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Abstract—This paper considers the interval type-2 
T-S fuzzy modeling and chaotic synchronization of two 
different memristor-based Lorenz circuits. In this paper, 
memristor-based Lorenz circuit is constructed by adding 
a flux-controlled memristor and phase portraits of the 
state variables are presented. In the meantime, an 
interval type-2 Takagi-Sugeno (T-S) fuzzy modeling of 
memristor-based Lorenz circuit proposed and the 
numerical simulations of the system’s solution and the 
phase portraits are presented. Finally, the 
synchronization between two different memristor-based 
Lorenz circuits is achieved by using the proposed fuzzy 
controller.  

 
Keywords—Interval type-2 fuzzy system, memristor, 

Lorenz circuit, chaotic synchronization. 
 

I. INTRODUCTION 
 

In 1971, Leon O. Chua [1] predicted the forth 
fundamental passive circuit element named memristor 
which means “memory resistor”. There are six 
combinations of four basic circuit variables, i, v, q and φ, 
of which five relationships have been found. Three of 
them are given by the passive circuit elements, resistor
R dv di= , capacitor C dq dv= and inductor L =  
d diϕ . The other two are the definition of current 
i dq dt= and Faraday’s law v d dtϕ= . Chua believes 
memristor shows the relation between q and φ, which 
can be described as charge-controlled memristor ( )M q =  
d dqϕ or flux-controlled memristor ( )W dq dϕ ϕ= .  

For the flux-controlled memristor, a monotonically 
increasing and piecewise linear characteristic is assumed 
[2], [3]. The memristor constitutive relation as shown in 
Fig. 1 can be expressed as 
      ( ) 0.5( )( 1 1)q b a bϕ ϕ ϕ ϕ= + − + − −         (1) 
where ,  0a b > . Therefore, the memristance can be 
obtained as 

,     1( )( )
,     1

adqW
d b

ϕϕϕ
ϕ ϕ

⎧ <⎪= = ⎨
>⎪⎩

             (2) 

Chaos synchronization in master-slave systems 
which is first proposed by Pecora and Carroll [4] has 
attracted much attention because of its potential 
applications image encryption, biological systems, 
information processing and secure communication 
[5]-[8]. There are many different schemes which have 
been developed for chaos synchronization such as 

backstepping method [9], adaptive control [10], [11], 
fuzzy control [12], [13], impulsive control method [14] 
and linear and nonlinear feedback control [15], [16]. 
Recently, active researches have been extensively 
carried out in the T-S fuzzy logic systems as a valuable 
tool for analysis and design of fuzzy control system [17]. 
In order to handle high levels of uncertainty and 
linguistic uncertainty, interval type-2 fuzzy logic 
controller is proposed [18]-[21]. In this paper, the 
interval type-2 T-S fuzzy modeling and chaotic 
synchronization of two different memristor-based 
Lorenz circuits are developed. 

The remaining part of this paper is organized as 
follows. The interval type-2 fuzzy modeling of the 
memristor-based Lorenz circuit is performed in Section 
II. The control input vector for Synchronization of two 
different memristor-based Lorenz circuits is derived in 
Section III. Section IV gives the simulation example to 
explain the usefulness of the proffered design scheme. 
The convictive conclusions of the advocated design 
method are provided in Section V. 

 
Fig. 1. The constitutive relation of the flux-controlled memristor. 
 

II. INTERVAL TYPE-2 FUZZY MODELING OF THE 
MEMRISTOR-BASED LORENZ CIRCUIT 

 
Recently, several nonlinear oscillators based on 

Chua’s circuit are proposed by Itoh and Chua, in which 
the Chua’s diode was replaced by monotone increasing 
piecewise linear memristors [3] and a new kind of 
memristor-based Lorenz circuit is presented [17] as 
shown in Fig. 2. 
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Fig. 2. Memristor-based Lorenz circuit. 

 
Based on basic circuit theories, the circuit equations 

can be derived as follows. 
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vector is denoted as 1 2 3 4( ) [ ( ), ( ), ( ), ( )]x t x t x t x t x t= =
[ ( ), ( ), ( ), ( )]X t Y t Z t tϕ . Therefore, the state representation 
of (3) can be obtained as  
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where ( )( ) ( )
( )

4
4

4

,     1

,     1

a x t
W x t

b x t

⎧ ≤⎪= ⎨
>⎪⎩

 is the piecewise 

linear function of ( )( )4W x t . If all variable values are 

chosen as 1 8α = , 2 15α = , 3 28α = , 4 8 3α = , 5a = , 
8b =  and initial value vector is 4(0) [10 ,0,0,0]x −= , the 

system (3) generates chaotic behaviors and 2-scroll 
attractor for 2 ( )x t  and 3 ( )x t  is given in Fig. 3. 

