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Abstract—Fuzzy Cognitive Maps are recognized knowledge
modeling tool. FCMs are visualized with directed graphs. Nodes
represent information, edges represent relations within informa-
tion. The core element of each Fuzzy Cognitive Map is weights
matrix, which contains evaluations of connections between map’s
nodes. Typically, weights matrix is constructed by experts. Fuzzy
Cognitive Map can be also reconstructed in an unmanned mode.
In this article authors present their own, new approach to time
series modeling with Fuzzy Cognitive Maps. Developed method-
ology joins Fuzzy Cognitive Map reconstruction procedure with
moving window approach to time series prediction. Authors train
Fuzzy Cognitive Maps to model and forecast time series. The
size of the map corresponds to the moving window size and it
informs about the length of historical data, which produces time
series model. Developed procedure is illustrated with a series of
experiments on three real-life time series. Obtained results are
compared with other approaches to time series modeling. The
most important contribution of this paper is description of the
methodology for time series modeling with Fuzzy Cognitive Maps
and moving windows.

I. INTRODUCTION

Cognitive Maps are soft computing models, that allow to
model phenomena and relations between phenomena. Cogni-
tive maps (term fathered by E. Tolman, [11]) are present in
sciences since 1940s. The beginnings of the field are associated
with researches on hidden learning process observed among
vertebrate animals. First application of Cognitive Maps to
modeling was in 1976, when R. Axelrod, political scientist,
represented a set of social scientific phenomena, [1].

Cognitive Map is a set of knowledge elements describ-
ing a phenomenon in its environment. Examples of such
phenomena are (from, say, economics): unemployment, fuel
prices, taxes, government expenditures, accumulation of cap-
ital, technological change, birth rate, etc. Cognitive Map is
represented with a directed graph, where a set of nodes
{nd1, nd2, . . . , ndn} corresponds to phenomena of interest.
Edges {w11, w12, . . . , wnn} correspond to relations between
the phenomena. Cognitive Maps may be perceived as spatially
oriented knowledge representation models, where unique data
structure and its access methods enhance system’s learning
possibilities.

In this paper authors apply Fuzzy Cognitive Maps to model
time series. Our objective is to present a new methodology
for time series modeling and forecast, which joins moving
window technique with Fuzzy Cognitive Map learning. Ap-
proach introduced in this paper is not in the current stream
of research on Fuzzy Cognitive Maps. We believe, that the

proposed procedure is an original and valuable contribution to
this area.

The paper is structured as follows. In Section II the authors
present a brief literature overview on selected topics related to
Fuzzy Cognitive Maps. Section III introduces and provides
background of the proposed methodology for time series
modeling with Fuzzy Cognitive Maps. Theoretical discussion
is supported by a series of experiments presented in Section
IV. Section V covers conclusions and future research plans.

II. BRIEF LITERATURE REVIEW

Time series modeling is well recognized area of knowledge
mining. The main goal of time series modeling is to make fore-
casts that may be applied for decision making, such as making
orders (if we expect that prices will raise), prevention (if we
expect extremely high rainfalls), etc. Time series modeling and
forecasting is a topic wide enough to provide study material for
a year-long academic courses (as it is usually at universities)
and this may not be enough to exhaust this subject. Therefore,
we would like to mention only selected issues.

Time series is a sequence of observations, usually gathered
at regular intervals. Examples of popular time series are
economic indicators: prices, rates, meteorological phenomena:
rainfall, water level, temperature, population-related phenom-
ena: migration, birth rate, and so on.

Time series analysis usually considers several types of time
series. Important differences in characteristics of time series
(ts) are: linearity/nonlinearity, univariate series/multivariate
series, stationarity/nonstationarity.

Simple methods decompose a time series into ([10]):

• trend - long-term shifts in the mean,

• seasonal effects - cyclical fluctuations related to the
calendar,

• cycles - other cyclical fluctuations (such as a business
cycles),

• residuals - other random or systematic fluctuations.

