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Abstract—In high-throughput applications, accurate 
segmentation of biomedical images can be considered as an 
important step for recognizing cells that have the phenotype of 
interest. In this paper, while conventional fuzzy clustering is not 
able to implement the local and global spatial information, a 
novel spatial fuzzy clustering cell image segmentation algorithm 
is proposed. The segmentation procedure is divided into two 
stages: the first stage involves processing the local and global 
spatial information of the given cell image and a final 
segmentation stage which is based on the idea of conventional 
fuzzy clustering. Our idea can be considered as a sequential 
integration of region based methods and fuzzy clustering for cell 
image segmentation. Experimental results show that the 
proposed model yields significantly better performance in 
comparison with several existing methods. 

Keywords—spatial fuzzy clustering; Chan-Vese model; local 
Chan-Vese model; Split Bergman method 

I. INTRODUCTION  
Fluorescence staining in combination with fluorescence 

microscopy provides useful information about cells in image 
cytometry. However, visual assessment of fluorescence 
microscopy images is time consuming and inter- and intra-
observer variability is often observed. Fast automated high 
throughput detection could be achieved by computer analysis 
of images produced by a digital camera attached to a 
fluorescence microscope. The first step of all automatic image 
analysis in high throughput cell screening applications is cell 
image segmentation. In general, in high-throughput tasks, 
manual and semi-automatic procedures are not feasible due to 
the massive amount of image data. Therefore, automatic 
approaches are required which efficiently handle different cell 
types and image artifacts such as intensity inhomogeneity and 
noise. 

    The introduction of fuzzy segmentation methods, 
especially the fuzzy c-means algorithm (FCM) has advanced 
the field of image segmentation [1-7, 31, 32]. Their popularity 
and effectiveness is essentially related to the concept of 
fuzziness in the membership degree of each image pixel. 
Because of this ability, FCM and its variants have the ability to 
use more information from the image compared to the crisp or 
hard segmentation methods [20] which restrict each pixel to 
exactly one cluster. The purpose of clustering is to partition 
image pixels into clusters of similar characteristics. Generally, 
the number of clusters is determined based on some cluster 

validity methods or prior knowledge. However, the main 
drawback of FCM is that it only considers the spectral 
properties of the pixels, and ignores the local and global spatial 
information, making FCM very sensitive to noise and intensity 
inhomogeneity. Recently, the idea of incorporating spatial 
information into clustering methods has been widely 
investigated, and several algorithms have been reported [3-7, 
31, 32]. 

On the other hand, region-based level set methods [8-11] 
have been proposed and applied to image segmentation. Based 
on the Mumford–Shah functional [8] for image segmentation,   
the Chan–Vese (CV) model is proposed [11] to identify objects 
whose boundaries are not accurately identified by the gradient. 
The minimal partition problem of the Mumford–Shah model is 
solved in the CV model by implementing level set functions, 
which use the regional image information inside and outside 
the evolving curve, rather than the  boundaries’ gradients 
information. Although, by using the regional information, the 
CV model is generally robust to noise, it often converges to 
poor segmentation results for images with intensity 
inhomogeneity. Furthermore, since the CV model and its 
derivatives are based on the minimal partition problem and are 
not convex, the global convex segmentation  technique (GCS) 
is proposed [12] to show that the non-convex energy of the CV 
model can be reformulated as a convex optimization problem. 
In [13] the GCS technique and the split Bergman algorithm are 
utilized to propose a convex and fast segmentation method 
based on the CV model but it is unable to use local information 
and handle images with intensity inhomogeneity.  

    In this study, since reliable cell image segmentation 
requires considering the intensity of each pixel, as well as local 
and global spatial information in the image, the spatial fuzzy 
clustering segmentation is decomposed into two stages.  The 
idea behind this decomposition is based on the idea of 
sequential integration [14, 15] in which the sequential 
separability assumption is implemented to ensure  reliable 
segmentation. In this approach, the final solution is defined as 
the set of solutions acquired from solving the objectives in a 
cascade way.  

The rest of this paper is organized as follows: the CV 
approach, the Local Chan-Vese (LCV) and the FCM are 
described in the background section. Section three introduces 
the proposed Globally Convex Local Chan-Vese model 
(GCLCV) as well as our two stages spatial fuzzy clustering 
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algorithm. Comparison experiments and validation are 
provided in Section 4. Finally, Section 5 concludes this paper 
and highlights possible future work. 

