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Abstract— In this paper, an adaptive robust dynamic con-
structive fuzzy neural control (AR-DCFNC) scheme for tra-
jectory tracking of a surface vehicle with uncertainties and
unknown time-varying disturbances is proposed. System un-
certainties and unknown dynamics are identified online by a
dynamic constructive fuzzy neural network (DCFNN) which
is implemented by employing dynamically constructive fuzzy
rules according to the structure learning criteria. The entire
AR-DCFNC system is globally asymptotical stable.

I. INTRODUCTION

DUE to model uncertainties and unknown disturbances
imposed on a surface vehicle, the approximation-based

control methods are highly desired to realize online adapta-
tion and robustness to unknown dynamics. Considering un-
modelled dynamics, the NN-based model reference adaptive
control (MRAC) was proposed in [1] for trajectory tracking
of surface vehicles. Yang et al. [2] developed an adaptive
fuzzy robust tracking control algorithm for a ship autopilot
system to maintain the ship on a predetermined heading,
whereby stability is guaranteed by using the input-to-state
stability (ISS) approach and small gain theorem. Tee and Ge
[3] addressed the problem of tracking a desired trajectory
for fully actuated ocean vessels by the combination of feed-
forward NN and domination design techniques which allows
time-varying disturbances to be handled. Recently, Dai et al.
[4] presented a stable adaptive NN tracking controller for the
ocean surface ship in uncertain dynamical environments in
the framework of backstepping and Lyapunov synthesis.

The FNN can enhance the learning capability of FIS
by incorporating the NN topology, which allows all free
parameters to be adaptively updated according to perfor-
mance criteria [5], [6]. Note that adaptive laws only consider
parameter learning without structure update, i.e., the number
of fuzzy rules or hidden nodes must be determined a priori,
although the resulting performance is acceptable due to
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the truth that convergence of the tracking error does not
necessarily imply convergence (or even robustness) of the
estimated parameters [7]. It implies that the approximation
accuracy would be much pooror if inadequate fuzzy rules,
i.e. too many or too few, are predefined.

To circumvent the foregoing problem, the self-organizing
FNN (SOFNN) with structure and parameter updated simul-
taneously have been proposed in [8]–[10] and references
therein, which can automatically generate fuzzy rules in
addition to parameter update. It has also attracted researchers
to incorporate the SOFNN into adaptive approximation-based
control schemes [11]–[14]. To the best of our knowledge,
there does not exist any SOFNN-based control scheme for
tracking a surface vehicle.

In this paper, an adaptive robust dynamic constructive
fuzzy neural control (AR-DCFNC) scheme for tracking sur-
face vehicles in the presence of uncertainties and unknown
disturbances is proposed. In the AR-DCFNC, a dynamic
constructive fuzzy neural network (DCFNN) is developed by
dynamically generating and pruning fuzzy rules according to
structure learning criteria. The DCFNN is then used to ap-
proximate uncertain dynamics together with unknown distur-
bances, and thereby contributing to a SCFNN-based adaptive
controller by employing a sliding mode and projection-based
adaptive laws for parameters. In addition, a robust supervi-
sory controller including uncertainty estimator is designed to
suppress the DCFNN-based approximation error.

II. PROBLEM FORMULATION

As shown in Fig. 1, two coordinate frames, i.e., earth-fixed
𝑂𝑋𝑜𝑌𝑜 and body-fixed frames 𝐴𝑋𝑌 , of surface vehicles
are commonly used to clearly formulate the problem to be
resolved in this paper. The axes 𝑂𝑋𝑜 and 𝑂𝑌𝑜 directs to the
North and East respectively, while axes 𝐴𝑋 and 𝐴𝑌 direct
to fore and starboard respectively. Assuming that the vessel is
port-starboard symmetric, the distance 𝑥𝑔 between geometric
center 𝐴 and gravity center 𝐺 is allocated along the axis 𝐴𝑋 .
Let 𝜂𝜂𝜂 = [𝑥, 𝑦, 𝜓]𝑇 be the 3-DOF position (𝑥, 𝑦) and heading
angle (𝜓) of the vessel in an earth-fixed inertial frame, and let
𝜈𝜈𝜈 = [𝑢, 𝑣, 𝑟]𝑇 be the corresponding linear velocities (𝑢, 𝑣),
i.e. surge and sway velocities, and angular rate (𝑟), i.e. yaw,
in the body-fixed frame. The dynamic model of the surface
vehicle can be described as follows:

�̇�𝜂𝜂 = R(𝜓)𝜈𝜈𝜈 (1a)

M�̇�𝜈𝜈 +C(𝜈𝜈𝜈)𝜈𝜈𝜈 +D(𝜈𝜈𝜈)𝜈𝜈𝜈 = 𝜏𝜏𝜏 +R𝑇 (𝜓)b (1b)

where, 𝜏𝜏𝜏 = [𝜏1, 𝜏2, 𝜏3]
𝑇 and b(𝑡) = [𝑏1(𝑡), 𝑏2(𝑡), 𝑏3(𝑡)]

𝑇 are
control input and unknown time-varying external environ-

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 377



Xo X 

u r 

V xg 

A x 
G 

v 

Y 

O y Yo 

Fig. 1. The earth-fixed 𝑂𝑋𝑜𝑌𝑜 and body-fixed 𝐴𝑋𝑌 coordinate frames.

mental disturbances due to wind, waves and ocean currents
in the body-fixed frame, and the matrix R(𝜓) is the 3-DOF
rotation rotation matrix defined as follows:

R(𝜓) =

⎡
⎣ cos𝜓 − sin𝜓 0

sin𝜓 cos𝜓 0
0 0 1

⎤
⎦ (2)

with the following properties:

