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Abstract— This paper aims to investigate a gait pattern 

classification system for anterior cruciate ligament reconstructed 
(ACL-R) subjects based on the interval type-2 fuzzy logic (FL). 
The proposed system intends to model the uncertainties present 
in kinematics and electromyography (EMG) data used for gait 
analysis due to intra- and inter-subject stride-to-stride variability 
and nature of signals. Four features were selected from 
kinematics and EMG data recorded through wearable wireless 
sensors. The parameters for the membership functions of these 
input features were determined using the data recorded for 12 
healthy and ACL-R subjects. The parameters for output 
membership functions and rules were chosen based on the 
recommendations from physiotherapists and physiatrists. The 
system was trained by using steepest descent method and tested 
for singleton and non-singleton inputs. The overall classification 
accuracy results show that the interval type-2 FL system 
outperforms the type-1 FL system in recognizing the gait 
patterns of healthy and ACL-R subjects. 

Keywords—type-2 fuzzy logic; gait analysis; EMG; inertial 
sensors; kinematics; anterior cruciate ligament 

I. INTRODUCTION  
Altered gait patterns are common after anterior cruciate 

ligament (ACL) trauma [1, 2]. Although there is certain 
improvement in knee dynamics after ACL reconstruction but 
gait abnormalities persist even several months after surgery [3, 
4]. These impairments may result in long term effects 
including early cartilage degeneration and osteoarthritis which 
are considered progressive processes occurring during cyclic 
loading of less intensive but frequent activities (e.g. walking) 
[5, 6]. An early detection of gait abnormalities may help in 
reducing the risk of such problems and other movement 
disorders by taking appropriate actions during rehabilitation 
regimen. 

Computerized and sensors' based gait analysis methods 
have become more common in last two decades [7-9]. 
Different measurement techniques provide variety of data for 
human gait analysis such as spatiotemporal data (e.g. walking 
speed and step length), kinematics data (e.g. joint angles and 
acceleration), kinetics data (e.g. foot force and torques), 
electromyography data (e.g. muscles activation timings and 
levels) and electroencephalographic data (e.g. cortical 

activation). Several studies have reported changes in the above 
different types of data for ACL injured and reconstructed 
subjects as compared to healthy subjects [4, 5, 10-13].    

Significant efforts have been made in order to analyze and 
classify gait data using different machine learning techniques 
including artificial neural network (ANN), support vector 
machines (SVMs) and fuzzy logic (FL) [14-17]. One of the 
main advantages of these techniques is their ability to deal 
with the complex non-linear relationships in gait data. 
However, one important issue about gait data is the intra- and 
inter-subject stride-to-stride variability of different parameters 
which are used for analysis [18-20]. This stride-to-stride 
variability is generally present in kinematics and 
electromyography (EMG) data which are frequently used for 
gait analysis of ACL reconstructed (ACL-R) subjects. In 
designing a classification system for gait patterns, 
uncertainties will be involved when such data (kinematics and 
EMG) are used. The uncertainties are also present in the actual 
measurements recorded through sensors due to noise and 
motion artifacts. Although the noise and artifacts can be 
minimized but these factors cannot be completely removed 
from the data which will result in imprecise input to the 
system. The existing fuzzy logic based (type-1) gait 
analysis/classification systems handle the imprecise data by 
choosing precise membership function value but these systems 
lack modeling of uncertainty involved in the measurements, 
definitions of input and output fuzzy sets, and rules [21].  

In this study, interval type-2 fuzzy logic has been used for 
assessment of gait patterns of ACL-R subjects. An automated 
adaptive classification system has been investigated for 
distinguishing the gait patterns of healthy and ACL-R subjects 
at different stage of recovery. The kinematics and EMG 
signals are recorded through wearable wireless sensors. The 
recorded signals are filtered and processed for extracting the 
relevant features from kinematics and EMG data. The 
parameters for the membership functions (MFs) of 
antecedents are extracted from the historical data recorded for 
healthy and ACL-R subjects during experiments and the 
parameters for MFs of consequent are determined based on 
the recommendations/observation of physiotherapists and 
physiatrists. Theses parameters are tuned by using steepest 
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descent method. The classification performance of the 
proposed system was tested for singleton and non-singleton 
inputs and results were compared with type-1 FL system.  

