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Abstract— In practical group decision making (GDM) prob-
lems adhere to uncertain and imprecise data, the decision
makers may express their preferences using linguistic terms.
The aim of this paper is to present a method to assist the
consensus process and selection process of multi-criteria GDM
(MCGDM) problem under linguistic setting. If the consensus
level does not meet predefined requirements, an algorithm
is provided to help the decision maker or moderator reach
the consensus goal. Once the consensus reaching process is
finished, the maximizing deviation method is used to derive
the importance weights of the attributes. Then, the linguistic
weighted arithmetic averaging (LWAA) operator of 2-tuple
linguistic variables is used to obtain the overall assessment value
of each alternative and the ranking order of all alternatives
can be determined. Finally, one example of personal selection
problem is given to show the use of the proposed method.

I. INTRODUCTION

MULTI-CRITERIA decision making (MCDM) prob-
lems arise in many practical situations and have drawn

much attention in the management and engineering field.
Multi-criteria group decision making (MCGDM) problems
address decision situations where a group of decision makers
express preferences on multiple attributes and attempt to find
a common solution and have been widely discussed in recent
years [1][2]. There are cases in which the information cannot
be expressed precisely in a quantitative form but may be
stated only in linguistic terms. For example, when attempting
to qualify phenomena related to human perception, we are
likely to use words in natural language instead of numerical
values. (e.g. when evaluating the “comfort” or “design” of
a car, terms like “bad,” “poor,” “tolerable,” “average,” or
“good” can be used [3]). A more realistic measurement is to
use linguistic assessments instead of numerical values [4]–
[6]. Linguistic variables are very useful in situations where
the decision making problems are too complex or ill-defined
to be described properly using conventional quantitative
expressions.

A number of studies have emphasized the importance of
MCDM with fuzzy or linguistic data [7]. Some methods
of MCDM under linguistic environment have been pro-
posed [8]–[11]. Xu [8] presented uncertain linguistic ordered
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weighted averaging (ULOWA) operator and uncertain lin-
guistic hybrid aggregation (ULHA) operator to solve MCDM
with uncertain linguistic information. Wu and Chen [9] de-
veloped a method named the maximizing deviation method to
determine the optimal relative weights of attributes in multi-
attribute GDM with linguistic variables. Xu and Da [10]
also proposed an optimization model based on the deviation
degree and ideal point of uncertain linguistic variables to
derive the attribute weights. Fan [11] provided a method
to solve the GDM problem with multi-granularity uncertain
linguistic information. In the method, multi-granularity un-
certain linguistic information is transformed into trapezoidal
fuzzy numbers and an extension of TOPSIS is conducted to
rank the alternatives.

To solve GDM problems, two processes are applied before
obtaining a final solution: a consensus process and a selec-
tion process [12]. From the literature on linguistic decision
analysis, there are two general decision models [13]: the
first model is based mainly on an aggregation-and-ranking
scheme, and the second is based on a consensus reaching
oriented solution scheme. Some consensus models with lin-
guistic information have been developed for GDM (see for
example, [14]–[16]). In previous researches, few papers have
discussed MCGDM consensus reaching processes [18]–[22].
Fu and Yang [17] suggested a MCGDM group consensus
model based on an evidential reasoning approach. Parreiras
et al. [18] proposed a flexible MCGDM consensus scheme
under linguistic assessments. To maximize the soft consensus
index, an optimization procedure that searched for the weight
of each decision maker’s opinion was conducted. Xu [20]
investigated the problem of MCGDM consensus in numerical
settings, and developed a straightforward algorithm to reach
a group consensus. Xu and Wu [21] presented a discrete
consensus support model to deal with MCGDM in numerical
settings. The above studies have made significant contribu-
tions to the MCGDM consensus models. However, some
previous methods can only be used in a crisp case. Some
methods although considered linguistic setting, they do not
fucus on the consensus process. Therefore, group consensus
as a basic problem in GDM needs to be considered for the
MCGDM under a linguistic setting [22]. As pointed by [24],
looking for a simple yet reasonable MCGDM process is still
in progress. It is necessary to develop different consensus
measures and different consensus models for a specified
problem.