R𝑇 (𝜓)R(𝜓) = I, and ∥R(𝜓)∥ = 1, ∀ 𝜓 ∈ [0, 2𝜋] (3)

Here, the inertia matrix M = M
𝑇
> 0, the skew-symmetric

matrix C(𝜈𝜈𝜈) = −C(𝜈𝜈𝜈)𝑇 of Coriolis and centripetal terms
and the damping matrix D(𝜈𝜈𝜈) are given by,

M =

⎡
⎣ 𝑚11 0 0

0 𝑚22 𝑚23

0 𝑚32 𝑚33

⎤
⎦ (4a)

C(𝜈𝜈𝜈) =

⎡
⎣ 0 0 𝑐13(𝜈𝜈𝜈)

0 0 𝑐23(𝜈𝜈𝜈)
−𝑐13(𝜈𝜈𝜈) −𝑐23(𝜈𝜈𝜈) 0

⎤
⎦ (4b)

D(𝜈𝜈𝜈) =

⎡
⎣ 𝑑11(𝜈𝜈𝜈) 0 0

0 𝑑22(𝜈𝜈𝜈) 𝑑23(𝜈𝜈𝜈)
0 𝑑32(𝜈𝜈𝜈) 𝑑33(𝜈𝜈𝜈)

⎤
⎦ (4c)

where, 𝑚11 = 𝑚 − 𝑋�̇�, 𝑚22 = 𝑚 − 𝑌�̇�,𝑚23 =
𝑚𝑥𝑔 − 𝑌�̇�, 𝑚32 = 𝑚𝑥𝑔 − 𝑁�̇�,𝑚33 = 𝐼𝑧 − 𝑁�̇�; 𝑐13(𝜈𝜈𝜈) =
−𝑚11𝑣−𝑚23𝑟, 𝑐23(𝜈𝜈𝜈) = 𝑚11𝑢; 𝑑11(𝜈𝜈𝜈) = −𝑋𝑢−𝑋∣𝑢∣𝑢∣𝑢∣−
𝑋𝑢𝑢𝑢𝑢

2, 𝑑22(𝜈𝜈𝜈) = −𝑌𝑣 − 𝑌∣𝑣∣𝑣∣𝑣∣ − 𝑌∣𝑟∣𝑣∣𝑟∣, 𝑑23(𝜈𝜈𝜈) =
−𝑌𝑟 − 𝑌∣𝑣∣𝑟∣𝑣∣ − 𝑌∣𝑟∣𝑟∣𝑟∣, 𝑑32(𝜈𝜈𝜈) = −𝑁𝑣 − 𝑁∣𝑣∣𝑣∣𝑣∣ −
𝑁∣𝑟∣𝑣∣𝑟∣, 𝑑33(𝜈𝜈𝜈) = −𝑁𝑟 − 𝑁∣𝑣∣𝑟∣𝑣∣ − 𝑁∣𝑟∣𝑟∣𝑟∣. Here, 𝑚 is
the mass of the vessel, 𝐼𝑧 is the moment of inertia about
the yaw rotation, 𝑌�̇� = 𝑁�̇� , and symbols 𝑋∗, 𝑌∗, 𝑁∗ denote
corresponding hydrodynamic derivatives.

By substituting (1a) into (1b), the dynamic model (1a)-(1b)
can be rewritten in the following Lagrange form:

M(𝜂𝜂𝜂)𝜂𝜂𝜂 +C(𝜂𝜂𝜂, �̇�𝜂𝜂)�̇�𝜂𝜂 +D(𝜂𝜂𝜂, �̇�𝜂𝜂)�̇�𝜂𝜂 − b = R(𝜂𝜂𝜂)𝜏𝜏𝜏 (5)

where,

M(𝜂𝜂𝜂) = R(𝜂𝜂𝜂)MR𝑇 (𝜂𝜂𝜂) (6a)

C(𝜂𝜂𝜂, �̇�𝜂𝜂) = R(𝜂𝜂𝜂)
(
C−MS

)
R𝑇 (𝜂𝜂𝜂) (6b)

D(𝜂𝜂𝜂, �̇�𝜂𝜂) = R(𝜂𝜂𝜂)DR𝑇 (𝜂𝜂𝜂) (6c)

S(�̇�) =

⎡
⎣ 0 −�̇� 0

�̇� 0 0
0 0 0

⎤
⎦ (6d)

with the following properties:

M(𝜂𝜂𝜂) = M𝑇 (𝜂𝜂𝜂) > 0 (7a)

Ṁ(𝜂𝜂𝜂)− 2C(𝜂𝜂𝜂, �̇�𝜂𝜂) = −
[
Ṁ(𝜂𝜂𝜂)− 2C(𝜂𝜂𝜂, �̇�𝜂𝜂)

]𝑇
(7b)

Given desired smooth trajectories 𝜂𝜂𝜂𝑑(𝑡), �̇�𝜂𝜂𝑑(𝑡) and 𝜂𝜂𝜂𝑑(𝑡),
our objective is to design a control law for (5) with uncer-
tainties and unknown disturbances such that all signals in
the resulting control system are uniformly bounded and the
tracking errors e(𝑡) and ė(𝑡) are asymptotically stable, where
e(𝑡) = 𝜂𝜂𝜂(𝑡)− 𝜂𝜂𝜂𝑑(𝑡).