 
Fig. 3. The chaotic attractor of the system (2). 
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Moreover, the phase portrait of the state

2 ( )x t  and 3 ( )x t  is described in Fig. 4. 

Fig. 4. The phase portrait of the state 

1( )x t , 2 ( )x t  and 3( )x t . 

 
Suppose that state of 1( )x t  is

1( ) [ ,  ],  0x t ξ ξ ξ∈ − > , and the interv
membership function of 1( )x t  is selec
Fig. 5.  

Fig. 5. The membership function of
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l of the system (4) 
form: 

( )2 2x tα : 

( )2x t         (5) 

( )2 t          (6) 

For ( ) ( ) ( )2 3 1 2x t x t x t xα= − −

 ( ) ( ) ( )3 1 2 4 3x t x t x t xα= −
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( ) ( )3 2 4x t x tξ α= − −
Therefore, the first linear syste
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The final output of the interval type-2 T-S fuzzy 

memristor-based Lorenz system can be obtained as 
follows: 

( ) ( ) ( )( )
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where 

1 11 21 21 11L diag M M M M⎡ ⎤Θ = ⎣ ⎦  

[ ]2 12 22 22 12L diag M M M MΘ =  

[ ]1 11 21 21 11R diag M M M MΘ =   

2 12 22 22 12R diag M M M M⎡ ⎤Θ = ⎣ ⎦  
 

We can see that based on this interval type-2 T-S 
fuzzy model, the memristor-based Lorenz system can be 
represented by only four linear subsystems to exhibit 
complex chaotic behaviors. Hence, the interval type-2 
T-S fuzzy model of the memristor-based Lorenz system 
with center-average defuzzier is expressed as 

( ) ( )
2

1
i i

i
x t A x tβ

=

=∑                        (16) 

where ( )( ) 1
1 2 1 2i Li Ri L L R Rβ −= Θ + Θ Θ + Θ + Θ + Θ .  

 
Let’s reconsider the memristor-based Lorenz 

circuit (4) and all system parameters are selected as 
1 15α = , 2 16α = , 3 46α = , 4 4α = , 3a = , 8b =  

and initial conditions are ( )1 0 0.01x = , ( )2 0 0.01x = ,
( )3 0 0.01x = , ( )4 0 0.01x = . By using Matlab 

calculation, we have ( )127.2267 30.5893x t− ≤ ≤  and 
we assign 32ξ = , 1 /16υ = . The comparisons of the 
state outputs between interval type-2 fuzzy model (16) 
and circuit (4) are shown in Fig. 6. The chaotic attractor 

2x  vs. 3x  and the phase portrait of the state variables 

1( )x t , 2 ( )x t  and 3 ( )x t  are given in Fig. 7 and Fig. 8, 
respectively. 

 
From the dynamic behaviors, we can see that the 

memristor-based Loren circuit can be exactly 
approximated by the interval type-2 fuzzy model. 
 

 

 
Fig.6. State trajectories 1 4( ) ~ ( )x t x t of  

interval type-2 fuzzy model (16) and circuit (4). 
 

 
Fig. 7. The chaotic attractor 2x  vs. 3x . 

 

 
Fig. 8. the phase portrait of the state variables 1( )x t , 2 ( )x t and 3( )x t .  
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III. SYNCHRONIZATION OF TWO DIFFERENT 
MEMRISTOR-BASED LORENZ CIRCUITS 

 
Consider the following two memristor-based Lorenz 

circuits, the interval type-2 T-S fuzzy model of which 
are described by (17) and (18). 

The master system in (14) is rewritten as: 

 ( ) ( )
2

1
xi xi

i
x t A x tβ

=

=∑                 (17) 

The slave system with state feedback control vector 
is stated as: 

 ( ) ( ) ( )
2

1
yi yi

i
y t A y t Bu tβ

=

= +∑          (18) 

where B is a diagonal matrix and ( ) 1 2[ ( ), ( ),u t u t u t=

3 4( ), ( )]Tu t u t is the control input vector. The main 
objective is to design the fuzzy controllers

( ),  1 ~ 4iu t i =  such that the synchronization refer to 
that the state of the master system asymptotically 
synchronizes with the slave system at time t, namely, 

lim ( ) ( ) lim ( ) 0
t t

x t y t e t
→∞ →∞

− = =          (19) 

where ( )x t and ( )y t are the state vectors of the master 
system and slave system, respectively, and ( ) ( )e t x t= −

( )y t is the synchronization error vector. 
 