II. BACKGROUND 

A. Chan-Vese model 
       Let  Ω ؿ Ըଶ  denotes the image domain and I଴: Ω ՜ R 
denotes a given grey level image.  The main idea of the CV 
models, as an alternative solution to the Mumford–Shah 
problem [8], is to find the smooth curve C ؿ Ω  which 
segments the image into non-overlapping regions, and two 
constant functions cଵ and cଶ that estimate the mean image 
intensities inside and outside the curve C, respectively. The 
CV energy functional can be written as: 
 ECVሺcଵ, cଶ, Cሻ ൌ ׬ |I଴ሺܠሻ െ cଵ|ଶdܠ ୧୬ୱ୧ୢୣሺୡሻ ൅ ׬ |I଴ሺܠሻ െ ୭୳୲ୱ୧ୢୣሺCሻcଶ|ଶdܠ ൅ μ. Lengt                                                                  (1) 
 
where μ  denotes a positive constant and insideሺCሻ and outsideሺCሻ  denote foreground and background regions, 
respectively, and LengthሺCሻ denotes the length of curve C.  
      A main disadvantage of the CV model is that since it 
assumes that the image intensity is piecewise constant, it 
generally considers global image information in the 
segmentation procedure. Therefore, the CV model yields poor 
segmentation results for images with intensity inhomogeneity, 
due to wrong movement of evolving curves guided by global 
image information. 

B. Local Chan–Vese model  
       The local CV model [16] is proposed to handle images 
with intensity inhomogeneity. It uses global regional image 
information and local intensity information in the LCV energy 
functional as follows: 
 ELCVሺcଵ, cଶ, dଵ, dଶ, Cሻ ൌ Eଵ ൅  Eଶ                                       (2) 
 
where Eଵ and Eଶ are defined as follows: 
 Eଵ ൌ න |I଴ሺܠሻ െ cଵ|ଶdܠ 

୧୬ୱ୧ୢୣሺୡሻ ൅ න |I଴ሺܠሻ െ cଶ|ଶdܠ 
୭୳୲ୱ୧ୢୣሺCሻ  

and  Eଶ ൌ න ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶdܠ 
୧୬ୱ୧ୢୣሺୡሻ ൅ න ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶdܠ 

୭୳୲ୱ୧ୢୣሺCሻ  

where ग़୩ is the averaging operator, with a k×k size window 
which is implemented to consider local intensity information. dଵ and dଶ  are constant functions and approximate the mean 
intensities difference  image  insideሺCሻ and outsideሺCሻ , 
respectively .  
By applying the level set method and replacing the unknown 
curve C with signed distance function, Øሺܠሻ , (2), can be 
reformulated as follows: 
 ELCVሺcଵ, cଶ, dଵ, dଶ, Øሻ ൌ 

൫׬ H൫Øሺܠሻ൯Fଵdܠ ஐ ൯ ൅ ൫׬ ሺ1 െ HሺØሺܠሻFଶdܠ ஐ ൯ ൅ μࣦሺØሺܠሻሻ  ൅࣪ሺØሺܠሻሻ                                                                               (3) 
 
where  
 ൜ܨଵ ൌ ሺ|I଴ሺܠሻ െ cଵ|ଶ ൅ ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶሻܨଶ ൌ ሺ|I଴ሺܠሻ െ cଶ|ଶ ൅ ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଶሻଶሻ 

 
and Hሺzሻ , ࣦ൫Øሺܠሻ൯ and ࣪൫Øሺܠሻ൯  denote Heaviside function, 
length functional and  level set regularization term, 
respectively. They are defined as follows: 

۔ۖەۖ
ۓ Hሺzሻ ൌ ቄ 1 if  z ൒ 00 if  z ൑ 0 ࣦ൫Øሺܠሻ൯ ൌ ׬ δ൫Øሺܠሻ൯|׏ ஐ ሺØሺܠሻሻ|dܠ ࣪൫Øሺܠሻ൯ ൌ ׬ ଵଶ ሺ|׏ ஐ Øሺܠሻ| െ 1ሻଶdܠ                                 (4) 

 
in which  δሺzሻ denotes the Dirac delta function δሺzሻ ൌ பHሺ୸ሻப୸  . 
 