Typically, four aforementioned elements are combined either
additively or multiplicatively into a single model. Alternatively,
several nonparametric approaches to time series analysis have
been introduced, i.e. spectral analysis or Kernel methods, [7].

Among popular classical approaches to time series model-
ing and forecasting are:
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• linear stationary models called ARMA (for AutoRe-
gressive Moving Average models),

• linear nonstationary models called ARIMA (for Au-
toRegressive Integrated Moving Average),

• nonlinear models called ARCH (for AutoRegressive
Conditional Heteroskedasticity) and its generalized
counterpart: GARCH,

• exponential smoothing models (with and without ac-
counting a trend), exponential smoothing in its sim-
plest form can be classified as ARIMA model with
parameters par= (0,1,1),

• approaches to time series modeling rooted in fre-
quency analysis, in particular Fourier analysis of
stochastic processes,

• alternative methods based on other data mining tech-
niques, i.e. regression or neural networks, rule-based
systems, distances, etc.

We would like to highlight that due to space limitations we
did not intend to prepare full literature review and we did not
cover all models as we wish we could have done. Interesting
readings in the area of models listed above is not only, but
also in: [2], [3], [4] and [6].

In this article authors explore Fuzzy Cognitive Maps and
their applicability to describe time series. This approach is not
in the main stream of research on time series modeling. It
is an interesting, soft computing model, a great alternative to
existing methodologies.

The application of Fuzzy Cognitive Maps to time series
modeling has been previously discussed not only but also
in [5], [9] and [8]. Methodologies presented in these articles
are fundamentally different from ours. Time series modeling
discussed in the referenced papers is tightly related to fuzzy
techniques in data mining. In the cited articles nodes represent
certain constructs, decided beforehand by the researcher. For
example, in [9] nodes represent 9 combinations of fuzzy
assessments of current value of given data point point and
the change (delta). Discussed are following 9 combinations:
High-High, High-Medium, High-Small, Medium-High, ... ,
Small-Small. Value passed to the node representing a particular
combination is determined with a membership function.

In general, existing methodologies to time series modeling
are based on the following steps:

• fuzzification of input data,

• FCM learning,

• forecasting,

• output defuzzification.

We would like to highlight again the originality of our
approach, which is different from methodologies discussed in
the aforementioned articles. We do not perform the fuzzifi-
cation/defuzzification steps, time series modeling and fore-
casting is based on moving window technique, input and
output data does not undergo any special procedures. Fuzzifi-
cation/defuzzification procedures described in the cited papers

may be perceived as somehow subjective. They rely on eval-
uation of membership functions, which number and shape are
determined by the modeling party.

III. METHODOLOGY

A. Fuzzy Cognitive Maps

1) Modeling: A Fuzzy Cognitive Map models a real phe-
nomena of interest and relations between them, which are
manifested by observed causes and results. Observed causes
are presented to FCM, which should respond with results.
Causes presented to a FCM are named activations and results
are named targets or goals. Since perfect modeling is rather
impossible, FCM responses are expected to be as close as
possible to the results.

A Fuzzy Cognitive Map is characterized by its weights
matrix W . It is the crux of the FCM - weights describe
connections between the nodes in the map. Connections in
a Fuzzy Cognitive Map are expressed as real numbers from
the [−1, 1] interval. Input and output information (activations
and responses) in a Fuzzy Cognitive Map is scaled to the [0, 1]
interval.

Let us determine notation for Fuzzy Cognitive Maps based
on up-to-date research and use abbreviations from here on:

• FCM - Fuzzy Cognitive Map,

• n, N - numbers of phenomena and observations,

• W - square matrix of weights with n rows and
columns,

• Wi·, W·j - i-th row and j-th columns of W ,

• wij - item of W in i-th row and j-th column,

• X and G - matrices of (N ) observations with n rows
and N columns, called activations (X) and targets or
goals (G), respectively,

• Y - matrix of FCM responses, n rows and N columns,

• Xi·, X·j , Gi·, G·j , Yi·, Y·j , xij , gij , yij - rows,
columns and items in corresponding matrices X , G
and Y ; for example, selection of the first row from
X: X1· = [x11, x12, . . . , x1N ] and selection of the
first column from X: X·1 = [x11, x21, . . . , xn1]

T ,

• the pair X·j and G·j is called (j-th) observation,

• X·j , G·j Y·j are named (j-th) activation, target and
response, respectively.