   According to the systems (17) and (18), we have the 
synchronization error dynamical system 

 ( ) ( ) ( )e t x t y t= −  

( ) ( ) ( )
2 2

1 1
xi xi yi yi

i i
A x t A y t Bu tβ β

= =
= − −∑ ∑   (20) 

 Obviously, chaotic synchronization of systems (17) 
and (18) will be achieved if the error dynamically 
system (20) has an asymptotically stable equilibrium 
point ( ) 0e t = . Following the preceding consideration, 
the sufficient condition for the asymptotic stability of 
the synchronization error system (20) can be acquired by 
the following theorem. 
 
Theorem: If the fuzzy controller is given in (21) and the 
following conditions (22) can be satisfied, the 
synchronization error dynamical system (20) is 
asymptotically stable, i.e., the chaotic synchronization 
between slave system (18) and master system (17) can 
be realized. 

( ) ( ) ( )
2 2

1 1
xi xi yi yi

i i

u t x t y tβ β
= =

= Ψ − Ψ∑ ∑     (21) 

0xi xi yi yiA B A B F− Ψ = − Ψ = <        (22) 
where xiΨ  and yiΨ  are feedback gain. 
Proof: 
Substituting the fuzzy controller (21) into (20), we can 
get 
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2

1
yi yi yi

i
A B y tβ

=
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If there exist feedback gains xiΨ  and yiΨ  such that 
(22) is satisfied, the overall system can be linearized by 

the fuzzy controller (21) as 
( ) ( )e t Fe t=                        (24) 

As a result, the synchronization error dynamical system 
(24) is asymptotically stable and the feedback gains  

xiΨ  and yiΨ  derived from (22) as 
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1

1

xi xi

yi yi

B A F

B A F

−

−

⎧Ψ = −⎪
⎨

Ψ = −⎪⎩
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This completes the proof. 
 

IV. SIMULATION EXAMPLE 
 

In this section, we will apply the proposed control 
scheme to synchronize two different memristor-based 
Lorenz circuits.  

 
Example: The parameters and initial states of master 

and slave systems are selected as: 
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, 

respectively. 
 
The phase portraits and chaotic behaviors of the state 

variables before fuzzy controller applied are given in Fig. 
9 and the dynamical behaviors of 1 4( ) ~ ( )x t x t  and 

1 4( ) ~ ( )y t y t  are shown in Fig. 10. 

 
Fig. 9. The phase portraits and chaotic behaviors of the state 

variables before fuzzy controller applied. 
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Fig. 10. The dynamical behaviors of 1 4( ) ~ ( )x t x t  and 

1 4( ) ~ ( )y t y t  before fuzzy controller applied. 

 
From Fig. 9 and Fig. 10, it is obvious that master and 

slave systems are not synchronized at all before fuzzy 
controller applied. If F I= −  and B I=  are chosen, 
the feedback gains can be determined as 
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. 

The fuzzy controller (21) is applied to slave system 
as described in (18). The phase portraits and chaotic 
behaviors of the state variables after fuzzy controller 
applied are given in Fig. 11 and the dynamical behaviors 
of 1 4( ) ~ ( )x t x t  and 1 4( ) ~ ( )y t y t  are shown in Fig. 

12. The synchronization errors 1( )e t , 2 ( )e t , 3 ( )e t and 

4 ( )e t  which fully demonstrate the effectiveness of the 
advocated method are given in Fig. 13. The control 
inputs 1( )u t , 2 ( )u t , 3 ( )u t  and 4 ( )u t  are shown in 
Fig. 14. Fig.11~Fig. 13 show that master and slave 
systems can be synchronized very fast when fuzzy 
controller is applied to slave system. 

 
Fig. 11. The phase portraits and chaotic behaviors of the state 

variables after fuzzy controller applied. 
 

 

 
Fig. 12. The dynamical behaviors of 1 4( ) ~ ( )x t x t  and 

1 4( ) ~ ( )y t y t  after fuzzy controller applied. 
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Fig. 13. Synchronization errors 1 4( ) ~ ( )e t e t . 

 
Fig. 14. The control inputs 1( )u t , 2 ( )u t , 3( )u t  and 4 ( )u t . 

 
V. CONCLUSIONS 

 
In this paper, the interval type-2 T-S fuzzy modeling 

of memristor-based Lorenz circuit is proposed and the 
synchronization issue between two different memristor- 
based Lorenz circuits is developed. Numerical 
simulations are provided to show that the asymptotical 
stability of the zero equilibrium point of the 
synchronization error can be guaranteed and to illustrate 
the effectiveness of the scheme proposed in this work. 
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