The rest of the paper is organized as follows. Section II
introduces the concept of linguistic variable and describes the
MCGDM problem. In Section III, a method is presented to
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solve the linguistic MCGDM problem. Section IV gives an
example to illustrate the proposed method. Finally, Section
V concludes the paper.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

For the convenience of analysis, this section introduces the
concepts of linguistic variables. These basic definitions and
notations will be used throughout the paper, unless stated
otherwise.

When using linguistic approaches to solve decision prob-
lems, techniques are needed to compute with word (CWW).
There are main three linguistic computational models: the
semantic model, the symbolic model and the 2-tuple linguis-
tic model [23][24]. Suppose that S = {sα|α = 0, · · · , g} =
{s0, s1, s2, · · · , sg} is the linguistic term set accompanied
with a pre-ordered structure such that si1 < si2 iff i1 < i2.
Here, S is a finite and totally ordered discrete term set whose
cardinality value is an odd one, such as 7 and 9, where
sα represents a possible value for a linguistic variable. The
semantics of linguistic variables is usually represented by
fuzzy numbers. For example, the following semantics can be
assigned to a set of seven terms via triangular fuzzy numbers
[14] (see Fig. 1):

S = {N = None=(0,0,0.17)
V L = V ery Low=(0,0.17,0.33)
L = Low=(0.17,0.33,0.5)
M = Medium=(0.33,0.5,0.67)
H = High=(0.5,0.67,0.83)
V H = V ery High=(0.67,0.83,1)
P = Perfect = (0.83,1,1)}

Fig. 1. Set of seven linguistic terms with their semantics

In the symbolic computation process, the discrete linguis-
tic set S is extended to a continuous interval S = {sα|α ∈
[0, g]}. S is called an extended linguistic term set associated
with S [25]. When considering any two linguistic terms
sα, sβ ∈ S, and µ, µ1, µ2 ∈ [0, 1], their operational laws
are given by

sα ⊕ sβ = sα+β , sα ⊕ sβ = sβ ⊕ sα, µsα = sµα,

(µ1 + µ2)sβ = µ1sβ ⊕ µ2sβ , µ(sα ⊕ sβ) = µsα ⊕ µsβ .

Let s ∈ S, and I(s) be denoted as the position index of s
and called the gradation of s in S. For example, I(sα) = α.
Let (si, xi) be a 2-tuple linguistic label, where si ∈ S, then
the corresponding extended linguistic label is si+xi

∈ S. It
has been shown that the continuous label based computation
model and the 2-tuple label based computation model are

equivalent in their calculated values [15][16]. In the fol-
lowing, for notation simplicity, only the symbolic calculated
values in the computation process are used. However, the
symbolic aggregation values are explained by the 2-tuple
representation model.

The MCGDM problem with linguistic information refers
to the problem of the selection or ranking of the alternatives
that are associated with incommensurate and conflicting
attributes, in which the attribute values given by decision
makers are linguistic variables. The following notations are
used.

Let M = {1, 2, · · · ,m}, N = {1, 2, · · · , n}, P =
{1, 2, · · · , p}. Suppose there are n(n ≥ 2) potential alter-
natives denoted by X = {X1, X2, · · · , Xn}. Each alterna-
tive is evaluated with respect to a predefined attribute set
C = {C1, C2, · · · , Cm}. There are a group of decision
makers E = {E1, E2, · · · , Ep}(p ≥ 2). Assume λ =
(λ1, λ2, · · · , λp) is the weight vector of the decision makers,
where λk ∈ (0, 1), k ∈ P ,

∑p
k=1 λk = 1. Suppose that

Rk = (r(k)
ij )n×m is a linguistic decision matrix given by

the decision maker Ek ∈ E, where r
(k)
ij represents the

performance of the alternative Xi over the attribute Cj ∈ C.
The problem in this paper is concerned with the ranking
of the alternatives or the selection of the most desirable
alternative(s) using the linguistic decision matrices Rk, k =
1, 2, · · · , p.

