
On Modelling Real-world Knowledge to Get Answers to Fuzzy and
Flexible Searches without Human Intervention

Vı́ctor Pablos-Ceruelo and Susana Munoz-Hernandez

Abstract—The Internet has become a place where massive
amounts of information and data are being generated every
day. This information is most of the times stored in a non-
structured way, but the times it is structured in databases
it cannot be retrieved by using easy fuzzy queries. Being the
information in the database the distance to the city center of
some restaurants (and their names) by easy fuzzy queries we
mean queries like “I want a restaurant close to the center”.
Since the computer does not have knowledge about the relation
between being close to the center and the distance to the center
(of a restaurant) it does not know how to answer this query
by itself. We need human intervention to tell the computer
from which database column it needs to retrieve data (the one
with the restaurant’s distance to the center), and how this non-
fuzzy information is fuzzified (applying the close function to the
retrieved value). Once this is done it can give an answer, just
ordering the database elements by this new computed attribute.
This example is very simple, but there are others not so simple,
as “I want a restaurant close to the center, not very expensive
and whose food type is mediterranean”. Doing this for each
existing attribute does not seem to be a very good idea. We
present a web interface for posing fuzzy and flexible queries
and a search engine capable of answering them without human
intervention, just from the knowledge modelled by using the
framework’s syntax. We expect this work contributes to the
development of more human-oriented fuzzy search engines.

I. INTRODUCTION

Most of the real-world information is stored in a non-
structured way, but the times it is kept in regular databases
the retrieval cannot be done in an humanized (i.e. flexible
and fuzzy) way. Take, for example, a database containing the
distance of some restaurants to the center and the user query
“I want a restaurant close to the center”. Assuming that it is
nonsense to teach every search engine user how to translate
the (almost always) fuzzy query he/she has in his/her mind
into a query that a machine can understand and answer, the
problem to be solved has two very different parts: recognition
of the query and execution of the recognized query.

The recognition of the query has basically two parts:
syntactic and semantic recognition. The first one has to deal
with the lexicographic form of the set of words that compose
the query and tries to find a query similar to the user’s one

Pablos-Ceruelo and Munoz-Hernandez are with the Babel Research Group
at the Facultad de Informática (Universidad Politécnica de Madrid, Spain).
Email: { vpablos, susana }@babel.ls.fi.upm.es

This work is partially supported by research projects DESAFIOS10
(TIN2009-14599-C03-00) funded by Ministerio Ciencia e Innovación of
Spain, PROMETIDOS (P2009/TIC-1465) funded by Comunidad Autónoma
de Madrid and Research Staff Training Program (BES-2008-008320) funded
by the Spanish Ministry of Science and Innovation. It is partially supported
too by the Universidad Politécnica de Madrid entities Departamento de
Lenguajes, Sistemas Informáticos e Ingenierı́a de Software and Facultad
de Informática.

but more commonly used. The objective with this operation
is to pre-cache the answers for the most common queries
and return them in less time, although sometimes it serves
to remove typos in the user queries. An example of this
is replacing “cars”, “racs”, “arcs” or “casr” by “car”. The
detection of words similar to one in the query is called fuzzy
matching and the decision to propose one of them as the
“good one” is based on statistics of usage of words and
groups of words. The search engines usually ask the user
if he/she wants to change the typed word(s) by this one(s).

The semantic recognition is work still in progress and it is
sometimes called “natural language processing”. In the past
search engines were tools used to retrieve the web pages
containing the words typed in the query, but today they
tend to include capabilities to understand the user query. An
example is computing 4 plus 5 when the query is “4+5” or
presenting a currency converter when we write “euro dollar”.
This is still far away from our proposal: retrieving web pages
containing “fast red cars” instead of the ones containing the
words “fast”, “red” and “car”.

The execution of the recognized query is the second part.
Suppose a query like “I want a restaurant close to the center”.
If we assume that the computer is able to “understand” the
query then it will look for a set of restaurants in the database
satisfying it and return them as answer, but the database does
not contain any information about “close to the center”, just
the “distance of a restaurant to the center”. It needs to know
the link between the concepts “distance to the center” and
“close to the center” and how to obtain the second from the
first one. This is what we call representing or modelling the
real-world knowledge.

One of the most successful programming languages for
representing knowledge in computer science is Prolog, whose
main advantage with respect to the other ones is being a
more declarative programming language1. Prolog is based on
logic. It is usual to identify logic with bi-valued logic and
assume that the only available values are “yes” and “no” (or
“true” and “false”), but logic is much more than bi-valued
logic. In fact we use fuzzy logic (FL), a subset of logic that
allow us to represent not only if an individual belongs or
not to a set, but the grade in which it belongs. Supposing
the database contents and the definition for “close” in Fig. 1
and the question “Is restaurant X close to the center?” with
FL we can deduce that Il tempietto is “definitely” close to
the center, Tapasbar is “almost” close, Ni Hao is “hardly”

1We say that it is a more declarative programming language because it
removes the necessity to specify the flow control in most cases, but the
programmer still needs to know if the interpreter or compiler implements
depth or breadth-first search strategy and left-to-right or any other literal
selection rule.