II. METHODOLOGY 
A fuzzy logic based general framework for classification 

of gait patterns of ACL-R subjects is shown in Fig. 1. The 
framework mainly consists of two modules: data collection 
and processing of different types of input signals and an 
adaptive fuzzy logic based classification module. Due to 
alterations in various physiological parameters in subjects 
after ACL trauma, different types of signals/features can be 
used for classifying the gait patterns of ACL-R subjects. In 
this study integrated kinematics and neuromuscular features 
have been used to develop a fuzzy logic based classification 
model for gait patterns. The details about different 
components and design of the proposed system are described 
in the following sections. 

A. Participants 
A total twelve subjects (four healthy and eight unilateral 

ACL-R) subjects were recruited for this study from Sports 
Medicine & Research Center and Ministry of Defense in 
Brunei Darussalam. The healthy subjects were having a mean 
age of 31.00± 8.29 years, mean height 164.50±13.03 cm, and 
mean weight 65.25±20.17 kg. The ACL reconstructed subjects 
were at different stages of rehabilitation (from 2 months to 
around 1 year after ACL reconstruction) with mean age: 
31.00± 4.07 years, mean height 167.75±7.85 cm, and mean 
weight 70.50±15.44 kg. An informed written consent was 
taken from all of the participants. The study was carried out as 
per the guidelines approved by UBD Graduate Research 
Office and Ethics Committee. 

B. Data Collection and Processing Module 
The kinematics and EMG parameters were recorded from 

healthy and ACL-R subjects using wireless micro-electro-
mechanical systems (MEMS) motion sensors (Fig. 2) and 
surface EMG monitoring unit with Ag/AgCl electrodes (Fig. 
3), respectively. Each subject walked at 4km/h speed on a 
treadmill for duration of 30-40 seconds and data were 
collected for two sessions/trials for all subjects. Two motion 
sensors were attached to the thigh and shank of one of his/her 
legs (operated leg for ACL-R subjects and any leg randomly 
selected for healthy subjects) using flexible bulk and Velcro 
straps. These body-mounted motion sensors (sampling rate of 
128Hz, 12 bit analog/digital resolution within a frequency 
range 0-20Hz) were used to measure the subject's lower 
extremity motion during walking in terms of angular rate and 
linear acceleration. These angular rates and linear acceleration 
were then used to compute the knee joint movements in 
sagittal plane (Fig. 4). The electromyography sensors 
(sampling rate of 960 Hz, 12 bit Analog/Digital conversion) 
provided  the muscle  recruitment  pattern  for  knee  extensors 
and flexors. The surface EMG signals were recorded by 
placing foam snap electrodes on vastus medialis (VM), vastus 
lateralis  (VL), semitendinosus  (ST) and  biceps  femoris (BF) 
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Fig. 1. General framework for classification of gait patterns of ACL-R 
subjects using adaptive fuzzy logic system 

 

 
Fig. 2. Wireless motion sensor unit command module and USB receiver from 

KinetiSense (ClevMed. Inc.)  

 
Fig. 3. EMG electrodes with wireless BioRadio and USB receiver from 

ClevMed. Inc. 
 
on one of the legs (operated leg for ACL-R subjects and any 
leg randomly selected for healthy subjects) of each subject.  
The standard guidelines were followed for skin preparation 
and placements of sensors and electrodes on identified 
positions [22, 23]. The data from these two hardware 
components were wirelessly transferred to the workstation 
using their respective software (KinetiSense and BioCapture). 
A custom software was developed in MATLAB 7.0 for further 
processing. The kinematics (angular rate and linear 
acceleration) and EMG measurements are generally 
contaminated with various noises so filtering was applied to 
de-noise these signals. The motion data were filtered using 6th 
order Butterworth band-pass filter (0.3-3) before computing 
the orientations.  