FCM exploration is based on activations X , which are
processed with the weights W according to the formula:

Y = f(W ∗X) (1)

where ∗ is an operation performed on matrices W and
X . Matrix product is an example of such operation and it
is utilized in this study. f is a sigmoid mapping applied
individually to elements of W ∗X:

f(z) =
1

1 + e−τz
(2)

with positive value of the parameter τ . In this study the value
of τ is arbitrarily set to 2.5, based on experiments.
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Single (j-th) activation A·j and response Y·j are bind as
follows:

Y·j = f(W ∗X·j) (3)

and the individual i-th element of the j-th response is defined
by the following formula:

yij = f(Wi· ∗X·j) = f
( n∑
k=1

wik · xkj
)

(4)

2) Quality of modeling: The better is the map, the closer
are map responses to targets. Distance between targets and
map’s responses can be naturally measured by metrics ρ such
as Chebyshev, Manhattan, Euclidean etc.

We can compute distance between given j-th map’s re-
sponse Y·j and corresponding target G·j as ρ(Y·j , G·j). Dis-
tance between all map’s responses Y and targets G is ρ(Y,G).
Distances can be interpreted as errors’ measures of modeling
real phenomena by FCMs. In this article as a basic perfor-
mance measure we use Mean Squared Error, which is defined
as follows:

MSEj =
1

n
·
n∑
i=1

(yij − gij)2

MSE =
1

N

N∑
j=1

MSEj =
1

n ·N
·
N∑
j=1

n∑
i=1

(yij − gij)2 (5)

The MSEj error measure is defined for single observation
and its modeled value. The MSE error measure is defined for
the all N of observations and their models. MSE measures
the average of the squared Manhattan distances between map
responses and targets. It is a popular performance measure,
sensitive to extreme prediction errors.

3) Reconstructing: In order to reconstruct a good FCM,
we have to propose weights, which allow to produce map
responses closest to targets. This is the fundamental rule for
FCM reconstruction procedure.

The FCM reconstruction procedure aims at optimization
of weights matrix W so that the distance between targets and
map responses are minimized. In order to proceed with FCM
construction we need appropriate learning data: activations
and targets. In this article we minimize the MSE between
targets and map responses with the use of Particle Swarm
Optimization procedure. FCM reconstruction procedure has
been adapted to build FCMs that model time series.

B. Time series modeling with Fuzzy Cognitive Maps

Let us consider a series of numbers (or data points) ci for
i = 1, 2, · · · , which we call time series:

c1, c2, c3, c4, . . .

Using naming convention presented at the beginning of this
section, we say that we have a series of observations, where
a single observation is just one value ci.

1) Modeling: We attempt to process time series with FCMs
in order to predict future values based on a given history.
Let us assume that a FCM has n nodes. We construct the
set of N FCM observations using N + n points of time
series. Processing with FCMs imposes input time series to
be normalized to the [0, 1] interval. Recall that observations
are manifested as activations and targets (goals), which are
matrices X and G having n rows and N columns. Columns of
activations matrix consist of consecutive n time series points.
Videlicet:

X·1 = [c1, c2, . . . , cn]
T

X·2 = [c2, c3, . . . , cn+1]
T

· · ·
X·N = [cN , cN+1, . . . , cN+n−1]

T

where [·]T denotes transposition.

We assume that for given activations FCM responds with
the sequence of time series points in times shifted by one
unit. That is to say, FCM responds with values corresponding
to the target Yi = [ci+1, ci+2, . . . , ci+n]

T while it receives
the activation Xi = [ci, ci+1, . . . , ci+n−1]

T . Therefore the
matrix G of goals is almost directly derived from the matrix
of activations: dropped is the first column X·1 and attached is
the the extra column G·N = [cN+1, cN+2, . . . , cN+n]

T .