In this context, the model (5) can be rewritten as follows:

M(𝜂𝜂𝜂)ë = −M(𝜂𝜂𝜂)𝜂𝜂𝜂𝑑 −C(𝜂𝜂𝜂, �̇�𝜂𝜂)�̇�𝜂𝜂 −D(𝜂𝜂𝜂, �̇�𝜂𝜂)�̇�𝜂𝜂 + b+R(𝜂𝜂𝜂)𝜏𝜏𝜏
(8)

Define a sliding surface as

s = ė+ΛΛΛe (9)

whereΛΛΛ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, ⋅ ⋅ ⋅ , 𝜆𝑛) is diagonal positive definite
matrix. Substituting (9) into (8), we have

Mṡ+ (K+C)s = Ks− f(z) +R𝜏𝜏𝜏 (10)

where K = 𝑑𝑖𝑎𝑔(𝑘1, 𝑘2, ⋅ ⋅ ⋅ , 𝑘𝑛) is diagonal positive definite
matrix and

f(z) = M�̇�𝜂𝜂𝑟 +C𝜂𝜂𝜂𝑟 +D�̇�𝜂𝜂 − b (11)

with z = [�̇�𝜂𝜂𝑇𝑟 , �̇�𝜂𝜂
𝑇 , 𝜂𝜂𝜂𝑇𝑟 , 𝜂𝜂𝜂

𝑇 ]𝑇 ≜ [𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑚]𝑇 ∈ 𝑈𝑧 ⊂
𝑅𝑚 and 𝜂𝜂𝜂𝑟 = �̇�𝜂𝜂𝑑 −ΛΛΛe.

Accordingly, if the nonlinear dynamics f(z) is known, an
ideal controller can be designed as

𝜏𝜏𝜏∗ = R𝑇
(−Ks+ f(z)

)
(12)

However, the smooth vector field f(z) is actually uncertain
and perturbed by time-varying external disturbances b(𝑡).
In this context, our objective of this paper is to design an
adaptive robust controller for (5) with the ability to not only
identify online the unknown dynamics f(.) but also attenuate
approximation errors, such that 𝜂𝜂𝜂 and �̇�𝜂𝜂 of surface vehicles
can track arbitrary smooth reference trajectory 𝜂𝜂𝜂𝑑 and its first
derivative �̇�𝜂𝜂𝑑, respectively.

III. DYNAMIC CONSTRUCTIVE FUZZY NEURAL

NETWORK

In this section, the dynamic constructive fuzzy neural
network (DCFNN) is proposed to approximate the unknown
dynamics f(z) in (11).

A. Architecture of DCFNN

As shown in Fig. 2, the architecture of the DCFNN is
comprised of four layers, i.e., input, membership, rule and
output, which contribute to the fuzzy rule base as follows:

IF 𝑧1 is 𝐴
𝑙
1 and 𝑧2 is 𝐴

𝑙
2 ⋅ ⋅ ⋅ 𝑧𝑚 is 𝐴𝑙𝑚,

THEN 𝑓1(z) = 𝑤𝑙1, 𝑓2(z) = 𝑤𝑙2, ⋅ ⋅ ⋅ , 𝑓𝑛(z) = 𝑤𝑙𝑛 (13)

where 𝐴𝑙𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚 and 𝑤𝑙𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are input
fuzzy sets and output fuzzy singletons, respectively. Given 𝑁
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Fig. 2. Architecture of the DCFNN.

fuzzy rules, the overall output of the DCFNN can be obtained
as follows:

fF(z) = [𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑛]𝑇 = W𝑇ΦΦΦ (z; c,𝜎𝜎𝜎) (14)

where fF : 𝑈𝑧 ⊂ 𝑅𝑚 → 𝑅𝑛, and the output weight matrix
W and regressor ΦΦΦ (z; c,𝜎𝜎𝜎) are respectively defined as

W = [𝜔𝜔𝜔1,𝜔𝜔𝜔2, ⋅ ⋅ ⋅ ,𝜔𝜔𝜔𝑛] ∈ 𝑅𝑁×𝑛, 𝜔𝜔𝜔𝑗 =
[
𝑤1
𝑗 , 𝑤

2
𝑗 , ⋅ ⋅ ⋅ , 𝑤𝑁𝑗

]𝑇
,

ΦΦΦ = [𝜙1, 𝜙2, ⋅ ⋅ ⋅ , 𝜙𝑁 ]𝑇 ∈ 𝑅𝑁 .
Here, the fuzzy basis function (FBF) is defined by

𝜙𝑙 = exp

(
−

𝑚∑
𝑖=1

(𝑧𝑖 − 𝑐𝑙𝑖)2
(𝜎𝑙𝑖)

2

)

= exp
(
− (z− c𝑙)

𝑇ΣΣΣ−2
𝑙 (z− c𝑙)

)
(15)

where, ΣΣΣ𝑙 = 𝑑𝑖𝑎𝑔
(
𝜎𝑙1, 𝜎

𝑙
2, ⋅ ⋅ ⋅ , 𝜎𝑙𝑚

) ∈ 𝑅𝑚×𝑚; c =
[c𝑇1 , c

𝑇
2 , ⋅ ⋅ ⋅ , c𝑇𝑁 ]𝑇 ∈ 𝑅𝑚𝑁 , c𝑙 = [𝑐𝑙1, 𝑐

𝑙
2, ⋅ ⋅ ⋅ , 𝑐𝑙𝑚]𝑇 are

FBF center vectors; and 𝜎𝜎𝜎 = [𝜎𝜎𝜎𝑇1 ,𝜎𝜎𝜎
𝑇
2 , ⋅ ⋅ ⋅ ,𝜎𝜎𝜎𝑇𝑁 ]𝑇 ∈ 𝑅𝑚𝑁 ,

𝜎𝜎𝜎𝑙 = [𝜎𝑙1, 𝜎
𝑙
2, ⋅ ⋅ ⋅ , 𝜎𝑙𝑚]𝑇 are FBF width vectors.