Moreover, in order to minimize any placement error of 
each motion sensor, measurements for zero-referencing were 
obtained  prior  to  starting  the  experiment  when the subjects 
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Fig.4.  Knee flexion/extension variation in the subjects at km/h - Mean angle 
values of a healthy subject (       )  average, subject ~11 months after surgery (       
), subject 2 months after surgery (       ) 
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Vastus Lateralis
Biceps Femoris

 
Fig. 5.  Characteristics for vastus lateralis (- - -) and biceps femoris (___) 
muscles in the ACL-R leg of a subject 1 year after surgery during walking for 
multiple gait cycles 
 
were standing in an upright position and these measurements 
were then subtracted from each angular rate during the 
experiment. Trapezoidal integration was applied to the angular 
rates from motion sensors in order to compute the knee 
flexion/extension. Similarly, the raw EMG signals from all 
muscles were band-pass filtered (20-400 Hz) using 4th order 
Butterworth filter and then rectified. The linear envelopes 
were generated by using a 4th order low-pass Butterworth 
filter (Fig. 5). Thus, kinematics and EMG data for 10 gait 
cycles per trial per subject (240 samples) were selected for 
further analysis and feature extraction. 

C.  Feature Extraction and Selection 
The selection of features for designing the fuzzy logic 

system (FLS)  was based on number of criteria: the kinematics 
and EMG parameters studied in the previous literature and 
differences were found in ACL-R and healthy subjects, data 
collected during this study, number of rules to be generated 
and the classification performance of the designed FLS [3, 4, 
24, 25]. Initially, six features (three kinematics and three 
EMG) were extracted from the processed data for each gait 
cycle of the subjects (Table I). Alterations have been reported 
in these features for ACL-R subjects even several months after 
surgery. Different combinations of these extracted features 
were tested as input to design the FLS. Based on the 
classification performance and optimum number of rules 
generated, four features (1st FE peak, FE valley, 2nd FE peak 
and ratio of activation of the normalized VL and BF muscles 
during LR) were selected as input. The output of the FLS was 
classification of gait patterns as normal/healthy, average or 
poor provided by physiotherapists and physiatrists.  

 

TABLE I 
FEATURES EXTRACTED AND ASSESSED AS INPUT PARAMETERS 

Type Feature 

Kinematics 

Maximum knee flexion during the stance phase (1st 
FE peak) 

Minimum knee flexion during mid stance (FE valley)
Maximum knee flexion during the swing phase (2nd 

FE peak) 

EMG 

Ratio of activation of the normalized vastus lateralis 
and biceps femoris muscles during load response  

(LR) phase 
Activation timing patterns of vastus lateralis 
Activation timing patterns of biceps femoris 
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Fig. 6.  An example interval type-2 fuzzy set  ( A~ ) - type-2 Gaussian 
membership function with uncertain mean, FOU, upper and lower MFs  

D. Interval Type-2 Fuzzy Logic System 
Type-2 FL has the potential to deal with the high level of 

uncertainties which are present in a system such as linguistic 
and measurement uncertainties [21]. Type-2 FLS employs the 
type-2 fuzzy set (Fig. 6) which are characterized by the 
concept of footprint of uncertainty (FOU), and upper and 
lower membership functions (MFs). Type-2  fuzzy sets  are 
three dimensional where this extra dimension lets uncertainty 
to be handled. The interval type-2 FLS uses interval type-2 
fuzzy set where all values in the third dimension are equal to 1 
which makes the computation much simpler as compared to a 
general type-2 FLS. An interval type-2 fuzzy set ( A~ ) is 
defined by a type-2 membership function ),(~ uxAμ i.e. 

]}1,0[,|)),(),,{((~
~ ⊆∈∀∈∀= xuxA JXuxuxA μ  (1) 

where 1),(0 ~ ≤≤ uxAμ , x and u are the primary and secondary 
membership variables, Jx is the primary membership function 
of x and all secondary grades are equal to 1. The FOU of the 
type-2 fuzzy set is given by (2): 

))(,)(()~( ~~ xxAFOU A
X A

x

μμ∪
∈∀

=  (2) 

Fig. 7 depicts an interval type-2 fuzzy logic classifier for 
detecting the gait patterns of healthy and ACL-R subjects 
based on [21]. The important details related to this study are 
described  here. Further  information about each component of 
type-2 FLS can be found in [21]. In this study, Gaussian MFs 
have been used to describe antecedents and consequent. A 
Gaussian primary MF with uncertain mean is expressed as (3) 
for kth antecedent.   