The Heaviside function Hሺzሻ  can be approximated by   a 
smooth function Hகሺzሻ, which is defined as [16]: 
 Hகሺzሻ ൌ ଵଶ ቂ1 ൅ ଶ஠  arctan ሺ୸கሻቃ                                                (5) 
 
where ε is a positive constant.  
According to (5), the energy functional (3) can be 
approximated as follows: 
 
 EகLCVሺcଵ, cଶ, dଵ, dଶ, Øሻ ൌ ൫׬ Hக൫Øሺܠሻ൯Fଵdܠ ஐ ൯ ൅ ൫׬ ሺ1 െ HகሺØሺܠሻሻFଶdܠ ஐ ൯ ൅ μࣦகሺØሺܠሻሻ  ൅ க࣪ሺØሺܠሻሻ           (6)  
 
where ࣦகሺØሺܠሻሻ  and க࣪ሺØሺܠሻሻ  denote the approximated 
version of ࣦሺØሺܠሻሻ and ࣪ሺØሺܠሻሻ, respectively. 
To minimize EகLCV with respect to Ø for fixed ሺcଵ, cଶ, dଵ, dଶሻ, 
an artificial time variable t ൒ 0  is used to obtain the following 
gradient descent equation: 
 
 பØப୲ ൌ δகሺØሻሾെሺሺI଴ሺܠሻ െ cଵሻଶ െ ሺI଴ሺܠሻ െ cଶሻଶሻ െ ሺሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶ െ ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଶሻଶሻሿ ൅μδகሺØሻ div ቀ ቁ|׎׏|׎׏ ൅ ቆ׏ଶØ െ div ቀ     Ø|ቁቇ                           (7)׏|Ø׏

                                              
where  δகሺzሻ ൌ ଵ஠ ቀ ககమା୸మቁ. 
 

C. Split Bergman Method 
     The general form of Lଵ-regularized minimization problems 
can be written as follows: 
  min୳ |Αሺuሻ|ଵ ൅ Hሺuሻ                                                           (8) 

where |. |ଵ  denotes Lଵ -norm, and both |Αሺ. ሻ|ଵ  and Hሺ. ሻ  are 
convex functionals. 
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To solve (8), the split Bergman method [17, 18] utilizes 
splitting to “de-couple” the Lଵ and Lଶ terms in (8). Therefore 
(8) can be reformulated as follows:  min୳,ሬୢሬሬԦ ଵ|܌| ൅ Hሺuሻ                                                                 (9) 

where ܌ ൌ Αሺuሻ. 

Using a quadratic penalty function, (9) can be converted to an 
unconstrained minimization problem as follows: 
  min୳,܌ሺ|܌|ଵ ൅ Hሺuሻ ൅ ஝ଶ ԡ܌ െ Αሺuሻԡଶሻ                              (10) 
 
where ν and ԡ. ԡ denote a positive constant and the Lଶ -norm, 
respectively. To enforce the constraint ܌ ൌ Αሺuሻ, a vector ܊  is 
added inside the quadratic penalty function and Bergman 
iteration is performed. Then (10) can be considered as a 
sequence of unconstrained optimization problems and 
Bergman updates: 

 ൫u୩ାଵ, ୩ାଵ൯܌ ൌ arg min୳,ሬୢሬԦ ሺ|܌|ଵ ൅ Hሺuሻ ൅ ஝ଶ ฮ܌ െ Αሺuሻ െ ୩ାଵ܊                                                    ୩ฮଶሻ܊ ൌ ୩܊ ൅ Αሺu୩ାଵሻ െ  ୩ାଵ                                           (11)܌
 
The existence of convergence for the above iterations (11) 
which was named the Split Bergman algorithm has been 
considered in [13, 17, 18].  