Based on the universal approximation ability of the FNN,
there exists an optimal FNN using 𝑁∗ fuzzy rules which
can identify the nonlinear function f(z) with the minimal
functional approximation errors (MFAEs), i.e.,

f(z) = f∗F(z;W, c,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓 (z, 𝑁
∗)

= W𝑇ΦΦΦ (z; c,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓 (z, 𝑁
∗) (16)

where, 𝜀𝜀𝜀𝑓 = [𝜀𝑓1, 𝜀𝑓2, ⋅ ⋅ ⋅ , 𝜀𝑓𝑛]𝑇 ∈ 𝑅𝑛 is the MFAE and
satisfies ∣𝜀𝑓𝑗 ∣ ≤ 𝜀𝑓𝑗 , and the optimal parameters W∗, c∗,𝜎𝜎𝜎∗

are derived from

(W∗, c∗,𝜎𝜎𝜎∗) = arg min
W,c,𝜎𝜎𝜎

(
max
z∈𝑈𝑧

∥fF(z;W, c,𝜎𝜎𝜎)− f(z)∥
)

with the parameters being bounded as ∥𝜔𝜔𝜔𝑗∥ ≤ 𝜔𝑗 , ∥𝜔𝜔𝜔𝑗∥1 ≤
𝜔′
𝑗 , ∥c∥ ≤ 𝑐 and ∥𝜎𝜎𝜎∥ ≤ 𝜎.
The structure of traditional fuzzy or neural approximator

especially used in control paradigm is usually predefined
by trial and error in advance while only parameters are
updated by adaptive laws, and thereby leading to fixed-
structure linear-in-parameter (LIP) or nonlinear-in-parameter

(NLIP) identifier [7]. In this context, unsuitable number of
fuzzy rules or hidden nodes would deteriorate the approxi-
mation ability. Hence, it is highly desired to realize dynamic
constructive fuzzy rules or hidden nodes according to the
nonlinear dynamics to be modeled.

B. Dynamic Constructive Scheme

The DCFNN begins with no any fuzzy rules, i.e., c(0) = ∅,
𝜎𝜎𝜎(0) = ∅, W(0) = ∅, 𝑁(0) = 0. According to the
novelty of current observation z(𝑡) to the existing FBF-
s together with the desired tracking errors, the dynamic
constructive scheme decides to generate new fuzzy rules
or to prune redundant ones in the whole structure learning
process. Without loss of generality, consider the input z(𝑡)
at time instant 𝑡, i.e., c(𝑡 − 1) = [c𝑇1 , c

𝑇
2 , ⋅ ⋅ ⋅ , c𝑇𝑁(𝑡−1)]

𝑇 ,
𝜎𝜎𝜎(𝑡 − 1) = [𝜎𝜎𝜎𝑇1 ,𝜎𝜎𝜎

𝑇
2 , ⋅ ⋅ ⋅ ,𝜎𝜎𝜎𝑇𝑁(𝑡−1)]

𝑇 and W(𝑡 − 1) =

[w𝑇
1 ,w

𝑇
2 , ⋅ ⋅ ⋅ ,w𝑇

𝑁(𝑡−1)]
𝑇 where w𝑙 = [𝑤𝑙1, 𝑤

𝑙
2, ⋅ ⋅ ⋅ , 𝑤𝑙𝑛]𝑇 .

Calculate the distance between the current input z(𝑡) and
the existing FBFs as follows:

𝑑𝑙 = ∥z(𝑡)− c𝑙∥ (17)

and find the nearest center

𝑙† = arg min
𝑙=1,2,⋅⋅⋅ ,𝑁(𝑡−1)

𝑑𝑙 (18)

together with the FBFs having high firing strengths as

𝑙‡ ∈ 𝐿𝑟 ≜
{
𝑙
∣∣𝜙𝑙(z(𝑡); c𝑙,𝜎𝜎𝜎𝑙) ≥ Δ𝑟

}
(19)

where Δ𝑟 ∈ [0, 1] is a threshold of firing strength.
Define a hyperelliposoid set with respect to the sliding

surface s as follows:

Ω𝑠 (𝑑) =

⎧⎨
⎩s

∣∣∣∣∣
𝑛∑
𝑗=1

𝑘𝑗

(
∣𝑠𝑗 ∣ − 𝑑

2𝑘𝑗

)2

≤
𝑛∑
𝑗=1

𝑑2

4𝑘𝑗

⎫⎬
⎭ (20)

where 𝑘𝑗 > 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are diagonal elements of
matrix K and 𝑑 ≥ 0 is the threshold of approximation error.

1) Generating of Rules: Consider the criteria for rule
generating as follows:

𝑑𝑙† ≥ 𝑑th and s(𝑡) /∈ Ω𝑠
(
𝑑(𝑡)
)

(21)

where 𝑑th > 0 is the predefined distance and 𝑑(𝑡) is the
decreasing upper bound for approximation error given by

𝑑(𝑡) = max
𝑗=1,2,⋅⋅⋅ ,𝑛

𝜆𝑗

⎛
⎝ 1

2𝑘𝑗
+

√√√⎷ 𝑛∑
𝑖=1

1

4𝑘𝑖𝑘𝑗

⎞
⎠

−1

𝛿𝑗(𝑡) (22)

here, 𝜆𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are diagonal elements of matrix ΛΛΛ
and 𝛿𝑗(𝑡) is the upper bound for the tracking error given by

𝛿𝑗(𝑡) = 𝛿𝑗(0) exp(−𝛾𝑗𝑡) + 𝜍𝑗 (23)

with 𝛿𝑗(0), 𝛾𝑗 , 𝜍𝑗 > 0.
If (21) holds, a new rule node needs to be generated as

follows: ⎧⎨
⎩
c𝑁(𝑡) = z(𝑡)