The outcome of such data preprocessing step are matrices
of activations and targets. Note that the concept illustrated with
Table I is coherent with moving window technique. In the
moving window technique each consecutive information chunk
passed to processing is shifted forward by a fixed interval. In
this paper time series in activations and targets is shifted by
1 data point (observe columns in Table I).

Subsequently, we can apply obtained input data to construct
a weights matrix W . In this way we trained the FCM to model
given time series. The performance of such FCM is described
by Formula 1.

There are several attempts to process time series:

• values of weights are not limited, of course besides the
general assumption that they come from the bipolar
unit interval [−1, 1],

• weights matrix W is lower triangular, i.e. all elements
above the main diagonal are set to zero. Required
lower triangular matrix implements an assumption that

X X·1 X·2 X·3 . . . X·N−1 X·N

X1· c1 c2 c3 · · · cN−1 cN
X2· c2 c3 c4 · · · cN cN+1

· · · · · · · · · · · · · · · · · · · · ·
Xn−1· cn−1 cn cn+1 · · · cN+n−1 cN+n−2

Xn· cn cn+1 cn+2 · · · cN+n−2 cN+n−1

G G·1 G·2 G·3 . . . G·N−1 G·N

G1· c2 c3 c4 · · · cN cN+1

G2· c3 c4 c5 · · · cN+1 cN+2

· · · · · · · · · · · · · · · · · · · · ·
Gn−1· cn cn+1 cn+2 · · · cN+n cN+n−1

Gn· cn+1 cn+2 cn+3 · · · cN+n−1 cN+n

TABLE I. THE MATRICES OF OBSERVATIONS (ACTIVATIONS X AND
TARGETS G) FOR TIME SERIES PROCESSING WITH FCM OF SIZE n.
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future cannot affect any past event. Therefore, the next
time series point is computed based on former points,

• processing with biases. In this case, the sum of
weighted activations is added on with a value inde-
pendent on activations.

Let us discuss the second and third cases in details.

Lower triangular weights’ matrix: Firstly, for the case
of simplicity, assume that FCM has 5 nodes and that the
activation X·i = [ci+1, ci+2, ci+3, ci+4, ci+5]

T is presented to
the FCM. According to Table I, we expect to get the following
targets G·i = [ci+2, ci+3, ci+4, c5, c6]

T , c.f. Figure 1:

ci+2 = f(w11 · ci+1)

ci+3 = f(w21 · ci+1 + w22 · ci+2)

ci+4 = f(w31 · ci+1 + w32 · ci+2 + w33 · xi+3)

ci+5 = f(w41 · ci+1 + . . .+ w43 · ci+3 + w44 · ci+4)

ci+6 = f(w51 · ci+1 + . . .+ w54 · ci+4 + w55 · ci+5)

Responses as above are desired, but rather not possible.
Therefore we will be looking for a vector of responses
Y·i = [yi+2, yi+3, yi+4, y5, y6]

T , which are close to targets
rather than equal to.

Fig. 1. FCM n=5 for time series modeling.

The general formula for FCM of n nodes and for j-th
activation Xj = [cj+1, cj+2, . . . , cj+n] can be formulated:

ykj = f
( k∑
i=1

wki · cj+i
)

for k = 1, 2, . . . , n (6)

The ynj is taken as forecast of cj+n+1 time series point.
Other response’ values yn−1 j , yn−2 j , . . . , y1 j may also be
interpreted as forecast of time series points prior to cn+1,
i.e. cj+n, cj+n−1, . . . , cj+2. Since we have values for time not
later than j + n, then these forecasts are of no interest.