D. The fuzzy c-means clustering algorithm 
The fuzzy c-means clustering algorithm was first suggested 

by Dunn [19], and further developed by Bezdek [20]. FCM 
aims to partition ξ ൌ ሺξଵ, … , ξ୬ሻ , the set of voxel or pixel 
locations in Ω, into η clusters 2 ൑ η ൑ n that are determined by 
prototypes v= (vଵ, … , vη). With fuzzy clustering, every pixel ξ୨ 
is a member of all clusters at the same time, but with different 
membership degrees. The FCM algorithm performs clustering 
by solving: 

 

Minimize JFCMሺU, Vሻ ൌ ∑  η୧ୀଵ ∑ u୧୨ ୫ ቛξ୨ െ v୧ቛଶ୬୨ୀଵ               (12) 
Subject to U א ࣧ                                                                (13) 
 
Where ࣧ ൌ  ቐU ൌ ൣu୧୨൧୧ୀଵ,…,୩୨ୀଵ,…,୬ቤ u୧୨ א ሾ0,1ሿ, ෍ u୧୨ ൌ஗

୧ୀଵ 1, ෍ u୧୨ ൐ 0஗
୧ୀଵ ቑ 

 
and d is the distance metric based on the Euclidean norm and 
the parameter m, 1≤ m ൑ ∞, influences the fuzziness of the 
partition. As can be seen from (12)  every pixel has the same 
overall weight in the image’s data set. The fuzzy clustering 
method under the mentioned constraint is often named 
probabilistic clustering and u୧୨  can be considered as the 
posterior probability pሺη୧|ξ୨ሻ [21]. Alternating optimization, 
which alternates between optimizations of JሚFCMሺU|vሶ ሻ  over U 
with fixed vሶ  and JሚFCM൫vหUሶ ൯over v with fixedUሶ , would converge 
to a minimizer or a saddle point of JFCM[22]. 

III. SPATIAL FUZZY CLUSTERING AS A TWO-STAGE 
PROCEDURE 

Our segmentation algorithm involves the following two 
stages.  

Stage 1: a) Image pre-segmentation based on the globally 
convex local Chan–Vese model (GCLCV) 

 The GCS and split Bergman methods are used to pre-
segment the cell image based on the local and global region 
information. 

       b) Finding the prior memberships of each pixel 
       The Classical Bayes classifier is used to estimate the 
membership degrees of each pixel based on the segmentation 
result in (a). 

Stage 2: Spatial FCM using local and global region 
information for final segmentation  

A cell image and the prior membership degrees of each 
pixel computed in stage 1 are taken as inputs to the spatial 
FCM for final segmentation. 

 
A. Globally convex local Chan–Vese model (GCLCV) 
 
    Since the LCV energy functional is non-convex, it might 
tend towards undesirable local minima. Chan et al. [12] 
proposed the GCS technique to show that the non-convex 
energy of the CV model can be reformulated as a convex 
optimization problem. Goldstein et al. [13] utilized the GCS 
technique and the Split Bergman algorithm to propose a 
globally convex and fast segmentation model based on the CV 
model (GCCV) which is unable to use local information and 
handle images with intensity inhomogeneity. This section 
proposes the globally convex energy functional (GCLCV) 
based on the LCV model, the GCS technique and the split 
Bergman algorithm.  
    In order to utilize the GCS technique for the gradient flow 
equation (7), we drop the last term in the gradient flow equation. 
Dropping the last term guarantees the global minima of the GCS 
technique and the efficiency of applying Split Bergman 
Algorithm for the minimization procedure [13]. We get: 
 ∂Ø∂t ൌ δகሺØሻሾെλଵሺሺI଴ሺܠሻ െ cଵሻଶ െ ሺI଴ሺܠሻ െ cଶሻଶሻ െλଶሺሺग़௞ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶ െ ሺग़௞ כ I଴ሺܠሻ െ I଴ሺܠሻ    െ dଶሻଶሻሿ ൅μδகሺØሻ div ቀ  ቁ                                                                      (14)|׎׏|׎׏

With no loss of generality, we take μ ൌ 1. Therefore (14) can be 
written as follows: பØப୲ ൌ δகሺØሻ ቂPଵ ൅ Pଶ ൅ div ቀ  ቁቃ                                         (15)|׎׏|׎׏

where 
 Pଵሺܠሻ ൌ െλଵሺሺI଴ሺܠሻ െ cଵሻଶ െ ሺI଴ሺܠሻ െ cଶሻଶሻ  
and  Pଶሺܠሻ ൌ െλଶሺሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଵሻଶെ ሺग़୩ כ I଴ሺܠሻ െ I଴ሺܠሻ െ dଶሻଶሻ 