𝜎𝜎𝜎𝑁(𝑡) = 𝛾 ⋅ abs(z(𝑡)− c𝑙†
)

w𝑁(𝑡) = 0

(24)

where 𝛾 > 0 and 𝑁(𝑡) = 𝑁(𝑡− 1) + 1.
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2) Pruning of Rules: Consider the criteria for rule pruning
as follows:

∣𝐿𝑟∣ > 𝑁𝑎 and s(𝑡) ∈ Ω𝑠 (𝑑(𝑡)) (25)

where 𝑁𝑎 ∈ 𝑍+ is the predefined number of fuzzy rules with
high firing strength simultaneously, and 𝑑(𝑡) is the decreasing
lower bound for approximation error given by

𝑑(𝑡) = max
𝑗=1,2,⋅⋅⋅ ,𝑛

𝜆𝑗

⎛
⎝ 1

2𝑘𝑗
+

√√√⎷ 𝑛∑
𝑖=1

1

4𝑘𝑖𝑘𝑗

⎞
⎠

−1

𝛿𝑗(𝑡) (26)

here 𝛿𝑗(𝑡) is the lower bound for the tracking error given by

𝛿𝑗(𝑡) = 𝛿𝑗(0) exp(−𝛾𝑗𝑡) (27)

with 𝛿𝑗(0), 𝛾𝑗 > 0.
If (25) holds, redundant fuzzy rules need to be pruned as

follows:

c𝑙∘ = ∅, 𝜎𝜎𝜎𝑙∘ = ∅, w𝑙∘ = ∅, 𝑙∘ ∈ 𝐿∘
𝑟 ⊂ 𝐿𝑟 (28)

where 𝜙𝑙∘ ≥ 𝜙𝑙‡ , 𝑙
∘ ∈ 𝐿∘

𝑟 , 𝑙
‡ ∈ 𝐿𝑟∖𝐿∘

𝑟 , ∣𝐿∘
𝑟 ∣ = ∣𝐿𝑟∣ − 𝑁𝑎

and 𝑁(𝑡) = 𝑁(𝑡)− ∣𝐿𝑟∣+𝑁𝑎.

IV. ADAPTIVE ROBUST DYNAMIC CONSTRUCTIVE

FUZZY NEURAL CONTROL

By employing the proposed DCFNN approximation in
(16), an adaptive robust dynamic constructive fuzzy neural
control (AR-DCFNC) scheme is designed for tracking the
MIMO nonlinear system (5) as follows:

𝜏𝜏𝜏F = R𝑇
[−Ks+ f̂(z) + 𝜏𝜏𝜏 𝑟

]
(29)

where f̂F(z) ≜ Ŵ𝑇 Φ̂ΦΦ = Ŵ𝑇ΦΦΦ(z(𝑡); ĉ,𝜎𝜎𝜎) is the DCFNN-
based approximation which is parameterized by parameter
estimates Ŵ, ĉ,𝜎𝜎𝜎 and derives from the adaptive laws in the
following subsections. The robustness term 𝜏𝜏𝜏𝑟 is designed as

𝜏𝜏𝜏 𝑟 = (1− 𝛼(𝑡))𝜏𝜏𝜏 𝑠 + 𝛼(𝑡)𝜏𝜏𝜏 𝑠 (30)

here, the weighting parameter 𝛼(𝑡) is derived from

𝛼(𝑡) =

⎧⎨
⎩
1, if s ∈ Ω𝑠 (𝑑(𝑡))

𝜇(𝑡)
𝜇(𝑡)+𝜇(𝑡) , if s /∈ Ω𝑠 (𝑑(𝑡)) and s ∈ Ω𝑠

(
𝑑(𝑡)
)

0, if s /∈ Ω𝑠
(
𝑑(𝑡)
)

(31)

with

𝜇(𝑡) =

∣∣∣∣∣∣
√√√⎷ 𝑛∑

𝑗=1

𝑘𝑗

(
∣𝑠𝑗 ∣ − 𝑑(𝑡)

2𝑘𝑗

)2

−
√√√⎷ 𝑛∑

𝑗=1

𝑑2(𝑡)

4𝑘𝑗

∣∣∣∣∣∣ (32)

𝜇(𝑡) =

∣∣∣∣∣∣
√√√⎷ 𝑛∑

𝑗=1

𝑘𝑗

(
∣𝑠𝑗 ∣ − 𝑑(𝑡)

2𝑘𝑗

)2

−
√√√⎷ 𝑛∑

𝑗=1

𝑑
2
(𝑡)

4𝑘𝑗

∣∣∣∣∣∣ (33)

and the sliding control term 𝜏𝜏𝜏 𝑠 and its estimate 𝜏𝜏𝜏𝑠 are
designed as follows:

𝜏𝑠,𝑗 =𝜛𝜛𝜛𝑇
𝑗 𝜓𝜓𝜓𝑗sgn(𝑠𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (34)

𝜏𝑠,𝑗 = �̂�𝜛𝜛
𝑇
𝑗 𝜓𝜓𝜓𝑗sgn(𝑠𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (35)

where 𝜛𝜛𝜛𝑗 = [𝜔′
𝑗 + 𝜀𝑓𝑗 , 𝜔𝑗 , 𝑐, 𝜎]

𝑇 and �̂�𝜛𝜛𝑗 is the correspond-
ing estimate which is updated as follows:

˙̂𝜛𝜛𝜛𝑗 = −𝛼(𝑡)𝜂𝜏𝜓𝜓𝜓𝑗 ∣𝑠𝑗 ∣ (36)

with 𝜂𝜏 > 0 and

𝜓𝜓𝜓𝑗 =
[
1,
∥∥∥Φ̂ΦΦ−ΦΦΦ′

cĉ−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
∥∥∥ , ∥∥∥𝜔𝜔𝜔𝑇𝑗 ΦΦΦ′

c

∥∥∥ , ∥∥∥𝜔𝜔𝜔𝑇𝑗 ΦΦΦ′
𝜎𝜎𝜎

∥∥∥]𝑇 (37)

where ΦΦΦ′
c and ΦΦΦ′

𝜎𝜎𝜎 are Jacobian matrices derived from

ΦΦΦ′
c =

∂ΦΦΦ

∂c

∣∣∣
c=ĉ
𝜎𝜎𝜎=�̂�𝜎𝜎

= 𝑑𝑖𝑎𝑔
(
𝜙𝜙𝜙𝑇c1

, ⋅ ⋅ ⋅ ,𝜙𝜙𝜙𝑇c𝑁

) ∈ 𝑅𝑁×𝑚𝑁 (38)

ΦΦΦ′
𝜎𝜎𝜎 =

∂ΦΦΦ

∂𝜎𝜎𝜎

∣∣∣
c=ĉ
𝜎𝜎𝜎=�̂�𝜎𝜎

= 𝑑𝑖𝑎𝑔
(
𝜙𝜙𝜙𝑇𝜎𝜎𝜎1

, ⋅ ⋅ ⋅ ,𝜙𝜙𝜙𝑇𝜎𝜎𝜎𝑁

) ∈ 𝑅𝑁×𝑚𝑁 (39)

here, 𝜙𝜙𝜙𝑇c𝑙
=
[
∂𝜙𝑙

∂𝑐𝑙1
, ⋅ ⋅ ⋅ , ∂𝜙𝑙

∂𝑐𝑙𝑚

]
and 𝜙𝜙𝜙𝑇𝜎𝜎𝜎𝑙

=
[
∂𝜙𝑙

∂𝜎𝑙
1
, ⋅ ⋅ ⋅ , ∂𝜙𝑙

∂𝜎𝑙
𝑚

]
.

A. DCFNN Approximation

In the AR-DCFNC (29), the unknown dynamics f(z) is
identified online by the proposed DCFNN with adaptive
parameters in addition to dynamic structure according to (16)
with 𝑁(𝑡) fuzzy rules as follows:

f(z) = Ŵ𝑇
𝑓ΦΦΦ (z; ĉ,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓 (z) (40)

where 𝜀𝜀𝜀𝑓 is actual approximation error determined by

𝜀𝜀𝜀𝑓 = f(z)− f̂F(z) = f∗F(z)− f̂F(z) + 𝜀𝜀𝜀𝑓 (z)

= W∗𝑇ΦΦΦ∗ − Ŵ𝑇 Φ̂ΦΦ + 𝜀𝜀𝜀𝑓 (41)

where ΦΦΦ∗ = ΦΦΦ(z; c∗,𝜎𝜎𝜎∗) ∈ 𝑅𝑁
∗

and Φ̂ΦΦ = ΦΦΦ (z; ĉ,𝜎𝜎𝜎) ∈
𝑅𝑁 . Without loss of generality, assume 𝑁∗ ≥ 𝑁 and ΦΦΦ∗ =
[ΦΦΦ∗

1,0],ΦΦΦ
∗
1 ∈ 𝑅𝑁 , i.e. W∗𝑇ΦΦΦ∗ = (W∗

1)
𝑇ΦΦΦ∗

1, where W∗
1 ∈

𝑅𝑁×𝑚,ΦΦΦ∗
1 = ΦΦΦ(z; c∗1,𝜎𝜎𝜎

∗
1) ∈ 𝑅𝑁 . From (41),

𝜀𝜀𝜀𝑓 =
(
W̃ + Ŵ

)𝑇
ΦΦΦ∗

1 − Ŵ𝑇 Φ̂ΦΦ + 𝜀𝜀𝜀𝑓 (42)

where W̃ = W∗
1 − Ŵ and Φ̃ΦΦ = ΦΦΦ∗

1 − Φ̂ΦΦ are the output
weight errors and regressor error, respectively. By applying
the Taylor series expansion of ΦΦΦ(.) to (ĉ,𝜎𝜎𝜎) in (42), we have

𝜀𝜀𝜀𝑓 =
(
W̃ + Ŵ

)𝑇 (
Φ̂ΦΦ +ΦΦΦ′

cc̃+ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎 + h(z; c̃,𝜎𝜎𝜎)

)
− Ŵ𝑇 Φ̂ΦΦ + 𝜀𝜀𝜀𝑓

=
(
W̃ + Ŵ

)𝑇 (
Φ̂ΦΦ +ΦΦΦ′

cc̃+ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)
− Ŵ𝑇 Φ̂ΦΦ

+W∗
1h(z; c̃,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓

=W̃𝑇
(
Φ̂ΦΦ−ΦΦΦ′

cĉ−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)
+ Ŵ𝑇

(
ΦΦΦ′

cc̃+ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)
+ d𝑠

(43)

where,

d𝑠 = W̃𝑇
(
ΦΦΦ′

cc
∗
1 +ΦΦΦ′

𝜎𝜎𝜎𝜎𝜎𝜎
∗
1

)
+W∗

1h(z; c̃,𝜎𝜎𝜎) + 𝜀𝜀𝜀𝑓 (44)

here, c̃ = c∗1 − ĉ,𝜎𝜎𝜎 = 𝜎𝜎𝜎∗1 − 𝜎𝜎𝜎, h(z; c̃,𝜎𝜎𝜎) is the high order
term of c̃ and 𝜎𝜎𝜎.