1st FE peak 

 FE valley 

2nd FE peak 

),(~ uxAμ A~

)(~ xAμ  

)(~ x
A

μ  

)
~

(AFOU  
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Fig. 7. Type-2 fuzzy logic based framework to build the gait patterns' classification model 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

2
1exp)(

k

kk
kk

mx
x

σ
μ ],[, 21 kkk mmm ∈  (3) 

The upper )( kk xμ and lower )( kk
xμ MFs can be 

computed as follows: 
 

⎪
⎩

⎪
⎨

⎧

>
≤≤

<
=

22

21

11

);,(
1

);,(
)(

kkkkk

kkk

kkkkk

kk

mxxmG
mxm

mxxmG
x

σ

σ
μ  

(4) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
>

+
≤

=

2
);,(

2
);,(

)(
21

1

21
2

kk
kkkk

kk
kkkk

kk mm
xxmG

mm
xxmG

x
σ

σ
μ  (5) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

1

1
11 2

1exp);,(
k

kk
kkk

mx
xmG

σ
σ  (6) 

 
Both singleton and non-singleton fuzzification methods 

were employed and tested in this study. Singleton 
fuzzification method assumes the measurements which 
activate the FLS to be certain and noise free while non-
singleton considers the measurements to be uncertain. The 
result of the singleton fuzzification is a single value where the 
MF has a value of 1. In case of non-singleton fuzzification, a 
fuzzy membership function is used for fuzzification where the 
fuzzy membership function is centered at the measurement 
value. Based on the noise characteristics (stationary/non-
stationary), the non-singleton fuzzification can be performed 
using either type-1 and type-2 fuzzy sets. The output of the 
type-2 FLS is computed in two steps such that output type-2 
fuzzy set is first type-reduced and then defuzzified. There are 
type-reduction/defuzzification methods available. In this 
study, height defuzzifier (7) and modified height defuzzifier 
(8) were used and compared in order to evaluate the effect of 
considering the input spread on the output.  

∑

∑
=

=

=
M

l

l
B

l
B

M

l

l

h
y

yy
xy

l

l

1

1

)(

)(
)(

μ

μ
 

(7) 

∑

∑
=

=

=
M

l

ll
B

ll
B

M

l

l

h
y

yy
xy

l

l

1

1

/)(

/)(
)(

δμ

δμ
(8) 

 where 
l

y  is the point having maximum membership in the 
lth output set, and its membership grade in the lth output set is 

)(
l

B ylμ and lδ is measure of the spread of the lth consequent 
set. 

E. Designing the Classification System 
A flow chart of steps involved in designing the FL based 

classification system for ACL-R gait patterns is shown in Fig. 
8. The details of these steps are given below: 

1) Initialize the System: In order to initialize the type-2 
FLS, definitions (types of MFs and their parameters) were 
determined for antecedents, consequents and inputs. The 
proposed FLS consisted of four antecedents (1st FE peak, FE 
valley, 2nd FE peak and ratio of activation of the normalized 
VL and BF muscles during LR) and one output (class for gait 
patterns). The numerical data collected during experiments 
were used to obtain definitions of antecedents, while the 
consequent were determined based on the recommendations 
from physiotherapists and physiatrists for corresponding input. 
In this context the antecedents and consequent were 
considered to be type-2 Gaussian with uncertain mean and the 
input membership functions was type-1 Gaussian for non-
singleton inputs. After defining the types of the membership 
functions, the antecedents’ intervals were divided into suitable 
number of fuzzy sets. In this study, three fuzzy sets were 
assumed for kinematics features (1st FE peak, FE valley and 
2nd FE peak) and two fuzzy sets were used for EMG feature 
(ratio of activation of the normalized VL and BF muscles 
during LR) as depicted in Fig. 9 to Fig. 12. In order to initially 
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overlap the fuzzy sets, the tails of each fuzzy set lie at the 
mean (μ) of adjacent fuzzy sets. This overlap exploits the 
power of fuzzy logic to help in dealing with subjects who fall 
between intervals of two fuzzy sets intervals. 