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2329

name distance price avg. food type
Il tempietto 100 30 italian

Tapasbar 300 20 spanish
Ni Hao 900 10 chinese
Kenzo 1200 40 japanese

Zalacain 2000
Don Jamon spanish

(a) Restaurants’ database contents

0

1

close

100 1000 distance

(b) Close fuzzification function

Fig. 1: Restaurants database and close fuzzification function.

close and Kenzo is “not” close to the center. We highlight
the words “definitely”, “almost”, “hardly” and “not” because
the usual answers for the query are “1”, “0.9”, “0.1” and
“0” for the individuals Il tempietto, Tapasbar, Ni Hao and
Kenzo and the humanization of the crisp values is done in a
subsequent step by defuzzification.

The simplicity of the previous example introduces a
question that the curious reader might have in mind: “Does
adding a column “close to the center” of type float to the
database and computing its value for each row solves the
problem?”. The answer is yes, but only if our query is not
modifiable: It does not help if we can change our question
to “I want a very close to the center restaurant” or to “I want
a not very close to the center restaurant”. Adding a column
for each possible question results into a storage problem,
and in some sense it is unnecessary: all these values can be
computed from the distance value.

Getting fuzzy answers for fuzzy queries from non-fuzzy
information stored in non-fuzzy databases has been studied
in some works, for example in [1], the SQLf language.
The PhD. thesis of Leonid Tineo [2] and the work of
Dubois & Prade [3] are good revisions, although maybe a
little bit outdated. Most of the works mentioned in these
papers focus in improving the efficiency of the existing
procedures, in including new syntactic constructions or in
allowing to introduce the conversion between the non-fuzzy
values needed to execute the query and the fuzzy values
in the query, for which they use a syntax rather similar to
SQL (reflected into the name of the one mentioned before).
The advantages of using a syntax similar to SQL are many
(removal of the necessity to retrieve all the entries in the
database, SQL programmers can learn the new syntax easily,
...) but there is an important disadvantage: the user needs to
teach the search engine how to obtain the fuzzy results from
the non-fuzzy values stored in the database to get answers to
his/her queries and this includes that he/she must know the
syntax and semantics of the language and the structure of
the database tables. This task is the one we try to remove by
including in the representation of the problem the knowledge

needed to link the fuzzy knowledge with the non-fuzzy one.

To include the links between fuzzy and non-fuzzy con-
cepts we could use any of the existing frameworks for
representing fuzzy knowledge. Leaving apart the theoretical
frameworks, as [4], we know about the Prolog-Elf system
[5], the FRIL Prolog system [6], the F-Prolog language [7],
the FuzzyDL reasoner [8], the Fuzzy Logic Programming
Environment for Research (FLOPER) [9], the Fuzzy Prolog
system [10], [11], or Rfuzzy [12]. All of them implement in
some way the fuzzy set theory introduced by Lotfi Zadeh
in 1965 ([13]), and all of them let you implement the
connectors needed to retrieve the non-fuzzy information
stored in databases, but we needed more meta-information
than the one they provide. This is why we propose a new
one here.

Retrieving the information needed to ask the query is
part of the problem but, as introduced before, it is needed
to determine what the query is asking for before answering
it. Instead of providing a free-text search field and recognize
the query we do it in the other way: we did an in-depth study
in which are all the questions that we can answer from the
knowledge stored in our system and we created a general
query form that allows to introduce any of these questions.
The interest in this query form is that we can study from it
what information our framework needs to feed its variable
fields and what relations it needs to answer the questions it
allows to represent. We do this in Sec. III.

The work we present here is, as far as we know, novel
in the idea of getting a fuzzy and flexible search engine
from the representation of the real-world knowledge in the
syntax understood by the framework, but includes facilities
present in other works. With respect to the search engine
we know the works [14], [15] and [16] are similar to ours.
While the last two seem to be theoretical descriptions with no
implementation associated, the first one does not appear to
be a search engine project. They provide a natural language
interface that answers queries of the types (1) does X (some
individual) have some fuzzy property, for example “Is it true
that IBM is productive?”, and (2) do an amount of elements
have some fuzzy property, for example “Do most companies
in central Portugal have sales profitability?”. Some facilities
we include and are present in most of the frameworks
cited before are the definitions of the fuzzy truth value for
predicates, fuzzifications, rules or default values. Other ones
included and, as far as we now, present only in [17] [18] are
priorities and personalization of clauses (or rules) per user.
And the one that we have not found in any other framework
is the representation of similarity. In contrast with this, there
are many works about similarity in fuzzy logic, as [19],
[20], [21], [22]. There are many differences between these
proposals and ours, but the most important are (1) that we
do not force the similarity relation to be reflexive, symmetric
and transitive, i.e., an equivalence relation. As some of them
mention, this is too restrictive for real-world applications.
And (2) that we do not try to measure the closeness (or
similarity) between two fuzzy propositions. The facilities we
provide go in the other direction: we take the similarity value
computed and return the elements considered to be similar
to the one we are looking for.

The paper is structured as follows: the syntax needed

2330

to understand it goes first (Sec. II), the description of our
framework after (Sec. III) and conclusions and current work
in last place (Sec. IV), as usual.

II. SYNTAX

We will use a signature Σ of function symbols and a set
of variables V to “build” the term universe TUΣ,V (whose
elements are the terms). It is the minimal set such that each
variable is a term and terms are closed under Σ-operations.
In particular, constant symbols are terms. Similarly, we
use a signature Π of predicate symbols to define the term
base TBΠ,Σ,V (whose elements are called atoms). Atoms are
predicates whose arguments are elements of TUΣ,V . Atoms
and terms are called ground if they do not contain variables.
As usual, the Herbrand universe HU is the set of all ground
terms, and the Herbrand base HB is the set of all atoms with
arguments from the Herbrand universe. A substitution σ or
ξ is (as usual) a mapping from variables from V to terms
from TUΣ,V and can be represented in suffix ((Term)σ) or
in prefix notation (σ(Term)).