III. DECISION SUPPORT MODEL

In this section, the consensus measure of linguistic variable
and linguistic decision matrix are brief introduced. Based
on these measures, a consensus reaching process is formally
developed. The maximizing deviation method is introduced
to obtain the importance weights of the criteria. Then a
decision support model based on the consensus process and
the maximizing deviation method is presented.

A. Consensus Measure

The distance between sα and sβ can be defined as follows:
Definition 1: Let sα and sβ be two linguistic variables.

The deviation measure between sα and sβ is defined as

d(sα, sβ) =
|I(sα) − I(sβ)|

g
=

|α − β|
g

, (1)

where g is the number of linguistic terms in the set S/{s0}.
Similarly, let (rα, xα) and (rβ , xβ) be the 2-tuples corre-

sponding to sα and sβ . Then the distance function of 2-tuples
is given by

d((rα, xα), (rβ , xβ)) =

∣∣4−1(rα, xα) −4−1(rβ , xβ)
∣∣

g
.

(2)
Note that for the definitions 4 and 4−1, please refer to [23].
It is easy to verify that 0 ≤ d(sα, sβ) ≤ 1.

Definition 2: Let {s1, s2, · · · , sn} be a set of variables to
be aggregated, where si ∈ S̄ and w = {w1, w2, · · · , wn}
be their associated weights where wi ≥ 0,

∑n
i=1 wi = 1.

The corresponding linguistic 2-tuple of si is denoted as

470



si = (ri, xi). The linguistic weighted arithmetic averaging
(LWAA) operator based on 2-tuples is

LWAA2−tuple(s1, s2, · · · , sn) = 4(
n∑

i=1

4−1(si) · wi).

(3)
Using the extended linguistic representation model, the def-
inition is

LWAAe(s1, s2, · · · , sn) = sα, where α =
n∑

i=1

wiI(si).

(4)
Using the extended linguistic terms and linguistic 2-tuples
operation laws respectively, it follows that

4−1(LWAA2−tuple) = I(LWAAe) =
n∑

i=1

wiI(si). (5)

For notation simplicity, in the sequel, both the
LWAA2−tuple operator and the LWAAe operator are de-
noted by LWAA.

Based on the deviation measure between two linguistic
variables, we introduce the similarity measure between two
linguistic decision matrices.

Definition 3: Let A = (aij)n×m and B = (bij)n×m be
two linguistic decision matrices, then the similarity degree
between A and B is defined as

S(A,B) =
1

nm

n∑
i=1

m∑
j=1

d(aij , bij). (6)

Let R1, R2, · · · , Rp be p linguistic decision matrices pro-
vided by the p decision makers, where Rk = (r(k)

ij )n×n,
r
(k)
ij ∈ S̄. Then the weighted combination R = λ1R1 ⊕

λ2R2 ⊕ · · · ⊕ λpRp is the group linguistic decision matrix
R = (rij)n×n, where

rij = LWAA(r(1)
ij , r

(2)
ij , · · · , r

(p)
ij )

= λ1r
(1)
ij ⊕ λ2r

(2)
ij ⊕ · · · ⊕ λpr

(p)
ij .

(7)

Definition 4: Let Rk = (r(k)
ij )n×m, k = 1, 2, · · · , p and

Rc = (rc
ij)n×m be p linguistic decision matrices and the

group linguistic decision matrix, respectively. Then, based
on the similarity measure between the two linguistic decision
matrices, the group consensus index for Rk is defined by

GCI(Rk) = 1 − S(Rk, Rc) = 1 − 1
nm

n∑
i=1

m∑
j=1

d(r(k)
ij , rc

ij).