The initialization of the parameters (mean, standard 
deviation etc.) of antecedents' membership functions was done 
as follows; Let p be the number of different antecedent's 
membership functions and assume that the historical data are 
available from n subjects such that there are m different 
measurements (data from m gait cycles) for each antecedent. 
Table II represents a sample structure of the corresponding 
input dataset for FE valley antecedent for 5 gait cycles (GC) 
of 5 subjects with mean μ and standard deviation σ. The actual 
input dataset was a 24x10 matrix (i.e. 10 gait cycles per trial 
per subject). Based on an input structure for each antecedent 
i=1..p with F fuzzy sets for n subjects, following parameters 
were computed [21]: 

),...,,min( 211 niiiiM μμμ=  (9) 

),...,,max( 212 niiiiM μμμ=  (10) 

),...,,( 21 niiii meanM μμμ=  (11) 

),...,,( 21 niiii stdS μμμ=  (12) 

),...,,min( 211 niiiiR σσσ=  (13) 

),...,,max( 212 niiiiR σσσ=  (14) 

),...,,( 21 niiii meanR σσσ=  (15) 

)1/()( 12 −−= FMMT iii  (16) 

 
where M1i and M2i define the width of ith type-2 antecedent 
MFs. For all fuzzy sets j=1..F, uncertain means Uj1 and Uj2 
and standard deviations were defined as follows: 

iiiij RTjMU α−−+= )1(11  (17) 

iiiij RTjMU α−−+= )1(22  (18) 

ij Rβσ =  (19) 

where α and β are real constants which were adjusted to 
encounter the uncertainty around means of MFs and to cover 
the whole universe of discourse, respectively. For this study 
the values of α and β were between 0.5 to 0.6 for different 
antecedents. The MFs for consequent were defined based on 
the judgments of physiotherapists and physiatrists about the 
gait patterns of each subject. A scale of a range 0 through 10 
was used to take their input and later mapped to three MFs as 
Poor, Average and Normal/Healthy to represent the current 
status  of  the  gait for each subject. The MFs for consequents 
were generated using the same approach as described for 
antecedent MFs. 

Two types of input membership functions were initialized. 
In the case of singleton inputs the mean value of each input 
membership   function  was  the  corresponding  mean  of   the  

Initialize the System

Collect Relevant Data/
Features from Healthy 
and ACL-R Subjects

Collect Input from 
Physiotherapists/

Physiatrists

Create Rule Base

Train Rules

Validate Trained Rules

Training 
Algorithm 

Data/Features 
from New 
Subjects

 
Fig. 8. Interaction of various components of FLS to produce a gait patterns 
classification system for ACL-R subjects 
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Fig. 9.  Type-2 Gaussian membership functions for 1st flexion/extension peak 
during a gait cycle 
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Fig. 10. Type-2 Gaussian membership functions for flexion/extension valley 
during a gait cycle 
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Fig. 11. Type-2 Gaussian membership functions for 2nd flexion/extension 
peak during a gait cycle 
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Fig. 12. Type-2 Gaussian membership functions for normalized ratio between 
vastus lateralis and biceps femoris muscles during load response phase of a 
gait cycle 
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Fig. 13. Type-2 Gaussian membership functions for recovery condition of gait 
patterns on a scale of 1-10 
 
various gait cycles as computed in Table II, e.g. μi represents 
the mean of the ith input membership function and the 
standard deviation (σi) of each input membership function is 
the corresponding standard deviation of the various gait cycles 
as computed in Table II. For non-singleton inputs, the 
structure of the dataset was similar to Table II with a little 
difference that now the various measures were represented by 
type-1 Gaussian MFs. The mean and standard deviation value 
of each input membership function were the average of means 
and standard deviation of various measures for a particular 
subject, respectively. 

2) Create Rule Base: The rules were formulated by 
employing all possible combinations of antecedent fuzzy sets. 
A total of 54 (3×3×3×2) rules were generated based on four 
antecedents. The consequent of each rule was decided based 
on the feedback from physiotherapists and physiatrists. An 
example rule for status of gait pattern appears as follow: 

 

1R : IF 1st FE Peak is Normal AND FE Valley is Low AND 
2nd FE Peak is Normal and VL/BF Ratio is High THEN Gait 
Pattern's Status is Healthy 
 
In general, an lth rule can be written as: 

 
Rl: IF 1st FE Peak is iA~  AND FE Valley is jB~ AND 2nd FE 

Peak is kC~ and VL/BF Ratio is rD~ THEN Gait Pattern's 

Status is ijkrG~  (1≤i,j,k≤3, 1≤r≤2) 

where iA~ , jB~ , kC~ and rD~  are the fuzzy sets of respective 

antecedents and ijkrG~ represents the corresponding fuzzy set 
from consequent.  