To capture different interdependencies between predi-
cates, we will make use of a signature Ω of many-valued
connectives formed by conjunctions &1,&2, ...,&k, disjunc-
tions ∨1,∨2, ...,∨l , implications ←1,←2, ...,←m, aggrega-
tions @1,@2, ...,@n and tuples of real numbers in the
interval [0, 1] represented by (p, v).

While Ω denotes the set of connective symbols, Ω̂
denotes the set of their respective associated truth functions.
Instances of connective symbols and truth functions are de-
noted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors,
←i and ←̂i for implicators, @i and @̂i for aggregators and
(p, v) and ˆ(p, v) for the tuples.

Truth functions for the connectives are then defined as
&̂ : [0,1]2 → [0,1] monotone2 and non-decreasing in both
coordinates, ∨̂ : [0,1]2→ [0,1] monotone in both coordinates,
←̂ : [0,1]2 → [0,1] non-increasing in the first and non-
decreasing in the second coordinate, @̂ : [0,1]n → [0,1]
as a function that verifies @̂(0, . . . , 0) = 0 and
@̂(1, . . . , 1) = 1 and (p, v) ∈ Ω(0) are functions of arity
0 (constants) that coincide with the connectives.

Immediate examples for connectives that come to mind
for conjunctors, disjunctors and implicators are shown in
Fig. 2, where Ł stands for Łukasiewicz logic, Gö for Gödel
logic and prod for product logic. For aggregation operators3

we have arithmetic mean, weighted sum or a monotone
function learned from data.

III. THE FRAMEWORK IN DETAIL

As mentioned in the introduction, we present a search
engine able to answer fuzzy and flexible queries introduced
by a user-friendly interface. The most important part of the
interface is how the user introduces his/her queries. For

2As usually, a n-ary function F̂ is called monotonic in the i-th argument
(i ≤ n), if x ≤ x′ implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤
F̂(x1, . . . , xi−1, x′, xi+1, . . . , xn) and a function is called monotonic if it
is monotonic in all arguments.

3Note that the above definition of aggregation operators subsumes all
kinds of minimum, maximum or mean operators.

conjunctor disjunctor implicator
Ł max(0,x+y−1) min(1,x + y) min(1,1− x+ y)
Gö min(x,y) max(x,y) y if x > y else 1
prod x ⋅ y x ⋅ y x ⋅ y

Fig. 2: Examples of conjunctors, disjunctors and implicators

that purpose we present him/her the following syntactical
structure, which has been defined after studying multiple user
queries. It allows to introduce all of them (sometimes with
small modifications) and has the form

I′m looking f or a/an individual{
not m f-pred

whose nf-pred co-op val

}

ADD
(1)

where individual is the element we are looking for (car, skirt,
restaurant, ...), not is a negation mechanism, m is a modifier
(quite, rather, very, ...), f − pred is a fuzzy predicate (cheap,
large, close to the center, ...), n f − pred is a non-fuzzy
predicate (price, size, distance to the center, ...), co− op
is a comparison operand (“is equal to”, “is different from”,
“is bigger than”, “is lower than”, “is bigger than or equal
to”, “is lower than or equal to” and “is similar to”) and val
is a crisp value (a number if co− op serves to compare
numbers or a string if it takes the values “is equal to”, “is
different from” or “is similar to”). The elements in boxes can
be modified (and in some cases left blank) and the brackets
symbolize choosing between the first line (a fuzzy predicate
query) or the second one (a comparison between values). The
“ADD” serves to add more lines to the query, to combine
multiple conditions. By default they are combining using the
minimum operand, which in FL is considered as AND, but
we can choose max (considered as OR), product, ... Some
examples of use are “I’m looking for a restaurant close to the
city center or not very expensive” (Eq. 2) and “I’m looking
for a restaurant whose food type is similar to mediterranean
and not close to the city center” (Eq. 3). In the examples the
empty boxes mean that we do not choose any of the available
elements.

I′m looking f or a/an restaurant

close to the city center

not very expensive
OR (2)

I′m looking f or a/an restaurant

whose food type is similar to

mediterranean
not close to the city center

AND (3)

For most of the elements in boxes the web interface
presents lists of values from which we can choose one. These
lists values are obtained from the real-world knowledge
modelled using the framework syntax, so the framework
only receives queries that it can answer. This is why when
we provide the semantics of the framework syntactical con-
structions we do it from the point of view of what queries

2331

the user can pose to the search engine. We present first
a brief but, for our purposes, complete introduction to the
multi-adjoint semantics with priorities that we use to give
formal semantics to our syntactical constructions. For a more
complete description we recommend reading the papers cited
below.

The structure used to give semantics to our programs
is the multi-adjoint algebra, presented in [23], [24], [25],
[26], [27], [28]. The interest in using this structure is that
we can obtain the credibility for the rules that we write from
real-world data, although this time we do not focus in that
advantage nor in the existence of other mechanisms for this
purpose, as the one proposed in [29]. We simply highlight
this fact so the reader knows why this structure and not
some other one. Since the semantics details can be found
in the papers cited, we only focus here in what matters to
understand our contribution.