 
Following the idea of the GCS technique, we find that the 
simplified flow of (15) has the same stationary solution as the 
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original gradient flow equation. Note that  Hக  is a non-
compactly supported, smooth approximation of H. Therefore 
by removing δக, the following gradient descent equation which 
has the same stationary solution as (15) results:  
  பØப୲ ൌ ቂPଵ ൅ Pଶ ൅ div ቀ  ቁቃ                                                (16)|׎׏|׎׏
 
The equation above is the gradient descent for the following 
energy functional: 
 EGCLCVሺØሻ ൌ ׬ ܠሻ|dܠØሺ׏| ൅ ׬ ØሺܠሻΦሺܠሻdܠ ஐ ஐ                      
(17) 
 
where  Φሺܠሻ ൌ െ൫Pଵሺܠሻ ൅ Pଶሺܠሻ൯ . Now (17) can be 
reformulated as follows:  EGCLCVሺØሻ ൌ |Ø|ଵ൅൏ Ø, ߔ ൐                                            (18) 

 
     Since EGCLCV  is homogeneous of degree 1 in  Ø  and its 
representation with level sets is not unique, the minimization 
procedure does not yield a global minimum. To guarantee the 
global minimum [12], the minimization of Ø  can be restricted 
such that:   
 α ൑ Øሺܠሻ ൑ β          ܠ׊ א Ω                                                  (19) 
 
Hence, the minimization problem for GCLCV can be written 
as follows: 
 minØאሾ஑,ஒሿEGCLCVሺØሻ ൌ minØאሾ஑,ஒሿሺ|Ø|ଵ൅൏ Ø, ߔ ൐ሻ                 (20) 

 
    The Split Bergman algorithm can be utilized to solve the 
minimization problem given above. We use splitting for “de-
coupling” the Lଵ and Lଶ terms, so (20) becomes: 
 ሺØכ, ሻכ܌ ൌ arg minØאሾ஑,ஒሿ,ሬୢሬԦ ሺ|܌|ଵ ൅  ൏ Ø, ߔ ൐ ൅ ஝ଶ ԡ܌ െ  ԡଶሻ    (21)׎׏

 
where ܌ is an auxiliary variable and܌ ൌ ,כሺØ  ,׎׏  ሻ is theכ܌
solution,  ԡ. ԡ is Lଶ -norm and ν  denotes the positive constant 
parameter.  
     Since the constraint ܌ ൌ  ܊  is weakly enforced, a vector ׎׏
is involved inside the quadratic penalty function and the 
Bergman iteration is used to enforce the constraint. Therefore 
(21) can be written as sequence of unconstrained 
minimization: 
 ൫Ø୩ାଵ, ୩ାଵ൯܌ ൌ arg minØאሾ஑,ஒሿ,ሬୢሬԦ ሺ|܌|ଵ ൅  ൏ Ø, ߔ ൐ ൅ ஝ଶ ฮ܌ െ ׎׏ െ܊୩ାଵԡଶሻ                                                                                 (22) ܊୩ାଵ ൌ ୩܊ ൅ ୩ାଵ׎׏ െ  ୩ାଵ                                                 (23)܌
Based on the calculus of variations, (22) can be minimized 
over Ø with fixed ܌ by applying the following Euler–Lagrange 
equation: 
 

∆Ø ൌ ஍஝  ൅ .׏ ሺ܌ െ ሻ     for  Ø܊ א ሾα, βሿ                                (24) 
 
Then the central difference for the Laplace operator and a 
backward difference for the divergence operator are performed 
to obtain the following numerical scheme: 
 

۔ە
u୧,୨ۓ ൌ ୧ିଵ,୨୶܌ െ ୧,୨୶܌ െ ୧ିଵ,୨୶܊ ൅ ୧,୨୶܊ ൅܌୧,୨ିଵ୷ െ ୧,୨୷܌ െ ୧,୨ିଵ୷܊ ൅ ୧,୨୷w୧,୨܊ ൌ ଵସ ቀØ୧ିଵ,୨ ൅ Ø୧ାଵ,୨ ൅ Ø୧,୨ିଵ ൅ Ø୧,୨ାଵ െ  ஍஝ ൅ u୧,୨ቁØ୧,୨ ൌ max൛min൛w୧,୨, βൟ, αൟ                  