(8)
If GCI(Rk) ≥ GCI , Rk is called a decision matrix with

acceptable consensus, where GCI is the consensus level
threshold. GCI can be determined in advance by the decision
makers. If GCI(Rk) = 1, then the kth decision maker
is in full consensus with the group preference. Otherwise,
the larger the value of GCI(Rk), the closer that decision
maker is to the group. Depending on the actual situation,
the decision makers establish the threshold GCI for the
deviation degree between the individual linguistic decision
matrix and the group linguistic decision matrix. In this paper,

when each individual preference is close enough to the group
preference at a given level, it is considered a consensus has
been achieved.

B. Consensus Reaching Process

Let R1, R2, · · · , Rp and Rc be the p individual linguistic
decision matrices and the group linguistic decision matrix,
respectively. It seems reasonable to assume that an decision
maker who is asked to adjust their preferences is the de-
cision maker who has the minimum consensus index. As
with other research [14][18], an implicit hypothesis in the
proposed approach is that the decision makers are expected
to effectively support the complete decision making process
from problem formulation to solution implementation. To
reach a predefined consensus level, the following algorithm
is designed.

Algorithm 1: Consensus process based on LWAA operator
Input: Individual linguistic decision matrices R1, R2,

· · · , Rp, the weight vector of the decision makers λ =
(λ1, λ2, · · · , λp)T , the predefined threshold GCI , the max-
imum number of iterative times hmax ≥ 1 and 0 < γ < 1.

Output: Modified linguistic decision matrices R1, R2, · · · ,
Rp, GCI(Rk), k = 1, 2, · · · , p, and the number of iterations
h.

Step 1:Set h = 0 and Rk,0 = (r(k)
ij,0)n×m = (r(k)

ij )n×m.
Step 2: Calculate the group linguistic preference relation

Rc,h = (rc
ij,h)n×m corresponding to R1,h, R2,h, · · · , Rp,h,

where

rc
ij,h = LWAA(r(1)

ij,h, r
(2)
ij,h, · · · , r

(p)
ij,h).

Step 3: Calculate the group consensus index GCI(Rk,h),
k ∈ P by Definition 4. If GCI(Rk,h) ≥ GCI , ∀k ∈ P or
h ≥ hmax, then go to step 5; otherwise, go on to the next
step.

Step 4: Suppose that GCI(Rτ,h) = min
k

{GCI(Rk,h)}.

Let Rk,h+1 = (r(k)
ij,h+1)n×m, where

r
(k)
ij,h+1 =

{
γr

(k)
ij,h ⊕ (1 − γ)rc

ij,h k = τ

r
(k)
ij,h k 6= τ

. (9)

Set h = h + 1 and go to Step 2.
Step 5: Let Rk = Rk,h, for all k = 1, 2, · · · , p. Output

R1, R2, · · · , Rp, GCI(Rk), for all k = 1, 2, · · · , p, and the
number of iterations h.

Step 6: End.

Algorithm 1 is an iterative process. It can improve the
consensus level of each individual in the group. When the
individual k who has the smallest GCI value implemented
the improving strategy, the individual k will have a better
GCI value. To demonstrate that Algorithm 1 is convergent,
the following theorem is proposed.

Theorem 1: Let R1, R2, · · · , Rp and λ = (λ1, λ2, · · · ,
λp)T be the p linguistic decision matrices and the weight
vector of the decision makers respectively. Let Rl,h be the
decision matrix sequences generated by Algorithm 1 for
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decision maker l. In the hth iteration, suppose that the kth
decision maker Ek has the minimum GCI value, then

GCI(Rk,h+1) > GCI(Rk,h). (10)

Proof: According to the strategy of Algorithm 1, we have

Rk,h+1 = (r(k)
ij,h+1)n×m,

where
r
(k)
ij,h+1 = γr

(k)
ij,h ⊕ (1 − γ)rc

ij,h.

