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Abstract—Cognitive Maps are abstract knowledge represen-
tation framework, suitable to model complex systems. Cognitive
Maps are visualized with directed graphs, where nodes represent
phenomena and edges represent relationships. Granular Cogni-
tive Maps are augmented Cognitive Maps, which use knowledge
granules as information representation model. Conceptually,
GCMs originated as an extension of Fuzzy Cognitive Maps. The
contribution presented in this paper is a methodology for Granu-
lar Cognitive Map reconstruction. The goal of the procedure is to
construct a weights matrix - and thereby the GCM, which outputs
best describe the phenomena of interest. The article addresses the
conflict between generality and specificity of various Granular
Cognitive Maps. Balance between generality and specificity is
the most important architectural aspect of a model built with
knowledge granules. A series of experiments illustrates, how
various optimization techniques allow improvement in map’s
quality without a loss in map’s precision.

I. INTRODUCTION

Granular Computing is a general approach to knowledge
representation and exploration, which is using granules such as
sets, classes, clusters, groups, and intervals to build a flexible
computational model for complex applications. The core ideas
behind Granular Computing have been functioning in sciences
for long time, usually under different notions. The name -
Granular Computing does not refer to one particular algorithm
or method. It is a widely understood approach, some may say
paradigm, to information understanding.

Knowledge granules describe units and clusters of informa-
tion with a given precision. The precision of modeled phenom-
ena relies on system’s architecture. Depending on application,
we aim at less or more precise phenomena description. The
main benefit from granular knowledge representation scheme
is enhanced modeling ability. Knowledge granules describe
information very flexibly, [16], [17].

In this paper we discuss Granular Cognitive Maps (GCM)
- kind of Cognitive Maps, which uses knowledge granules as
information representation model. Granular Cognitive Maps
model phenomena and relation within phenomena. The contri-
bution described in this paper is a methodology for Granular
Cognitive Map reconstruction procedure. The proposed pro-
cedure constructs a weights matrix with input training data,
without prior knowledge about the shape of this map. So far,
the research on maps reconstruction has not been transfered
to Granular Cognitive Maps. The original aspect discussed
in this paper is a methodology for Granular Cognitive Map
reconstruction.

The paper is structured as follows. Section II is a brief
literature overview on Cognitive Maps. Section III covers
the methodology of our approach. Section IV illustrates the
developed methodology with a series of experiments. Finally,
Section V covers conclusions and future research plans.

II. LITERATURE OVERVIEW

In this section we present a brief literature review on the
topic of Cognitive Maps and Granular Cognitive Maps.

Cognitive Maps are graph-alike knowledge modeling tool,
comprising of nodes and edges between the nodes. Nodes
represent phenomena, edges represent relations within phe-
nomena. Cognitive Maps have been applied to modeling for
the first time in 1976 by a political scientist, R. Axelrod, [1].
Originally, Cognitive Maps have been used to describe very
simplistic systems. Primarily, relations between map’s nodes
were of only three different kinds: positive (+1), negative (-1)
and none (0). Positive evaluation of a connection from node
A to B means that an increase of the value in node A causes
the increase in the value in node B. Such generic framework
has been functioning in the sciences for over 10 years.

Major shift in the research on Cognitive Maps has occurred
in 1986, when B. Kosko has published his paper on Fuzzy
Cognitive Maps, [4]. FCMs are an extension of generic Cog-
nitive Maps. The new model provided more complex frame-
work for relationships modeling. In FCMs relations between
map’s nodes are expressed with real numbers from the [−1, 1]
interval. The value of a given connection corresponds to the
degree of positive or negative relation between two nodes. The
higher the absolute value of given connection, the stronger the
relationship. 0 informs about lack of relation.

Exploration of FCM is performed with a set of activations
and targets, expressed with real numbers from the [0, 1] inter-
val. The core element of each Cognitive Map, not only Fuzzy
one, is then × n weights matrix, which gathers connections
between n map’s nodes.

The model of FCMs, due to its attractive modeling capa-
bilities, has been applied in several areas. Most important are
time series prediction ([3], [13]) and classification ([7], [8]).