Suppose a program in the syntax the papers cited define
and a query. In order to give an answer to the query the
program is instantiated or grounded, the atoms are given an
interpretation and this interpretation is extended to the for-
mulas in the language. In bi-valued logic the interpretations
are just { true, f alse } while here it is a number v ∈ [0,1],
but in both cases the expected result is the maximum of the
values obtained by the different rules. So, we select all the
rules whose head unify with the query, take their respective
interpretations (numbers between 0 and 1) and compute the
maximum. This is the result for the query.

The multi-adjoint algebra is an impeccable theoretical
work but, as all theoretical works, needs adaption for mod-
elling the real world. In our case, the necessity for modelling
real-world knowledge is the capability to say that we prefer
the results of some rules to the results of some other ones.

In [17], [18] the authors extend the multi-adjoint seman-
tics. The main difference with the original works is that the
meaning of a fuzzy logic program gets conditioned by the
combination of a truth value and a priority value. So, the
usual truth value v ∈ [0,1] is changed by (p, v) ∈ Ω(0), a
tuple of real numbers between 0 and 1 where p ∈ [0,1] de-
notes the (accumulated) priority. In order to give meaning to
the new programs’ syntax the authors redefine the maximum
operator and extend the connectives so they can work with
tuples instead of only with truth values. The new definition
for the maximum is derived from the ordering definition in
Def. III.1 and the extension of the connectives is done by
applying the original connectives only to the truth value v
and the connectives ∘& , ∘← and ∘& to the priority
value, depending if the connective applied to the tuple is a
conjunctor, an implicator or an aggregator4. We copy the
definitions Def. III.1 and Def. III.2 from [17]. The only
symbol not explained yet is KT, the set of all possible values
for (p, v) ∈Ω(0).

Definition III.1 (≼ KT).

⊥≼ KT ⊥≼ KT (p, v)

(p1, v1)≼ KT (p2, v2) ↔ (p1 < p2) or
(p1 = p2 and v1 ≤ v2) (4)

4 ∘& is used for conjunctors and for aggregators. It is not a typo.

where < is defined as usually (vi and p j are just real numbers
between 0 and 1).

Definition III.2 (The operator ∘). The application of some
conjunctor &̄ (resp. implicator ←̄ , aggregator @̄) to
elements (p, v) ∈ KT∖{⊥} refers to the application of the
truth function &̂ (resp. ←̂ , @̂) to the second elements of
the tuples while ∘& (resp. ∘← , ∘&) is the one applied
to the first ones. The operator ∘ is defined by

x ∘& y =
x + y

2
and z ∘← y = 2 ∗ z − y .

Now that we have introduced the basics of our formal
semantics we introduce the syntax and semantics of the
constructions with which we can model the world knowledge.
Since our main achievement is providing a search engine
capable of answering fuzzy and flexible queries we do it
from the point of view of the interface: from its use to the
way we define it in our framework syntax.

The first selection that the user has to do is what he/she
is looking for. He/she does that by selecting a value for the
field individual. Each value for this field is obtained from
the definition of a database, which can be done by using the
construction in Eq. 5. In the construction in Eq. 5 pT is the
name of the database table or virtual database table (vdbt)5

that will appear in the selection box of the field individual,
pA is the arity of the vdbt, pN is the name assigned to a
column of the vdbt pT and pT ′ is the type of the information
stored in the column, (a basic type, one of { boolean type,
enum type, integer type, f loat type, string type }). We
provide an example in Eq. 6 to clarify. In the example we
define the restaurant database with four columns, the first
for its name, the second for the food type served there, the
third for the restaurant’s price average and the last one for
the distance to the city center from that restaurant.

de f ine database(pT/pA, [(pN, pT ′)]) (5)
de f ine database(restaurant/4,

(name, string type),
(f ood type, enum type),
(price average, integer type),
(distance to the city center, integer type)]). (6)

After the user chooses what he/she is looking for he/she
needs to impose conditions on the search, for which the web
interface presents a combo with all the available predicates.
In Eq. 1 we differentiate when the predicate is fuzzy and
when it is not, but the web interface does not force the user
to know that. The user just has to choose one predicate and,
depending if the predicate is fuzzy or not, the search engine
will show him/her the fields not and m or the fields co−op
and val. The predicates shown in the combo of predicates
come from different syntactical structures. We see each one
of them in detail.

5We usually name the database “virtual database table” (vdbt) because
the database that we define can be mapped to more than one database by
using Prolog to database libraries. We do not enter here into these low-level
details.

2332

The first syntactical construction from which we obtain
predicates for the list of predicates is the one presented in
Eq. 5. In this structure we define a name and a type for
each column in the vdbt and the framework interprets that
we want to allow the user to impose conditions depending of
the values of those columns. These predicates are all marked
as non-fuzzy predicates.

The second syntactical construction from which we ob-
tain predicates for the list of predicates is presented in Eq. 7.
It serves to define the rare situation in which for all the
individuals in the vdbt we have the same result and, when
the construction in Eq. 8 appears as its tail, for subsets of
the set of individuals in the vdbt. In Eq. 7 the variable pT
mean the same as in Eq. 5, TV is the truth value (a float
number between 0 and 1) and f PredName is name of the
fuzzy predicate we are defining. In Eq. 11 we present an
example in which we say that all the restaurants are cheap
with a truth value of 0.5.

f PredName(pT) :∼ value(TV) (7)
i f (pN(pT) comp value). (8)
with credibility(credOp, credVal) (9)

only f or user ′UserName′ (10)
cheap(restaurant) :∼ value(0.5) (11)

The syntactical construction in Eq. 7 is not intended
to appear alone in programs, but in conjunction with one
or more of the syntactical constructions that appear in
Eqs. 8, 9 and 10. These constructions serve as tails for the
constructions in Eqs. 7, 15, 17, 18, 20, 23, 24 and 29.
These three constructions are meant to change slightly the
semantics of the original constructions when they appear as
their tails. We explain each case separately.

