algorithm based on the GCS method and Split
Bergman algorithm. In the second stage, the spatial
information captured by the GCLCV algorithm is transferred to
the FCM algorithm through an induced prior membership
defined by the posterior probabilities. The proposed algorithm
is fully automated. The experimental results demonstrated that
the proposed approaches can effectively yield significantly
better segmentation accuracy in cell image analysis.
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