FCM with bias: In this case, FCM response values are
shifted by constant values called biases. The formula 3 takes
the form:

Y·j = f
(
B +W ·X·j

)
(7)

where B = [b1, b2, . . . , bn]
T is a vector of biases with

b1, b2, . . . , bn ∈ [−1, 1]. In this case the Formula 4 goes to:

yij = f(bi +Wi· ∗X·j) = f
(
bi +

n∑
k=1

wik · xkj
)

(8)

2) Forecasting: Now, we can apply Formulas 1, 3 and 4 to
process time series. That is to say, the next time series point
is computed (forecasted, predicted) based on the history of
former n points:

yk+1 =
n∑
i=1

wni · ck+i for k = 1, 2, . . . , N − n− 1 (9)

In other words, n-th node of the FCM responses with a forecast
of next time series point based on history of its former n points.
Of course, these forecasts yn+1, . . . , yn+N may be compared
with corresponding targets cn+1, . . . , cn+N in order to evaluate
FCM performance.

IV. TIME SERIES MODELING - EXPERIMENTS

In this section we discuss a series of experiments, in which
we apply FCMs to model time series. We study two important
issues: the impact of bias and the map size on the quality of
the model. Map reconstruction (optimization for the time series
modeling) has been implemented in R. FCMs are optimized
using Particle Swarm Optimization technique, implemented in
package ”pso”.

The study has been performed on three different time
series datasets, which describe real-life phenomena of varied
character:

• annual rainfall in London from 1813-1912,

• number of births per month in New York city, from
January 1946 to December 1959,

• Campito tree rings, which indicate tree growth, in
years 1907-1960 .

Rainfall (Figure 2, upper part) time series is an additive
model with a constant level without a trend. It is often cited in
the literature as a benchmarking dataset for quality assessment.

The second data set (births per month in New York city) has
seasonal and random fluctuations. Births time series (Figure 2,
middle part) has very small amplitude.

The tree rings dataset has no trend and no seasonality. It
is a time series with relatively the highest amplitude.

We have intentionally selected such variety of real-life
datasets, to illustrate capabilities of our methodology. Chosen
time series have substantially different characteristics. More-
over, they differ in size. Rain time series contains 100 data
points, births in New York - 168 and the third dataset (tree
growth) has only 66 observations. We have downloaded named
datasets from: http://robjhyndman.com/tsdldata/.

In each dataset 90% of data points were used for model
training, last 10% data points were left for testing purposes.
All data has been normalized to [0, 1] interval by dividing them
per maximum value.

In the subsections below we present general properties
of FCMs applied do time series modeling. We investigate
which learning technique: with or without bias performs better.
We also test the influence of the map size on the quality of
modeling. Secondly, we investigate the quality of forecasting
with FCMs. Finally, we compare our results with standard time
series forecasting techniques.
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Fig. 2. Normalized rain, births and tree rings time series.

A. Time Series Modeling with Fuzzy Cognitive Maps - Map
Size and Learning Technique

In this subsection we investigate map size and the impact of
the training procedure on the accuracy of time series models.
We apply FCMs of different sizes to describe chosen time
series. Moreover, we study, if the technique based on learning
with bias performs better than the technique without the bias.
A statistical reference, that will allow to compare the quality
of produced models is MSE.

We test the MSEs of time series models built with FCMs
with n = 3, 4, . . . , 12 nodes. We present MSE on train and
test datasets. Train datasets were used to reconstruct FCMs.
Size of the train dataset is n × N . Test datasets are only for
quality assessment. Activations from the test datasets were not
involved in FCM training.

The proposed methodology for time series modeling and
forecast uses technique of moving window. Moving window
corresponds to the size of the FCM. On each node of the
FCM we pass activations constructed from the input time series
according to the scheme forced by the moving window. In this
way, in each iteration we pass n history data points for periods,
say, k + 1, k + 2, . . . , k + n and receive n map responses for
periods k + 2, . . . , k + n, k + n + 1. The larger the map, the

longer history we use to train the model. Hence, we investigate
the influence of map size on accuracy. Trained FCM allows
to model and to forecast future values (unlimited number) for
the time series.

Each node produces its own responses. We may treat nodes
responses as n individual models of the time series. The most
accurate response is for the n − th node, because it is based
on the longest history. We can also average nodes responses
and treat the model as a whole. In this paper we treat the
model in this way - as a whole. Such methodology, as one
may suspect, achieves worse results. Withal, we have chosen
to treat all map outputs as the model, to investigate the overall
quality of reconstructed FCM. The objective of this paper is
to discuss general suitability of FCMs to model time series.
Model tuning, in order to achieve the highest performance,
will be the topic of our further research.