The tail in Eq. 8 (not applicable to the construction in
Eq. 29) serves to limit the individuals for which we wanna
use the fuzzy clause or rule. In the construction pN and
pT mean the same as in Eq. 5, comp can take the values
“is equal to”, “is di f f erent f rom”, “is bigger than”,
“is lower than”, “is bigger than or equal to” and
”is lower than or equal to” and value can be of
type integer type, enum type or string type. The only
restrictions are that the type of value must be the same as
the one given to to the column pN of pT and that if they are
of type enum type or string type the only available values
for comp are “is equal to” and “is di f f erent f rom”.
We show an example in Eq. 12 in which we say that the
restaurant Zalacain is cheap with a truth value of 0.1.

cheap(restaurant) :∼ value(0.1)
i f (name(restaurant) is equal to zalacain). (12)

The tail in Eq. 9 serves to define a credibility for a
clause, together with the operator needed to combine it with
its truth value. In its syntactic definition in Eq. 9 credVal
is the credibility, a number of float type, and credOp is
the operator, any conjunctor having the properties defined
in Sec. II. We show an example in Eq. 13 in which we say
that the restaurant Don Jamon is cheap with a truth value of

0.3 but this rule has a credibility of 0.8 and the operator that
must be used to combine the credibility with the truth value
is the minimum.

cheap(restaurant) :∼ value(0.3)
i f (name(restaurant) is equal to don jamon)
with credibility(min, 0.8). (13)

The tail in Eq. 10 is aimed at defining personalized rules,
rules that only apply when the user logged in and the user
in the rule are the same one. In the construction Username
is the name of any user, a string. We show an example in
Eq. 14 in which we say that Lara considers that the restaurant
Zalacain is not close to the center. So, if it is she who poses
a query to the system asking for restaurants close to the city
center she will obtain that the Zalacain restaurant is not.

close to the city center(restaurant) :∼ value(0)
i f (name(restaurant) is equal to zalacain)

only f or user ′Lara′ (14)

The last example opens up an unresolved question: how
does the system knows that the result provided by the rule
personalized for Lara must be chosen before the result of
any other clause when the user that poses the query is she?
We use for that the priorities assigned to the rules. We see
this later, once all the constructions have been revised.

The third syntactical construction from which we obtain
predicates for the list of predicates is presented in Eq. 15. It
serves to define fuzzification functions, functions (predicates)
that allow us to know how much satisfied is a fuzzy predicate
for some individual stored in our database, from a non-fuzzy
value that we have in the database for that individual. In
Eq. 15 pN and pT mean the same as in Eq. 5, f PredName
is the name of the fuzzy predicate that we are defining (the
fuzzification), [(valIn, valOut)] is a list of pairs of values
such that valIn belongs to the domain of the fuzzification
function and valOut to its image6. An example in which
we compute how cheap is a restaurant from its average
price is presented in Eq. 16. The graphical representation
corresponding to this example is in Fig. 3.

f PredName(pT) :∼ f unction(pN(pT),

[(valIn, valOut)]). (15)
cheap(restaurant) :∼ f unction(

price average(restaurant),
[(0, 1),(10, 1),(20, 0.9),(50, 0),(200,0)]). (16)

The fourth syntactical construction from which we obtain
predicates for the list of predicates is the one we use to define
rules. Rules allow us to define the satisfaction of a fuzzy
predicate from the satisfaction of other fuzzy predicates. We
have two syntactical forms for defining rules, the first used

6[(valIn,valOut)] is basically a piecewise function definition, where each
two contiguous points represent a piece.

2333

0

1

cheap

10 100 euros
Fig. 3: Cheap function (for restaurant).

when the body depends on more than one fuzzy predicate,
shown in Eq. 17, and the second one when it depends in
just one, shown in Eq. 18. In Eq. 17 aggr is the aggregator
used to combine the truth values of the fuzzy predicates in
complexBody, which is just a conjunction of names of fuzzy
predicates (and the vdbt they are associated to, represented
by pT), while in Eq. 18 simplexBody is just the name of a
fuzzy predicate (and the vbdt it is associated to). In both of
them pT means the same as in Eq. 5 and f PredName the
same as in Eq. 15. We show an example in Eq. 19 in which
we say that a restaurant is a tempting restaurant depending on
the worst value it has between being close to the center and
being cheap, which means that a restaurant must be close
to the center and cheap at the same time to consider it a
tempting restaurant.

f PredName(pT) :∼ rule(aggr,complexBody) (17)
f PredName(pT) :∼ rule(simpleBody) (18)
tempting restaurant(restaurant) :∼ rule(min,

(close to the city center(restaurant),
cheap(restaurant))) (19)

The fifth syntactical construction from which we obtain
predicates for the list of predicates is presented in Eq. 20. It is
the one used to define default values for fuzzy computations.
Its main goal is to avoid that the inference process stops
when a needed value is missing and it is really useful when
a database can have null values. In Eq. 20 pT means the
same as in Eq. 5, f PredName the same as in Eq. 15 and TV
the same as in Eq. 7. We provide two examples in Eqs. 21
and 22 in which we say that, in absence of information, we
consider that a restaurant will not be close to the city center
(this is what the zero value means) and that, in absence of
information, a restaurant is considered to be medium cheap7.

f PredName(pT) :∼ de f aults to(TV) (20)
close to the city center(restaurant) :∼ de f aults to(0).