TABLE II 
SAMPLE INPUT STRUCTURE FOR FE VALLEY ANTECEDENT 

Subject GC1 GC2 GC3 GC4 GC5 µ σ 

1 1.99 1.95 2.53 1.32 1.82 1.92 0.43 

2 4.90 5.80 5.45 4.73 6.64 5.50 0.77 

3 5.39 4.37 5.44 4.17 4.21 4.72 0.64 

4 9.60 10.86 11.09 10.24 9.52 10.26 0.71 

5 8.46 8.91 8.34 8.08 8.24 8.41 0.31 

 
3) Train Rules and Validate Trained Rules: The rules 

were trained in order to improve their accuracy in classifying 
the gait patterns. The parameters of various membership 
functions were modified by propagating the inputs through 
FLS based on computed error and steepest descent approach 
[21]. The data recorded from healthy and ACL-R subjects 
were used as training dataset. This dataset contained the input-
output pair where the inputs were kinematics and EMG 
measurements for each subject and the output was the 
classification of gait patterns provided by the physiotherapists 
and physiatrist. The structure of the dataset was similar to 
Table II. For singleton input system, the mean (μi) of multiple 
measurements for each feature was used as the input or output 
measurement for a particular feature i of a subject. For non-
singleton input system, μi was used as the mean of type-1 
Gaussian membership function and the standard deviation of 
the measurements (σi) was used as the standard deviation of 
the non-singleton input type-1 Gaussian membership function. 
The validation of the system was done by using the Leave-
One-Out Cross Validation (LOOCV) method. This method 
was suitable for the small sample size used in this study. In 
LOOCV method, the FLS was trained on N-1 samples from 
the dataset as described above and one sample was left as the 
validation sample. This process was repeated N times and the 
overall classification accuracies and error measurements were 
computed for fuzzy logic systems based on singleton and non-
singleton inputs. 

III. RESULTS AND DISCUSSION 
Four types of fuzzy logic systems namely type-1 non-

singleton interval type-2 (NSFLS type-2), singleton type-2 
(SFLS type-2), non-singleton type-1 (NSFLS type-1) and 
singleton type-1 (SFLS type-1) were designed and their 
performances were compared. The inference system was 
Mamadani type for all FL systems with product implication 
and t-norm fuzzy operations. For interval type-2 FL systems, 
two different type-reduction/defuzzification methods namely 
height reduction and modified height reduction were used and 
classification results were compared. For type-1 FL systems, 
the defuzzification process was the height method. After 
designing the systems, a dataset of size 24×10 was used for 
training (step size = 0.01) and testing (using LOOCV method) 
each FLS. Table III shows a comparison of overall 
classification accuracy for gait patterns of healthy and ACL-R 
subjects using type-1 and type-2 (using height reduction 
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method) FL systems before and after training. The percentage 
of change in accuracy is shown in Fig. 14 and the average of 
mean square error (MSE) is depicted in Fig. 15 for all FL 
systems. Table III shows that the performances of all FL 
systems were more or less similar before training. But after 
training, the classification accuracy values have been 
sufficiently improved for three FL systems (NSFLS type-2, 
SFLS type-2 and NSFLS type-1) while for SFLS type-1 
classification performance was slightly reduced (0.053%). The 
classification accuracy values for three (NSFLS type-2, SFLS 
type-2 and NSFLS type-1) FL systems were found higher 
(with maximum value of approximately 86% for SFLS type-2) 
as compared to SFLS type-1 system because these three types 
of FL systems can handle the stationary noise in 
measurements and noise in training/testing data. Fig. 15 
depicts that both type-2 systems have performed better than 
type-1 systems which indicates that type-2 FLS handles 
uncertainty better than type-1 FLS and the outputs produced 
by type-2 FLS were much closer to the actual outputs. 