In this context, the residual approximation error d𝑠 =
[𝑑𝑠1, 𝑑𝑠2, ⋅ ⋅ ⋅ , 𝑑𝑠𝑛]𝑇 is bounded as

∣𝑑𝑠𝑗 ∣ ≜𝜛𝜛𝜛∗𝑇
𝑗 𝜓𝜓𝜓𝑗 ≤𝜛𝜛𝜛𝑇

𝑗 𝜓𝜓𝜓𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (45)

where 𝜛𝜛𝜛∗
𝑗 = [∥𝜔𝜔𝜔∗

𝑗∥1 + ∣𝜀𝑓𝑗 ∣, ∥𝜔𝜔𝜔∗
𝑗∥, ∥c∗1∥, ∥𝜎𝜎𝜎∗

1∥]𝑇 .
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B. Adaptive Laws

Choose the adaptive laws as follows:

˙̂𝜔𝜔𝜔𝑗 =

⎧⎨
⎩
−𝜂𝑤𝑠𝑗

(
Φ̂ΦΦ−ΦΦΦ′

cc̃−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)
, if 𝜔𝜔𝜔𝑗 /∈ Ω𝑗𝑤

−𝜂𝑤𝑠𝑗
(
Φ̂ΦΦ−ΦΦΦ′

cc̃−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)

+𝜂𝑤𝑠𝑗𝜔𝜔𝜔
𝑇
𝑗

(
Φ̂ΦΦ−ΦΦΦ′

cc̃−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎
)
𝜔𝜔𝜔𝑗/𝑀

𝑗
𝑤, if 𝜔𝜔𝜔𝑗 ∈ Ω𝑗𝑤

(46)

˙̂c =

{
−𝜂𝑐(ΦΦΦ′

c)
𝑇Ŵs, if ĉ /∈ Ω𝑐

−𝜂𝑐(ΦΦΦ′
c)
𝑇Ŵs+ 𝜂𝑐ĉ

𝑇 (ΦΦΦ′
c)
𝑇Ŵsĉ/𝑀𝑐, if ĉ ∈ Ω𝑐

(47)

˙̂𝜎𝜎𝜎 =

{
−𝜂𝜎(ΦΦΦ′

𝜎𝜎𝜎)
𝑇Ŵs, if 𝜎𝜎𝜎 /∈ Ω𝜎

−𝜂𝜎(ΦΦΦ′
𝜎𝜎𝜎)
𝑇Ŵs+ 𝜂𝜎𝜎𝜎𝜎

𝑇
(ΦΦΦ′

𝜎𝜎𝜎)
𝑇Ŵs𝜎𝜎𝜎/𝑀𝜎, if 𝜎𝜎𝜎 ∈ Ω𝜎

(48)

where 𝜂𝑤, 𝜂𝑐, 𝜂𝜎 > 0 and the sets Ω𝑗𝑤,Ω𝑐,Ω𝜎 are defined as,

Ω𝑗𝑤 =
{
𝜔𝜔𝜔𝑗
∣∣ ∥𝜔𝜔𝜔𝑗∥ ≥𝑀 𝑗

𝑤 and 𝑠𝑗𝜔𝜔𝜔𝑗(Φ̂ΦΦ−ΦΦΦ′
cc̃−ΦΦΦ′

𝜎𝜎𝜎𝜎𝜎𝜎) < 0
}

(49)

Ω𝑐 =
{
ĉ
∣∣ ∥ĉ∥ ≥𝑀𝑐 and ĉ𝑇 (ΦΦΦ′

c)
𝑇Ŵs < 0

}
(50)

Ω𝜎 =
{
𝜎𝜎𝜎
∣∣ ∥𝜎𝜎𝜎∥ ≥𝑀𝜎 and 𝜎𝜎𝜎

𝑇
(ΦΦΦ′

𝜎𝜎𝜎)
𝑇Ŵs < 0

}
(51)

where 𝑀 𝑗
𝑤, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, 𝑀𝑐 and 𝑀𝜎 are corresponding

upper bounds.

C. Stability Analysis

Theorem 1: Consider the surface vehicle (5) with the
proposed AR-DCFNC scheme using (29), and the adaptive
laws for parameter updates using (46)-(48), where the online
approximation f̂F is realized by the DCFNN (40). Then, the
tracking errors e(𝑡) are globally asymptotical stable.

Proof: Consider the Lyapunov function as follows:

𝑉 (𝑡) =
1

2

[
s𝑇Ms+ 𝜂−1

𝑤

𝑛∑
𝑗=1

𝜔𝜔𝜔
𝑇
𝑗 𝜔𝜔𝜔𝑗 + 𝜂−1

𝑐 c̃𝑇 c̃

+ 𝜂−1
𝜎 𝜎𝜎𝜎

𝑇
𝜎𝜎𝜎 + 𝜂−1

𝜏

𝑛∑
𝑗=1

�̃�𝜛𝜛
𝑇
𝑗 �̃�𝜛𝜛𝑗

]
(52)

where �̃�𝜛𝜛𝑗 =𝜛𝜛𝜛∗
𝑗 − �̂�𝜛𝜛𝑗 .