(21)
cheap(restaurant) :∼ de f aults to(0.5). (22)

The last two constructions from which we obtain predi-
cates for the list of predicates are for defining the satisfaction
of a fuzzy predicate from the satisfaction of another that is

7We include two examples here so if one builds a program by taking all
the examples in the contribution the rule in Eq. 19 the framework is able
to obtain results for all the restaurants in our database.

considered to be a synonym or an antonym of the first one.
The syntax for defining a fuzzy predicate from a synonym is
shown in Eq. 23 and the one for defining it from an antonym
in Eq. 24. In Eqs. 23 and 24 pT means the same as in Eq. 5
and f PredName the same as in Eq. 15, while f PredName2 is
the fuzzy predicate from which we are defining the synonym
or antonym. Its name must be different from f PredName. In
the examples in Eqs. 25 and 26 we define an unexpensive
restaurant as a cheap restaurant and an expensive one as the
opposite of a cheap one.

f PredName(pT) :∼ synonym o f (f PredName2(pT)) (23)
f PredName(pT) :∼ antonym o f (f PredName2(pT)) (24)
unexpensive(restaurant) :

synonym o f (cheap(restaurant), prod,1). (25)
expensive(restaurant) :

antonym o f (cheap(restaurant), prod,1). (26)

Once the user has chosen between the available predicates
the one8 he wants to use to impose a condition to his/her
search the application determines if this predicate is fuzzy
or not. If it is a non-fuzzy predicate the web interface shows
him/her the fields for entering the values for the co−op and
val variables. As introduced before, the available values for
co−op depend on the type of the predicate chosen. If it is
of type enum type or string type they are “is equal to”, “is
different from” and “is similar to”. If it is of boolean type
they are “is equal to” and “is different from”. And if it
is of integer type of f loat type they are “is equal to”,
“is different from”, “is bigger than”, “is lower than”, “is
bigger than or equal to”, “and is lower than or equal to”.
The available values for val are determined too when the
predicate type is boolean type or enum type. In that cases
the interface shows a selection box instead of a free text input
field. When the predicate that the user chooses is a fuzzy
predicate the web interface presents him/her the selection
fields for not and m, from which he can select to negate the
result obtained by the predicate, apply to it a modifier (very,
rather, ...), both or none.

By selecting or introducing the values for co−op and val
or for not and m the query line is complete and the user has to
press the search button and wait for the framework answers.
Before entering into how the framework decides which is
the result when two or more rules give answers to the query
we introduce two more syntactical constructions. These two
syntactical constructions complement the knowledge intro-
duced by the programmer by using the previous ones. The
first one is for defining new modifiers (the ones pre-defined
in the framework are “rather”, “very” and “a few”) and the
other one is for defining the similarity between values of type
enum type. The syntax of the first one is shown in Eq. 27,
where predName is the name of the modifier, TV In the
truth value computed by the fuzzy predicate selected by the
user and TV Out the resultant truth value after applying
the modifier. Eq. 28 is an example of use in which we
define the truth value obtained by the modifier “too much”

8He/she can use more than one predicate for imposing conditions, but
each predicate must be in its own query line. The “ADD” button serves to
add new lines to the query.

2334

as three times the truth value it receives as input. The syntax
for defining similarity between values of type enum type is
shown in Eq. 29, where pT and pT ′ mean the same as in
Eq. 5, TV the same as in Eq. 7 and value1 and value2 are
two values for the vdbt column pT ′ of the vdbt pT . In the
example in Eq. 30 we say that the food type mediterranean
is 0.6 similar to the spanish one (but not in the other way.
If we want to say that the spanish food is 0.6 similar to
the mediterranean one we need to add another line of code
saying that).

modi f ier(predName/2, TV In, TV Out) :−
<< Prologcode >> (27)

modi f ier(too much/2, TV In, TV Out) :−
TV Out .= . (TV In ∗ TV In ∗ TV In). (28)

similarity between(pT, pT ′(value1), pT ′(value2), TV).
(29)

similarity between(restaurant,
f ood type(mediterranean), f ood type(spanish),
0.6). (30)

The framework interprets the constructions presented and
provides the web interface with the information it needs to
present the user the query form in Eq. 1. As told before,
the framework is able to answer any user query introduced
by using this query form. The remaining question is how
the framework is able to decide when two or more rules
(or clauses) provide answers to the query which one is
the expected one. In the introduction to the multi-adjoint
semantics with priorities we talk about the inclusion of a
parameter p for managing priority values, a new maximum
operator that takes into account this new parameter and the
extension of the connectives to manage it. This maximum
operator is what the framework uses to decide between two
tuples (p, v) ∈ Ω(0) the expected one. The value of the
variable v can be constant or computed at execution time
from the information introduced by the programmer, but
it is not the same for the value of the priority variable
p. The value of the priority variable p is fixed for each
construction but modifiable when the programmer uses the
tails’ constructions in Eqs. 8 and 10. The values given to
it depending on the construction used are summarized in
the table in Fig. 4. Without going into too much detail, we
want to give more importance to rules for computing fuzzy
values, followed by fuzzifications, rules and default values
in last place. The reason for assigning the lowest value for
synonyms and antonyms is that we want the capability to
define a fuzzy predicate as a synonym (or antonym) to some
other one, but overwrite the values returned by this other
predicate whenever we need to.