Furthermore, we have

I(rc
ij,h) − I(rc

ij,h+1)

=
p∑

l=1

λlI(r(l)
ij,h) −

p∑
l=1

λlI(r(l)
ij,h+1)

= λk(I(r(k)
ij,h) − I(r(k)

ij,h+1))

= λk(I(r(k)
ij,h) − (γI(r(k)

ij,h) + (1 − γ)I(rc
ij,h)))

= λk(1 − γ)(I(r(k)
ij,h) − I(rc

ij,h)).

(11)

Therefore∣∣∣I(r(k)
ij,h+1) − I(rc

ij,h+1)
∣∣∣

=
∣∣∣γI(r(k)

ij,h) + (1 − γ)I(rc
ij,h) − I(rc

ij,h+1)
∣∣∣

=
∣∣∣γ(I(r(k)

ij,h) − I(rc
ij,h)) + (I(rc

ij,h) − I(rc
ij,h+1))

∣∣∣
=

∣∣∣γ(I(r(k)
ij,h) − I(rc

ij,h)) + λk(1 − γ)(I(r(k)
ij,h) − I(rc

ij,h))
∣∣∣

=
∣∣∣(γ + λk(1 − γ))(I(r(k)

ij,h) − I(rc
ij,h))

∣∣∣
<

∣∣∣I(r(k)
ij,h) − I(rc

ij,h)
∣∣∣ .

Since

d(r(k)
ij,h, rc

ij,h) =

∣∣∣I(r(k)
ij,h) − I(rc

ij,h)
∣∣∣

g
,

we have

d(r(k)
ij,h+1, r

c
ij,h+1) < d(r(k)

ij,h, rc
ij,h). (12)

Consequently,

S(Rk,h+1, Rc,h+1) < S(Rk,h, Rc,h).

That is,
GCI(Rk,h+1) > GCI(Rk,h).

This completes the proof of Theorem 1.
Theorem 1 guarantees that for the decision maker Ek, the

consensus level of this round is better than that of the last
round. Generally, after implementing the process finite times,
the group can achieve a predefined consensus level.

Note 1: The parameter γ controls the extent of the modi-
fication in every round. In practice, γ is determined through
simulation experiment. At the same time, the convergence
rate of the process depends on both the size of the group of
decision makers and the set of alternatives, and mostly on
the decision makers’ willingness to compromise.

C. Maximizing Deviation Method

Once the consensus process is terminated, we obtain
the final group linguistic matrix which is also denoted as
Rc = (rc

ij)n×m. Assume w = (w1, w2, · · · , wm)T is the
attribute weight vector to be determined. From Rc, the
overall assessment value of alternative Xi can be written
as

Zi(w) = LWAA(rc
i1, r

c
i2, · · · , rc

im)
= w1r

c
i1 ⊕ w2r

c
ij ⊕ · · · ⊕ wmrc

im.
(13)

The basic idea of the maximizing deviation method is
that the criterion or attribute with a larger deviation value
among alternatives should be considered as a more important
criterion or attribute [9]. For the case where each alternative
takes similar value on an attribute, such an attribute does
not add meaningful value to the overall assessment value of
each alternative since each alternative adds a similar value.
Especially, if all available alternatives score about equally
with respect to a given attribute, then such an attribute will be
judged unimportant. In other word, such an attribute should
be assigned a very small weight. Based on this idea, an
optimization method could be developed to determine the
attribute weights under the assumption that attribute weights
are completely unknown.

For the attribute Cj , the deviation of alternative Xi to all
the other alternatives can be defined as

Fij =
n∑

l=1

d(rc
ij , r

c
lj)wj =

1
g

n∑
l=1

|I(rc
ij) − I(rc

lj)|wj . (14)

Further, the deviation value of all alternatives to other alter-
natives over the attribute Cj is denoted by

Fj =
n∑

i=1

Fij =
1
g

n∑
i=1

n∑
l=1

|I(rc
ij) − I(rc

lj)|wj . (15)

Based on the idea described above, the weight vector is
obtained by solving the following non-linear programming
model:

min F (w) =
m∑

j=1

Fj = 1
g

m∑
j=1

n∑
i=1

n∑
l=1

|I(rc
ij) − I(rc

lj)|wj

s.t. wj ≥ 0, j ∈ M
m∑

j=1

w2
j = 1.