(25) 
 

Vector-valued shrinkage operator is used to minimize (22) 
with respect to ܌  : 
୩ାଵ܌  ൌ max൛ฮ܊୩ ൅ ୩ାଵฮ׎׏ െ ν, 0ൟ  ౡశభฮ                   (26)׎׏ౡା܊ౡశభฮ׎׏ౡା܊

 
Note that at each iteration before updating ׎  , for a fixed 
function ׎, the constant functions are needed to be updated as 
follows:  
 

൞ c୧ ൌ ׬ Iబሺܠሻ ౟ε൫Øሺܠሻ൯ୢܠ 
Ω׬  ౟ε൫Øሺܠሻ൯ୢܠ 

Ωd୧ ൌ ׬ ሺग़ౡכIబሺܠሻିIబሺܠሻሻ ౟εሺØሺܠሻሻୢܠ 
Ω ׬  ౟ε൫Øሺܠሻ൯ୢܠ 

Ω

    i ൌ 1,2,                            (27) 

 
where   ଵε ሺØሻ ൌ HகሺØሻ and  ଶε ሺØሻ ൌ ሺ1 െ HகሺØሻሻ. 
 

B. Prior membership degree computation 
Assume the part of interest in GCLCV results is  Øሺx, yሻ.  Ձଵ ൌ ሼξ|Øሺx, yሻ ൒ 0ሽ and  Ձଶ ൌ Ω\Ձଵ  are defined with 

cardinality  τଵ  andτଶ , respectively. Thus for every pixel ξ , it 
can be supposed that 

 
ξ א Ձ୧ ฻ pሺՁ୧|ξሻ ൒ p൫Ձ୨หξ൯ ׊ i ് j 

 
Based on Bayesian rule, pሺՁ୧|ξሻ can be calculated as follows 
fori ൌ 1, 2: 
 pሺՁ୧|ξሻ ൌ ୮ሺξ|Ձ౟ሻPሺՁ౟ሻ∑ ୮൫ξหՁౠ൯PሺՁౠሻమౠసభ                                                        (28) 

 
In practice, priors PሺՁ୧ሻ are estimated on the basis of the 

proportion of pixels in class Ձ୧.To represent the pሺξ|Ձ୧ሻ, it can 
be assumed that distribution generated by the class  Ձ୧  is 
characterized using a Gaussian kernel as follows: 

 pሺξ|Ձ୧ሻ= ଵ|ଶπF౟|౤మ exp ൬െ ଵଶ ൫ξ െ μ୧൯TF୧ିଵ൫ξ െ μ୧൯൰ for i ൌ 1,2   
 
where μ୧  and F୧  denote the mean value and the covariance 
matrix of pixels in Ձ୧ respectively. 
The posterior probability pሺՁ୧|ξሻ can thus be formulated as 
 pሺՁ୧|ξሻ ൌ ୮ሺξ|Ձ౟ሻPሺՁ౟ሻ∑ ୮൫ξหՁౠ൯PሺՁౠሻమౠసభ                                                        (29) 
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In which  
 
 pሺξ|Ձ୧ሻPሺՁ୧ሻ ൌ 

τ౟∑ τౡమౡసభ|2πF୧|౤మ exp ቆെ 12 ൫ξ െ μ୧൯TF୧ିଵ൫ξ െ μ୧൯ቇ 

 
  

In the same way the membership values of the pixels are 
organized in matrix form: 

 

 Յ ൌ ቊൣՅ୧୨൧ ୧ୀଵ,ଶ୨ୀଵ,…,୬ቤ Յ୧୨ ൌ p ቀՁ୧ቚξ୨ቁቋ                                       (30)   

               

C. Spatial fuzzy clustering 
To improve the performance of FCM, prior membership 
degrees Յ are implemented in the objective function (12) as 
follows: 
 J ሺu, vሻ ൌ ∑  ଶ୧ୀଵ ∑ u୧୨ ୫ ቛξ୨ െ v୧ቛଶ୬୨ୀଵ ൅ γ ቀu୧୨   െ Յ୧୨ቁ୫ ቛξ୨ െ v୧ቛଶ

       (31)                                      

where γ is called control parameter whose role is to keep a 
balance between the original FCM and GCLCV method in the 
optimization procedure.  