Table II present MSEs for training and testing datasets for
the three time series discussed in this paper. The modeling
procedure produces n values for each data point in the time
series. In other words, each data point is present n times in
the moving window. As a result plotting all FCM outputs may
be confusing. Therefore, we have plotted minimum, maximum
and averaged of the modeled values for the time series. Due
to space limitations, figures concern only FCMs with 5 nodes.

MSE errors for modeled rain time series are smaller for
the training procedure with the bias. In general, the bigger the
map, the smaller MSEs. Modeled values are based on longer
history of observations, hence the improvement of accuracy.

Figures 3 present minimum, maximum and average of the
modeled rain time series with FCM trained without and with
bias respectively. Each map was of size n = 5, figures show
training dataset.

For the rain time series there is no significant difference
in models obtained with FCMs with and without the bias.
Figures 3 confirm this conclusion. Rain time series is a typical
dataset for methods evaluation and comparison. It has no trend
and no seasonality; values oscillate around 0.65.

Modeled values have relatively smaller amplitude than
the original series. FCMs outputs follow the trend. Local
extrema of modeled values cover extrema of the time series.
Nevertheless, one may expect modeled values to cover original
time series in a better fashion. Unfortunately, for a lot of
sudden peaks of high amplitude, like in rain time series,
FCMs always produce outputs somehow moderated, averaged.
Noteworthy is that the MSE for rain time series is rather low
- see left part of Table 2. It will be shown at the end of this
section, that other popular models also are not able to follow
peaks in this time series.

MSEs for births time series train and test datasets modeled
with different FCMs is presented in Table II. For maps
trained with bias performed better in each case. We have also
observed, that FCMs trained with bias have higher accuracy
when they are larger.

Plots in Figures 5 illustrate models for births time series
produced with FCMs of size n = 5 with and without bias.
Figures show minimum, averaged and maximum of modeled
values.
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TABLE II. MSES*100 OBTAINED FOR THREE TIME SERIES MODELS WITH DIFFERENT FCMS SIZES WITH AND WITHOUT BIAS.

rain births tree rings

map no bias with bias no bias with bias no bias with bias
size train test train test train test train test train test train test

3 1.24 1.92 1.18 1.67 0.36 0.65 0.23 0.40 1.64 0.90 3.66 4.12

4 1.21 1.91 1.17 1.71 0.34 0.64 0.22 0.38 1.62 1.18 4.98 5.68

5 1.20 1.92 1.17 1.77 0.34 0.61 0.21 0.35 1.57 1.80 5.44 5.80

6 1.19 1.98 1.16 1.87 0.34 0.60 0.21 0.33 1.54 2.21 4.46 4.94

7 1.18 2.04 1.15 1.98 0.34 0.59 0.20 0.32 1.56 1.95 3.45 3.51

8 1.17 2.10 1.14 2.06 0.34 0.58 0.26 0.40 1.52 2.67 2.79 2.98

9 1.16 2.09 1.14 2.09 0.35 0.58 0.21 0.32 1.48 2.96 2.51 3.17

10 1.16 1.95 1.16 2.04 0.35 0.58 0.20 0.30 1.44 3.14 3.12 5.15

11 1.16 1.83 1.14 1.86 0.35 0.57 0.20 0.29 1.41 3.26 2.91 5.52

12 1.16 1.73 1.14 1.81 0.36 0.59 0.20 0.29 1.37 3.43 2.59 5.88

Births time series has a clearly visible seasonal fluctuations
and a trend. Therefore, models were more accurate with
the FCM trained with bias. Figures confirm this observation.
Model trained with bias follows the trend and at the same
time preserves hill-terrace-like characteristics of the seasonal
fluctuations of the births time series. Model spans through the
amplitude and follows local extrema. Model trained without
bias preserves the characteristics of the time series, but does
not follow the trend equally well.