The tails’ constructions in Eqs. 8 and 10 slightly modify
the values for the priority variable p shown in Fig. 4. The
modifications consist in increasing the value of the priority
variable p in 0.05 and 0.1 respectively. The interest in
doing this is giving more importance to the clauses or rules
conditioned, and even more to the personalized ones, so we
can define a general behaviour and specialize it whenever
we need to do it. We can even define conditioned and

construction p
fuzzy value 0.8
fuzzification function 0.6
fuzzy rule 0.4
default fuzzy value 0.2
synonyms/antonyms 0

Fig. 4: Values for the priority variable p.

personalized rules and they will be chosen before the ones
just personalized.

Fig. 5: Query example.

Fig. 6: Answers returned for the query example in Fig. 5.

IV. CONCLUSIONS

We present a framework for modelling the real world
knowledge and a fuzzy and flexible search engine. The
first one has a syntax (and its semantics) with which we
can capture the relations between the fuzzy and non-fuzzy
knowledge of any domain and feed the search engine with
the information it needs to provide a friendly and easy to use
user interface.

On one hand we provide syntactical constructions for rep-
resenting fuzzy and non-fuzzy knowledge about the world,
with the possibility to represent the existing links between
the satisfaction of fuzzy predicates and the non-fuzzy infor-
mation stored in databases. This includes the assignment of
truth values to individuals in our database that satisfy some
condition, the fuzzification of values in the database, the use
of rules to obtain truth values when they depend on some
other fuzzy predicates, the assignment of default truth values
to individuals (mainly to avoid that a nonexistent or null
value in the database stops the computation), the definition
of fuzzy predicates from some others considered to be
synonyms or antonyms of the first ones and the representation
of the (almost always fuzzy) similarity between values in our
database (so the user can ask for individuals with a value

2335

similar to the one he/she is looking for). These syntactical
structures, joint with the possibility to include pure Prolog
code in the programs (for performing complex tasks) makes
our framework a very powerful tool for representing the real
world and answering questions about it.

On the other one we present a search engine that takes
advantage of all the knowledge introduced by using the
framework syntax. Its main advantage over the existing ones
is that we avoid the necessity to learn a complex syntax to
just pose (fuzzy) queries, without the cost of not being able
to answer some queries because the framework is not able
to understand them. An example is shown in Figs. 5 and 6.

A link to a beta version of our flexible search engine (with
example programs, the possibility to upload new ones, etc)
is available at https://moises.ls.fi.upm.es/ java-apps/flese/

Our current research focus on deriving similarity relations
from the information in the database. In this way we could,
for example, determine from the RGB composition of two
colors if they are similar or not and remove the necessity to
code this knowledge in the programs.

REFERENCES

[1] P. Bosc and O. Pivert, “Sqlf: a relational database language for fuzzy
querying,” Fuzzy Systems, IEEE Transactions on, vol. 3, no. 1, pp. 1
–17, feb 1995.

[2] L. J. T. Rodriguez, “(phd. thesis) a contribution to database flexible
querying: Fuzzy quantified queries evaluation,” November 2005.

[3] D. Dubois and H. Prade, “Using fuzzy sets in flexible querying:
why and how?” in Flexible query answering systems, T. Andreasen,
H. Christiansen, and H. L. Larsen, Eds. Norwell, MA, USA:
Kluwer Academic Publishers, 1997, pp. 45–60. [Online]. Available:
http://dl.acm.org/citation.cfm?id=285506.285510

[4] P. Vojtáš, “Fuzzy logic programming,” Fuzzy Sets and Systems, vol.
124, no. 3, pp. 361–370, 2001.

[5] M. Ishizuka and N. Kanai, “Prolog-elf incorporating fuzzy logic,” in
IJCAI’85: Proceedings of the 9th international joint conference on
Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1985, pp. 701–703.

[6] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth, Fril- Fuzzy and
Evidential Reasoning in Artificial Intelligence. New York, NY, USA:
John Wiley & Sons, Inc., 1995.

[7] D. Li and D. Liu, A fuzzy Prolog database system. New York, NY,
USA: John Wiley & Sons, Inc., 1990.

[8] F. Bobillo and U. Straccia, “fuzzydl: An expressive fuzzy description
logic reasoner,” in 2008 International Conference on Fuzzy Systems
(FUZZ-08). IEEE Computer Society, 2008, pp. 923–930.

[9] P. Morcillo and G. Moreno, “Floper, a fuzzy logic programming
environment for research,” in Proceedings of VIII Jornadas sobre
Programación y Lenguajes (PROLE’08), F. U. de Oviedo, Ed., Gijón,
Spain, october 2008, pp. 259–263.

[10] C. Vaucheret, S. Guadarrama, and S. Muñoz-Hernández, “Fuzzy
prolog: A simple general implementation using CLP(R),” in LPAR,
ser. Lecture Notes in Artificial Intelligence, M. Baaz and A. Voronkov,
Eds., vol. 2514. Springer, 2002, pp. 450–464.