(16)
The attribute weights wj , j ∈ M can be derived by

solving model (16) using Lagrangian multiplier method.
After further normalization of the obtained weights, wj , j ∈
M is rewritten as

wj =

n∑
i=1

n∑
l=1

d(rc
ij , r

c
lj)

m∑
j=1

n∑
i=1

n∑
l=1

d(rc
ij , r

c
lj)

(17)

Therefore, once the group linguistic decision matrix is
obtained, Eq. (17) is used to get the attribute weights.

Note 2: In the proposed maximizing deviation method,
the LWAA operators is utilized to get the overall assessment
value. However, there are some other aggregation operators
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that can be used such as the linguistic weighted geomet-
ric averaging (LWGA) operator. Different to the ordered
weighted averaging (OWA) like operator where a weight
wi is associated with a particular ordered position i of
the arguments, LWAA and LWGA operators associate each
argument with a particular weight. Thus, when we have to
consider the attribute weight in the aggregation, the operators
like LWAA or LWGA should be used, otherwise the OWA-
like operators are useful. It depends on the predetermined
mechanism used in the group decision-making process.

D. The Decision Framework for Linguistic MCGDM

The decision framework for linguistic MCGDM problems
is shown in Fig. 2. As mentioned earlier, there are in general
two processes to conduct before obtaining a final solution:
the consensus process and the selection process. Before the
selection process, a consensus process is conducted to make
a maximum degree of agreement solution between the group
members. The selection process involves the aggregation of
individual decision matrices and the exploitation of the group
decision matrix. Note that the proposed consensus reaching
process can automatically adjust each linguistic decision
matrix to meet the predefined consensus level. Therefore,
in some situations, the role of the moderator can be replaced
by a designed system. The maximizing deviation method is
used to determine the objective weights of the attributes and
thus it alleviates the influence of the decision makers in the
selection process. This model can be used to facilitate the
decision makers and the moderator in the decision process
when they expect to achieve a consensus solution.

Fig. 2. The decision framework for linguistic MCGDM

IV. NUMERICAL EXAMPLES

In this section, a problem of personal selection is used to
illustrate the developed approach. This example is adapted
from Chen [26].

Suppose that a software company desires to hire a system
analysis engineer. After preliminary screening, three can-
didates X1, X2 and X3 remain for further evaluation. A
committee of three decision-makers, E1, E2 and E3 has
been formed to conduct the interview and to select the most
suitable candidate. Five benefit criteria are considered:

(1) C1: emotional steadiness;
(2) C2: oral communication skill;
(3) C3: personality;
(4) C4: past experience;
(5) C5: self-confidence.
The three possible candidates are to be assessed using the

following linguistic term set
S = {s0 = extremely poor, s1 = very poor,

s2 = poor, s3 = slightly poor, s4 = fair,
s5 = slightly good, s6 = good, s7 = very good,
s8 = extremely good}.

Based on the 2-tuple linguistic representation model, the
three decision makers give the linguistic decision matrices
as shown in Table I-III.