Applying the control law (29) to (5) yields

Mṡ =− (K+C)s−
[
W̃𝑇

(
Φ̂ΦΦ−ΦΦΦ′

cĉ−ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎

)

+ Ŵ𝑇
(
ΦΦΦ′

cc̃+ΦΦΦ′
𝜎𝜎𝜎𝜎𝜎𝜎

)
+ d𝑠

]
+ (1− 𝛼(𝑡))𝜏𝜏𝜏𝑠 + 𝛼(𝑡)𝜏𝜏𝜏𝑠

(53)

Differentiating 𝑉 with respect to time 𝑡 and using (53)
and adaptive laws (46)-(48), we have

�̇� (𝑡) =s𝑇Mṡ+
1

2
s𝑇Ṁs− 𝜂−1

𝑤

𝑛∑
𝑗=1

𝜔𝜔𝜔𝑇
𝑗
˙̂𝜔𝜔𝜔𝑗 − 𝜂−1

𝑐 c̃𝑇 ˙̂c

− 𝜂−1
𝜎 𝜎𝜎𝜎𝑇 ˙̂𝜎𝜎𝜎 − 𝜂−1

𝜏

𝑛∑
𝑗=1

�̃�𝜛𝜛𝑇
𝑗
˙̂𝜛𝜛𝜛𝑗

≤− s𝑇Ks− 𝜂−1
𝜏

𝑛∑
𝑗=1

�̃�𝜛𝜛𝑇
𝑗
˙̂𝜛𝜛𝜛𝑗

+ s𝑇 [(1− 𝛼(𝑡))𝜏𝜏𝜏𝑠 + 𝛼(𝑡)𝜏𝜏𝜏𝑠 − d𝑠] (54)
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Fig. 3. Desired and actual states 𝑥, 𝑦 and 𝜓.
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ẋ

0 20 40 60 80 100
−0.2

0
0.2
0.4

t/s

ẏ
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Fig. 4. Desired and actual states �̇�, �̇� and �̇�.

Using (34)-(36), we have

�̇� (𝑡) ≤− s𝑇Ks (55)

If initial conditions s(0), Ŵ(0), ĉ(0), 𝜎𝜎𝜎(0) and �̂�𝜛𝜛(0) are
bounded, 0 ≤ 𝑉 (0) < ∞, and thereby all signals in the
system are bounded for all 𝑡 > 0. Moreover,∫ ∞

0

s𝑇 (𝑡)Ks(𝑡)𝑑𝑡 ≤ 𝑉 (0)− 𝑉 (∞) ≤ 𝑉 (0) <∞ (56)

By the Barbalat’s lemma, lim𝑡→∞ s(𝑡) = 0, which implies
that e(𝑡)→ 0 while 𝑡→∞. This concludes the proof.

V. SIMULATION STUDIES

In order to demonstrate the effectiveness of the proposed
AR-DCFNC scheme, we conduct simulation studies on a
surface vehicle called CyberShip II [15]. our objective is to
track exactly the smooth trajectory 𝜂𝜂𝜂𝑑(𝑡) given by

𝜂𝜂𝜂𝑑(𝑡) =

⎡
⎣ 3 sin (0.02𝜋𝑡)

2 sin (0.05𝜋𝑡)
𝜋 cos (0.05𝜋𝑡)

⎤
⎦ (57)

The unknown external environmental disturbances b(𝑡) are
assumed to be governed by b(𝑡) = sin(0.1𝜋𝑡) × [1, 1, 1]𝑇
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Fig. 5. Control forces 𝜏1, 𝜏2 and torque 𝜏3.
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Fig. 6. Online tracking errors and corresponding fuzzy rule numbers.

and the initial conditions of the vessel are set as z(0) =
[1(𝑚),−0.5(𝑚), 0(𝑟𝑎𝑑), 0(𝑚/𝑠), 0(𝑚/𝑠), 0(𝑟𝑎𝑑/𝑠)]

𝑇 .
Accordingly, the design parameters of the proposed

SARFNC are chosen as follows: ΛΛΛ = 𝑑𝑖𝑎𝑔(0., 0.5, 0.5),
K = 𝑑𝑖𝑎𝑔(25, 25, 25), 𝛿𝑗(0) = 0.05, 𝛿(0) = 0.1, 𝜍𝑗 = 0.02,
𝜆𝑗 = 𝜆𝑗 = 0.5, 𝛾 = 1, 𝑑th = 2, Δ𝑟 = 0.6, 𝑁𝑎 = 4,
𝑀 𝑗
𝑤 = 10, 𝑀𝑐 = 15, 𝑀𝜎 = 15, 𝜂𝑤 = 100, 𝜂𝑐 = 5, 𝜂𝜎 = 5,

𝜂𝜏 = 1, 𝜛𝜛𝜛 = [5, 5, 5, 5]𝑇 .
The states 𝜂𝜂𝜂 and �̇�𝜂𝜂 together with their desired targets are

shown in Fig. 3 and Fig. 4, respectively, from which we can
see that the actual states are able to track the desired ones
with rapid transient responses and high steady-state accuracy.
The corresponding control forces and torque 𝜏𝜏𝜏 = [𝜏1, 𝜏2, 𝜏3]

𝑇

from the AR-DCFNC are shown in Fig. 5. The remarkable
control performance of the AR-DCFNC actually results from
the online approximation ability of the DCFNN which is
shown in Fig. 6, which shows that the DCFNN with 5 fuzzy
rules guarantees convergent tracking errors.

VI. CONCLUSIONS

In this paper, we have proposed an adaptive robust dynam-
ic constructive fuzzy neural control (AR-DCFNC) scheme
for trajectory tracking of surface vehicles in the presence of

system uncertainties and unknown time-varying disturbances.
In the AR-DCFNC, system uncertainties and unknown dy-
namics can be identified online by a dynamic constructive
fuzzy neural network (DCFNN) which is implemented by
dynamically generating and pruning fuzzy rules according
to the structure learning criteria. It has been further proven
that the tracking errors of the AR-DCFNC control system
are globally asymptotical stable. Finally, the simulation re-
sults demonstrate that the AR-DCFNC achieves remarkable
performance of trajectory tracking with compact fuzzy rules.
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