The optimal values of v୧  and  u୧୨    is solved as followed. 
Considering the constraint (13) and the Lagrangian multiplier Շ , we define the following Lagrangian function ࣦ : 

 ࣦሺU, V, Շሻ ൌ ෍  ଶ
୧ୀଵ ෍ u୧୨ ୫

୬
୨ୀଵ ቛξ୨ െ v୧ቛଶ
൅ γ ቀu୧୨   െ Յ୧୨ቁ୫ ቛξ୨ െ v୧ቛଶ െ Շሺ෍ u୧୨ െ 1η

୧ୀଵ ሻ 

Assume that u୩୨    is the membership degree of ξ୨ belonging 
to the cluster η୩ whose centroid is v୩. The stationary point of 
the optimized functional can be defined as ቀu୩୨   , v୩, Շቁ [23] if 

and only if  பࣦபՇ ൌ 0 , பࣦப୴ౡ ൌ 0  and  பࣦப୳ౡౠ   ൌ 0 . Taking these 

derivatives returns the relationships as follows:  ∂∂ࣦՇ ൌ ෍ u୩୨ െ 1ଶ
୧ୀଵ ൌ 0 ∂ࣦ∂v୩ ൌ 2 ෍ u୩୨ ୫ ቀξ୨ െ v୩ቁ୬

୨ୀଵ ൅ γ ቀu୩୨   െ Յ୩୨ቁ୫ ቀξ୨ െ v୩ቁ ൌ 0 

 
 The optimal solution of v୩ is given by: 
 

v୩ ൌ ∑ u୩୨ ୫ξ୨୬୨ୀଵ ൅ γ ቀu୩୨   െ Յ୩୨ቁ୫
ξ୨∑ u୩୨ ୫୬୨ୀଵ ൅ γ ቀu୩୨   െ Յ୩୨ቁ୫                                    ሺ32ሻ 

 
Similarly: ∂ࣦ∂u୩୨   ൌ mu୩୨ ୫ିଵ ቛξ୨ െ v୩ቛଶ

 ൅γm ቀu୩୨   െ Յ୩୨ቁ୫ିଵ ቛξ୨ െ v୩ቛଶ െ Շ ൌ 0 
 

Let m ൌ 2 we have 
 2u୩୨   ቛξ୨ െ v୩ቛଶ ൅ 2γ ቀu୩୨   െ Յ୩୨ቁ ቛξ୨ െ v୩ቛଶ ൌ Շ u୩୨   ൅ γ ቀu୩୨   െ Յ୩୨ቁ ൌ Շ2 ቛξ୨ െ v୩ቛଶ 

u୩୨   ൌ 11 ൅ γ
ቌ Շ2 ቛξ୨ െ v୩ቛଶ െ γՅ୩୨ቍ 

 u୩୨   א ࣧ indicates 
 

 Շ ൌ 2 ቀ1 ൅ γ൫1 െ ∑  ଶ୧ୀଵ Յ୧୨൯ቁ ቆ∑  ଶ୧ୀଵ ଵቛξౠି୴౟ቛమቇିଵ
 

 
Therefore, the optimal solution of u୩୨    is given by: 

u୩୨   ൌ ଵଵାγ ۈۉ
∑ଵାγ൫ଵିۇ  Յ౟ౠమ౟సభ ൯

∑  మ౟సభ ቛξౠష౬ౡቛమ
ቛξౠష౬౟ቛమ ൅ γՅ୩୨ۋی

     ሺ33ሻ                                    ۊ

         