Figure 4 illustrates FCM with 5 nodes, which has been
reconstructed to describe births time series.

Table II contains MSEs for tree rings time series models
built with FCMs of different sizes with and without the bias.
For FCMs trained without bias, the size of the map influences
accuracy. Larger maps model time series better, but smaller
maps turned out to be better in forecasts. FCMs with bias
achieved worse results.

Figures 6 illustrate models built with FCMs of size n =
5 with and without the bias. Though FCM without the bias

Fig. 3. Original and modeled rain time series, train and test dataset, FCM,
n=5, no bias and with bias.

Fig. 4. FCM n=5 for births time series.

achieved numerically better results, plots show that modeled
time series does not reflect well the original. In contrast, model
built with FCM trained with bias mimics tree rings time series
better.

B. Forecasting with Fuzzy Cognitive Maps

FCMs can be applied to forecast future values of phenom-
ena of interest. Prediction for one data point ahead is based
on n available, observed, data. Forecast for the second data
point is based on n − 1 observed data points and 1 already
predicted value. Prediction for the third data point is based on
n− 2 observed values and 2 forecasts and so on. Predictions
for over n+ 1 data points ahead are based only on forecasts.

We have predicted future values for M data points ahead
with FCMs built on N training observations. Train datasets
contained 90% of time series. The quality of the forecasts are
expressed with MSEs.

Table III contains MSEs for all three time series forecasts
TABLE III. MSES*100 FOR TIME SERIES FORECASTS WITH

DIFFERENT MAP SIZES WITH AND WITHOUT BIAS.

rain birth tree rings

map no with no with no with
size bias bias bias bias bias bias

3 1.69 1.69 1.00 0.89 1.00 1.36

4 1.70 1.70 0.98 0.86 1.15 1.78

5 1.71 1.72 0.96 0.78 1.80 2.06

6 1.77 1.80 0.92 0.78 2.19 2.33

7 1.82 1.87 0.91 0.75 1.96 2.07

8 1.86 1.89 0.89 0.77 2.66 2.74

9 1.92 1.92 0.89 0.73 2.92 2.97

10 1.81 1.86 0.89 0.68 2.99 3.11

11 1.67 1.71 0.89 0.69 2.89 3.01

12 1.64 1.66 0.89 0.74 2.85 3.05
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produced with different FCMs. There are no significant differ-
ences in these results for the rain time series in both models:
without and with bias. For the births time series predictions
made with FCMs trained with bias made are more accurate.
We have observed, that the larger the map, the better are the
forecasts. Finally, for the tree rings FCMs trained without the
bias gave more accurate forecasts and map size in this case
played less important role.

Fig. 5. Original and modeled births time series, train and test dataset, FCM,
n=5, no bias and with bias.

Fig. 6. Original and modeled tree rings time series, train and test dataset,
FCM, n=5, no bias and with bias.

C. Time Series Modeling - Final Remarks

In this subsection we compare the quality of predic-
tions made with FCMs with forecasts based on two popular
approaches to time series modeling: Holt-Winters exponen-
tial smoothing and autoregressive integrated moving average
(ARIMA) model, which is a generalization of an autoregres-
sive moving average model.

Holt-Winters exponential smoothing method has been pro-
posed by C.C. Holt in 1957 and then it has been updated by his
student, Peter Winters in 1960. Over the years, this method has
been successful adapted and explored. Holt-Winters method in
its forecasts takes into account possibility of constant and non-
constant trends. In this way the model in forecasts includes
both the level and the slope.

ARIMA is time series modeling and forecasting tool, which
is suitable also in some cases of non-stationarity of the time
series. In such case, prior to forecasting, one has to do the
differencing step to remove the non-stationarity. The ARIMA
model is described by three parameters: p, d, and q. These are
non-negative integers correspond to autoregressive, integrated,
and moving averages parts of the model respectively.

In our study we have applied procedures for Holt-Winters
and ARIMA (with p, d, q parameters selection) implemented
in R. Parameter selection for ARIMA was also performed in
R, with the use of ”forecast” package.