TABLE I
LINGUISTIC DECISION MATRIX R1

C1 C2 C3 C4 C5

X1 (s3,0) (s4,0) (s6,0) (s4,0) (s8,0)
X2 (s6,0) (s5,0) (s7,0) (s5,0) (s7,0)
X3 (s5,0) (s8,0) (s7,0) (s7,0) (s6,0)

TABLE II
LINGUISTIC DECISION MATRIX R2

C1 C2 C3 C4 C5

X1 (s5,0) (s6,0) (s7,0) (s7,0) (s6,0)
X2 (s3,0) (s4,0) (s5,0) (s6,0) (s7,0)
X3 (s4,0) (s6,0) (s6,0) (s5,0) (s6,0)

TABLE III
LINGUISTIC DECISION MATRIX R3

C1 C2 C3 C4 C5

X1 (s4,0) (s7,0) (s6,0) (s5,0) (s8,0)
X2 (s6,0) (s5,0) (s7,0) (s6,0) (s4,0)
X3 (s4,0) (s7,0) (s8,0) (s6,0) (s7,0)

To select the most suitable alternative(s), the proposed
approach is applied and the computational procedure is given
as follows:

Stage 1: The consensus reaching process.
Without loss of generality, assume λ = (1/3, 1/3, 1/3)T is

the weight vector of the decision makers. The current group
linguistic decision matrix is shown in Table IV. The current
consensus indices for each decision maker are as follows

GCI(R1) = 0.9250, GCI(R2) = 0.9111,
GCI(R3) = 0.9361.
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TABLE IV
GROUP LINGUISTIC DECISION MATRIX R

C1 C2 C3 C4 C5

X1 (s4,0) (s6,-1/3) (s6,1/3) (s5,1/3) (s7,1/3)
X2 (s5,0) (s5,-1/3) (s6,1/3) (s6,-1/3) (s6,0)
X3 (s4,1/3) (s7,0) (s7,0) (s6,0) (s6,1/3)

If GCI = 0.95, it is known that all the linguistic decision
matrices do not meet the predefined consensus level. So,
Algorithm 1 is used to modify the original linguistic decision
matrices. Setting γ = 0.9, the simulation results are shown
in Fig. 3. The algorithm is terminated after 12 iterations.
Overall, E1, E2, E3 modified their preferences 4, 7 and 1
times, respectively. The final group consensus indices are

GCI(R1) = 0.9512, GCI(R2) = 0.9501,
GCI(R3) = 0.9515.

Fig. 3. The group consensus indices of Algorithm 1

All the decision makers have higher consensus indices
which are larger than the predefined consensus level. The
modified linguistic decision matrices are omitted here and
the final group linguistic decision matrix, Rnew, is shown in
Table V.

TABLE V
GROUP LINGUISTIC DECISION MATRIX Rnew

C1 C2 C3 C4 C5

X1 (s4,-0.08) (s6,-0.23) (s6,0.24) (s5,0.16) (s8,-0.48)
X2 (s5,0.27) (s5,-0.24) (s7,-0.48) (s6,-0.23) (s6,-0.28)
X3 (s4,0.33) (s7,0.09) (s7,0.19) (s6,0.09) (s6,0.43)

Stage 2: The selection process.
Based on Rnew, the maximizing deviation method is used

to derive the importance weights of attributes. From Eq. (17),
we have

w = (0.1847, 0.3164, 0.1281, 0.1266, 0.2442)T .

Further, by utilizing the LWAA operator, the overall assess-
ment value for each alternative is

Z1 = (s6,−0.16), Z2 = (s5, 0.43),
Z3 = (s6, 0.30).

Rank all the alternatives Xi(i = 1, 2, 3) in accordance with
Zi(i = 1, 2, 3). The ranking of the alternatives is X3 Â X1 Â
X2. Thus the best candidate for this job is X3.

V. CONCLUDING REMARKS

Many practical decision-making problems involves the
multiplicity of criteria for judging the alternatives and a
group of decision makers who provide the preferences over
the alternatives. In this paper, a consensus and maximizing
deviation based approach has been proposed to solve such
problems under linguists setting. The computation process
of the proposed approach is illustrated by an example. The
use of the proposed method could be extend to support situ-
ations in which the preference information is in other forms,
e.g., interval numerical number, triangular fuzzy number,
intuitionistic fuzzy number or hybrid certain and uncertain
information. How to deal with GDM problem with linguistic
information using the interval type-2 fuzzy sets is the future
work.
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