IV. EXPERIMENTAL RESULTS 
In this section, we compare the performance of our 

proposed algorithm GCLCV and our spatial fuzzy clustering 
based on the global and local region information(SFCGL) with 
conventional FCM [19, 20], CV [11], SFCM [24], SFLS [25] 
and region-scalable fitting energy (RSFE) [26], LCV [16], 
Otsu thresholding (OT)[27], watershed algorithm(WA)[28], 
GCCV[13]. The data set consists of human HT29 colon cancer 
cells images with a size of 512 × 512 pixels from image 
set BBBC008v1 [29, 30]. The ground truth is available for this 
data set. An example of an original image and segmentation 
result based on the proposed method is shown in Fig. 1. To 
evaluate the performance of our algorithm,   recognition error 
rate (RER) and  Dice coefficient were calculated.  RER is 
defined as: RERሺ%ሻ ൌ Tౙ౛ౢౢାTౘ౗ౙౡౝ౨౥౫౤ౚ୬  ൈ 100                                  (34)   

where n denotes the total number of pixels in the given 
image, Tୡୣ୪୪ and Tୠୟୡ୩୥୰୭୳୬ୢ  denote the number of pixels 
incorrectly classified as the cell and background, respectively. 
Dice coefficient is defined as: 
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DiceሺR, Sሻ ൌ ଶ|RתS||R|ା|S|                                                        (35) 
 
where R denotes the binary reference image, and S denotes the 
segmented image.  
    The number of false positives (FP) and the number of false 
negatives (FN) are reported.  
 

 
Fig 1. Example of (a) Original image, (b) Ground truth and (c) Segmentation result 

TABLE 1. 
 QUANTITATIVE RESULTS FOR THE BBBC008V1 AND NOISY BBBC008V1 FOR 

THE DIFFERENT APPROACHES 
HUMAN HT29 COLON CANCER CELLS                          HUMAN HT29 COLON CANCER CELLS WITH 5%  GAUSSIAN   NOISE    

ADDED 

Method RER(% Dice FP FN RER (%) Dice FP FN 

CV 4.68 0.75 0.9 3.1 5.28 0.68 1.1 3.6

FCM 5.39 0.69 1.9 4.1 6.11 0.61 2.2 3.9

RSFE 3.12 0.78 1.5 3.6 4.64 0.73 1.8 3.2

LCV 3.04 0.76 1.6 3.2 3.55 0.71 1.9 3.3

SFLS 3.54 0.73 1.6 4.2 4.39 0.65 2 4.3

SFCM 4.46 0.71 1.8 3.9 5.14 0.66 2.3 3.9

  WA 5.91 0.67 2.1 4.8 6.41 0.65 2.6 3.8

  OT 4.82 0.85 0.8 2.7 6.32 0.81 1.1 3.7

GCCV 2.98 0.79 0.9 3.2 3.38 0.77 1.3 2.8

GCLCV 2.6 0.92 0.7 3.3 3.12 0.88 1.1 2.8

SFCGL 1.63 0.94 0.8 3.4 2.33 0.91 0.9 2.9

       

 

     Table 1 displays the segmentation results of the proposed 
SFCGL and GCLCV approach averaged over all images in the 
data set for both clean and noisy images. As can be seen from 
Table 1 the proposed SFCGL approach produces the best 
results for the RER (%) and Dice coefficient. In particular, for 
the more challenging noisy images significantly better results 
is obtained in comparison with existing approaches. 
Furthermore, it can be seen that the proposed GCLCV and the 
spatial fuzzy clustering yield better results than the GCCV.  
Also, the proposed GCLCV approach yields better results than 
the RSFE, CV and LCV. In addition, it can be seen that the 
convex functionals, GCCV and GCLCV, yield better results 
than the non-convex functionals, CV, RSFE, and LCV.  
     It is remarkable that, the minimization of the GCLCV 
functional for an image of size of 512 × 512 pixels converges 
after about 6 iterations and the computation time is 

approximately 215 s per image (using an Intel core i7 CPU 
2640 M, 2.8 GHz, with 8 GB RAM, and Windows 7 64 bit). 
In comparison, utilizing a standard level set method for the 
LCV with gradient descent optimization requires about 60 
iterations and the computation time is about 601 s on the same 
machine.  

V. CONCLUSION 
     A new spatial fuzzy clustering algorithm using global and 
local region information (SFCGL) is introduced in this paper. 
The proposed SFCGL algorithm included as its first stage a 
novel GCLCV algorithm based on the GCS method and Split 
Bergman algorithm. In the second stage, the spatial 
information captured by the GCLCV algorithm is transferred to 
the FCM algorithm through an induced prior membership 
defined by the posterior probabilities. The proposed algorithm 
is fully automated. The experimental results demonstrated that 
the proposed approaches can effectively yield significantly 
better segmentation accuracy in cell image analysis. 
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