[11] S. Guadarrama, S. Muñoz-Hernández, and C. Vaucheret, “Fuzzy
prolog: a new approach using soft constraints propagation,” Fuzzy Sets
and Systems (FSS), vol. 144, no. 1, pp. 127 – 150, 2004, possibilistic
Logic and Related Issues.

[12] S. Muñoz-Hernández, V. Pablos-Ceruelo, and H. Strass, “Rfuzzy:
Syntax, semantics and implementation details of a simple
and expressive fuzzy tool over prolog,” Information Sciences,
vol. 181, no. 10, pp. 1951 – 1970, 2011, special Issue
on Information Engineering Applications Based on Lattices.
[Online]. Available: http://www.sciencedirect.com/science/article/
B6V0C-50PJWYR-2/2/26d8ff890f0effc98aa1c12225a5fb87

[13] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[14] R. A. Ribeiro and A. M. Moreira, “Fuzzy query interface for
a business database,” International Journal of Human-Computer
Studies, vol. 58, no. 4, pp. 363 – 391, 2003. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1071581903000107

[15] P. Bosc and O. Pivert, “On a strengthening connective for flexible
database querying,” in Fuzzy Systems (FUZZ), 2011 IEEE Interna-
tional Conference on, 2011, pp. 1233–1238.

[16] G. Bordogna and G. Pasi, “A fuzzy query language with a
linguistic hierarchical aggregator,” in Proceedings of the 1994
ACM symposium on Applied computing, ser. SAC ’94. New
York, NY, USA: ACM, 1994, pp. 184–187. [Online]. Available:
http://doi.acm.org/10.1145/326619.326693

[17] V. Pablos-Ceruelo and S. Muñoz-Hernández, “Introducing priorities
in rfuzzy: Syntax and semantics,” in CMMSE 2011 : Proceedings
of the 11th International Conference on Mathematical Methods in
Science and Engineering, vol. 3, Benidorm (Alicante), Spain, June
2011, pp. 918–929. [Online]. Available: http://gsii.usal.es/∼CMMSE/
index.php?option=com∖ content∖&task=view∖&id=15∖&Itemid=16

[18] ——, “Getting answers to fuzzy and flexible searches by easy
modelling of real-world knowledge,” in FCTA’2013: Proceedings of
the 5th International Conference on Fuzzy Computation Theory and
Applications, 2013.

[19] J.-B. Wang, Z.-Q. Xu, and N.-C. Wang, “A fuzzy logic with
similarity,” in Proceedings of the 2002 International Conference on
Machine Learning and Cybernetics, vol. 3, 2002, pp. 1178 – 1183
vol.3. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=1167386&tag=1

[20] L. Godo and R. O. Rodriguez, “A fuzzy modal logic for
similarity reasoning,” in Fuzzy Logic and Soft Computing, K.-Y. C.
Guoqing Chen, Mingsheng Ying, Ed. Kluwer Academic, 1999.
[Online]. Available: http://publicaciones.dc.uba.ar/Publications/1999/
GR99

[21] D. Dubois and H. Prade, “Comparison of two fuzzy set-based logics:
similarity logic and possibilistic logic,” in Fuzzy Systems, 1995.
International Joint Conference of the Fourth IEEE International
Conference on Fuzzy Systems and The Second International Fuzzy
Engineering Symposium., Proceedings of 1995 IEEE Int, vol. 3, 1995,
pp. 1219–1226.

[22] F. Esteva, P. Garcia, L. Godo, E. Ruspini, and L. Valverde, “On
similarity logic and the generalized modus ponens,” in Fuzzy Sys-
tems, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the Third IEEE Conference on, 1994, pp. 1423–1427
vol.2.

[23] J. Medina, M. Ojeda-Aciego, and P. Vojtáš, “A multi-adjoint approach
to similarity-based unification,” Electronic Notes in Theoretical
Computer Science, vol. 66, no. 5, pp. 70 – 85, 2002, uNCL’2002, Uni-
fication in Non-Classical Logics (ICALP 2002 Satellite Workshop).
[Online]. Available: http://www.sciencedirect.com/science/article/
B75H1-4DDWJ13-37/2/bdc92744d6ddc8e888ea314efb711107

[24] ——, “A completeness theorem for multi-adjoint logic programming,”
in FUZZ-IEEE, 2001, pp. 1031–1034.

[25] ——, “Multi-adjoint logic programming with continuous seman-
tics,” in LPNMR, ser. Lecture Notes in Computer Science, T. Eiter,
W. Faber, and M. Truszczynski, Eds., vol. 2173. Springer, 2001, pp.
351–364.

[26] ——, “A procedural semantics for multi-adjoint logic programming,”
in EPIA, ser. Lecture Notes in Computer Science, P. Brazdil and
A. Jorge, Eds., vol. 2258. Springer, 2001, pp. 290–297.

[27] ——, “Similarity-based unification: a multi-adjoint approach,” Fuzzy
Sets and Systems, vol. 146, no. 1, pp. 43–62, 2004.

[28] J. Medina Moreno and M. Ojeda-Aciego, “On first-order multi-
adjoint logic programming,” in 11th Spanish Congress on Fuzzy
Logic and Technology, 2002. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.20.3800

[29] A. M. Palacios, M. J. Gacto, and J. Alcalá-Fdez, “Mining fuzzy
association rules from low-quality data,” Soft Comput., vol. 16, no. 5,
pp. 883–901, 2012.

2336