A comparison of height defuzzification and modified height 
defuzzification method was also performed for type-2 FL 
systems. Fig. 16 depicts that the modified height 
defuzzification performed superior than height defuzzification 
method while detecting the gait patterns of healthy and ACL-
R subjects. The modified height defuzzification method 
considers the spread of consequent membership function 
which provides the contribution of a particular fuzzified input 
to the corresponding consequent and thus uncertainty in the 
inputs can be better handled. In order further test the 
classification performance, the area under curve (AUC) 
parameter was also computed for modified height reduction 
type-2 NSFLS and SFLS by performing receiver operating 
characteristic (ROC) analysis. Due to multi-class problem, a 
pair-wise comparison (one class vs. all other classes) was 
carried out using perfcurve function available in MATLAB. 
The AUC values for 'Healthy', 'Average' and 'Poor' classes 
were found as 0.926, 0.886 and 0.830 for modified height 
reduction type-2 NSFLS, respectively. For modified height 
reduction type-2 SFLS, the AUC values for 'Healthy', 
'Average' and 'Poor' classes were found as 0.919, 0.911 and 
0.850, respectively. These results indicate that modified height 
defuzzification should be preferred over height defuzzification 
methods due to its better classification performance. Both 
systems were able to identify the gait patterns of normal 
subjects more accurately as compared to ACL-R subjects. 

There are multiple sources of uncertainty and impreciseness 
in gait analysis data including noise in sensors' measurements, 
intra- and inter-subject variability (stride-to-stride, subject-to-
subject variations in the same group), nature of EMG signals 
etc. These uncertainties should be handled while designing 
and activating (using) the FLS. Type-2 fuzzy logic provides a 
better mechanism in terms of FOUs to deal with uncertainties 
at different levels in a system. During initialization phase, 
type-2 MFs can be defined to represent the noise in the data 
and while tuning, these MFs can be adjusted based on the 
noise/uncertainties in the training data by using non-singleton 
fuzzification technique. During activation phase  (actual usage  
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TABLE III 

COMPARISON OF OVERALL CLASSIFICATION ACCURACY FOR GAIT PATTERNS 
OF HEALTHY AND ACL-R SUBJECTS USING DIFFERENT FL SYSTEMS 

Type of FLS Accuracy Before 
Training (%) 

Accuracy After 
Training (%) 

NSFLS Type-2 72.38 83.97 

SFLS Type-2 72.63 86.26 

NSFLS Type-1 74.04 83.09 

SFLS Type-1 73.48 73.42 
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of the FLS),   type-1 or type-2 non-singleton fuzzification (e.g.  
type-1 or type-2 Gaussian MFs) can be applied to the noisy 
input data in order to handle the uncertainty in the 
measurements.  

The selection of appropriate antecedents and 
corresponding number of fuzzy sets are crucial factors which 
affect the classification performance of the FLS. The 
maximum accuracy (88.32%) achieved for modified height 
reduction type-2 SFLS suggests that further investigations are 
required for selecting the most distinguishing features between 
healthy and ACL-R subjects at different stages of recovery in 
order to improve the classification accuracy. However, 
increasing the number of antecedents or fuzzy sets would 
require defining more rules in the rule base and consequently 
requiring more time for training. A possible solution is to use 
the rule reduction/optimization techniques after generating the 
rules based on all combinations of fuzzy sets for antecedents. 
Moreover, in order to define accurate MFs for 
antecedents/consequents, a large sample of subjects (healthy 
and ACL-R) would be beneficial.  

IV. CONCLUSION AND FUTURE WORK 
An interval type-2 fuzzy logic system was presented for 

modeling the uncertainty in the gait data and classifying the 
gait patterns of healthy and ACL-R subjects at different stages 
of recovery. Based on the selected kinematics and EMG input 
parameters, type-2 fuzzy logic system performed superior as 
compare to type-1 fuzzy logic system for recognizing the gait 
patterns. The maximum overall classification accuracy 
(88.32%) was achieved for type-2 SFLS with modified height 
defuzzifier by using LOOCV method which shows that an 
adaptive gait patterns' classification system with good 
accuracy can be developed for healthy and ACL-R  subjects 
by using type-2 FL. Further investigations will be done about 
choosing the appropriate input features and increasing the 
number of fuzzy sets for antecedents and consequent. 
Moreover, data will be collected from additional subjects for 
designing a robust classification system. 
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