Table IV contains MSEs for time series modeled and
predicted using models build with ARIMA with parameters
par=(1,0,0), Holt-Winters and FCM of size n=5 train with and
without the bias.

Proposed time series modeling and forecasting methodol-
ogy performs better, than both ARIMA and Holt-Winters. As
we have shown before, for the rain time series, technique of
training with and without the bias performs similarly good.

In the case of births time series our method obtains results
comparable with the other two ones. Chosen time series
contains seasonality and it has relatively very small amplitude.
FCMs’ models show better MSE than Holt-Winters does, but
worse than ARIMA. Forecasts made with FCMs were worse.
FCM with bias gave more accurate model and forecast.

For the tree rings time series quality of a model produced
with FCM without the bias was comparable to results obtained
with ARIMA. FCM trained with bias gave less accurate results.

Figure 7 compares original time series with models and
forecasts built with the discussed four approaches: ARIMA,
Holt-Winters and FCM with and without the bias. Vertical line
divides model from the forecasts.

Proposed procedure allowed us to model rain time se-
ries with preservation of its characteristics. In comparison to

TABLE IV. COMPARISON OF MSES OBTAINED FOR THREE TIME
SERIES WITH DIFFERENT MODELING AND FORECASTING METHODS.

MSE*100 rain births tree rings

method train forecast train forecast train forecast

ARIMA par=(1,0,0) 1.18 2.15 0.13 0.59 1.30 3.51

Holt-Winters 1.27 1.77 0.37 0.18 1.31 4.60

FCM, n=5, no bias 1.20 1.71 0.34 0.96 4.03 3.71

FCM, n=5 with bias 1.17 1.72 0.21 0.78 5.44 2.33
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ARIMA and Holt-Winters, our approach follows local extrema
to the greatest extent. Models built with FCMs with and
without the bias aim at preserving the original amplitude.
Models built with ARIMA and Holt-Winters are slightly flatter.
Figure 7 confirms that the differences between FCMs trained
with and without the bias are not significant. Forecasts made
with the four discussed approaches are similar. In all four
cases, forecasts resemble straight line.

In the case of births time series all models allowed to
follow time series characteristics. FCM without the bias is less
satisfying - it does not preserve the trend. FCM with the bias
follows the time series. Models and forecasts made with Holt-
Winters and ARIMA also follow the trend.

The tree rings time series turned out to be the most
challenging one. In this case, the best ARIMA model almost
is convergent with Holt-Winters model, but far from a good
fit. Time series models and forecasts with FCMs also differ
from the original time series.

V. CONCLUSION

To sum up, in this paper we have presented a new approach
to time series modeling and forecast, which combines FCMs
and moving window approach. Theoretical discussion was

Fig. 7. Time series models and forecasts.

supported by a series of experiments. We have tested our
methodology on three real-life time series. We have also
compared our approach with two popular time series modeling
techniques.

Proposed methodology allows to describe time series well.
We have distinguished two different FCM training procedures:
with and without the bias. The choice of model with or without
bias depends on the time series. For example, in the case
of time series with trends FCM trained with bias is better.
Time series with no trends and no seasonality are equally well
modeled with both procedures.

Similarly as for most of data exploration approaches, our
methodology performs very well, but it is not equally good for
all kinds of data. We have shown that births time series has
been modeled very satisfyingly. We were able to preserve time
series characteristics and follow the trend (with FCM trained
with bias). In contrast, tree rings time series turned out to be
challenging. We have also shown, that tree rings were difficult
t learn for standard models: ARIMA and Holt-Winters. The
third time series - rain was a typical dataset, with no trend
and no seasonality. We have shown, that in such case FCMs
behave well and bias does not play very important role - built
two models are similar.

The contribution in this paper is a new, not present in
the literature, approach to time series modeling with FCMs
and moving window. In our future research we plan to con-
tinue our research in this area. The results presented in this
paper are encouraging. We plan to experiment with different
learning techniques and apply other information representation
schemes.
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