Subsequently Cognitive Maps have been adapted to model
knowledge with the use of other information representation
schemes, including Intuitionistic Cognitive Maps: [6] and
Granular Cognitive Maps: [11], [12]. The latter model of Gran-
ular Cognitive Maps is present in sciences for relatively short
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time. GCMs join the benefits of Granular Computing with
Cognitive Maps. Granular Cognitive Maps augment generic
map connections to granular connections.

One of the most important topics in the research on
Cognitive Maps is Cognitive Map construction. The goal
of such procedure is to generate weights matrix suitable to
model phenomena of interest. This topic has originated as an
important aspect of applied modeling with FCMs. Before the
discussed issue has appeared, Cognitive Maps’ shapes were
typically given by an expert or by a group of experts. Manual
construction offers limited possibilities, as the quality of such
map depends on the human factor.

Research in the area of FCM reconstruction resulted in
several noteworthy approaches, including:

• Differential Hebbian Learning, [2],

• Nonlinear Hebbian Learning, [9],

• genetic strategies for FCM learning, [5], [14], [15],

• swarm intelligence-based FCM learning, [10].

Named methods aimed at FCMs weights matrix learning
with the use of different optimization procedures.

The research on Granular Cognitive Maps, especially in
the context of GCM reconstruction, is at relatively early stage,
comparing to the research on FCMs. The paper [12] introduces
the key concepts on knowledge mining with GCMs, but the
authors focus on the switch between FCMs to GCMs and on
adaptation of FCM-related methodology of map reconstruction
to GCMs. In this paper we discuss an approach, in which the
GCM is reconstructed without the knowledge of prior FCM
describing training data.

III. METHODOLOGY

A. Granular Cognitive Maps

Granular Cognitive Maps use knowledge granules for in-
formation representation model. GCMs may be perceived as
an augmentation of Fuzzy Cognitive Maps, where we use more
abstract, flexible, and general knowledge granules.

GCM models phenomena of interest and relations between
them, which are manifested by observed causes and results.
Observed causes are presented to GCM, which should respond
with granular results. Causes presented to a GCM are named
activations and results are named targets or goals. Since
perfect modeling is rather impossible, GCM responses are
expected to cover as many results as possible.

GCM is characterized by its weights matrix W. It is the
crux of the GCM - weights describe connections between
nodes in the map. Connections in GCM are represented with
knowledge granules. Input information (activations) is scaled
to the [0, 1] interval, alike in FCMs. GCM responses are
represented with knowledge granules.

Let us determine notation for Granular Cognitive Maps
based on up-to-date research:

• n, N - numbers of phenomena and observations,

• W - square matrix of granular weights with n rows
and n columns,

• Wi·, W·j - i-th row and j-th columns of W,

• wij - item of W in i-th row and j-th column (single
knowledge granule),

• X and G - matrices of (N ) observations with n rows
and N columns, called activations (X) and targets or
goals (G), respectively,

• Y - matrix of granular GCM responses, n rows and
N columns,

• Xi·, X·j , Gi·, G·j , Yi·, Y·j , xij , gij , yij - rows,
columns and items in corresponding matrices X , G
and Y,

• the pair X·j and G·j is called (j-th) observation,

• X·j , G·j Y·j are named (j-th) activation, target and
response, respectively.

B. Modeling with Granular Cognitive Maps

Conceptually, GCMs are an augmentation of Fuzzy Cog-
nitive Maps. In GCMs weights matrix contains granular con-
nections. GCM is explored according to the formula:

Y = f(W?X) (1)

where boldface denotes just matrices of granular items. Ob-
servations X, G, weights W and responses Y are granules,
e.g. intervals, triangular or parabolic sets based on fuzzy sets
or their extensions (intuitionistic, balanced, second type etc.)
and an operator ? is a specific operator, applicable to chosen
representation model of knowledge granules. f is a sigmoid
mapping applied individually to elements of W?X:

f(z) =
1

1 + e−τz
(2)

with positive value of the parameter τ . In this study the value
of τ is arbitrarily set to 2.5, based on experiments.

The switch from FCM to GCM is on the level of weights
and with granules assumed to be intervals. In order to trans-
form FCM to GCM we augment numeric weights matrix W
to granular weights matrix W. Since observations (activations
and targets) are assumed to be still numerical, we keep normal
font of their symbols: X and G. However, in consequence
of weights granularity, GCM responses become granular as
well and are denoted in boldface Y. For single activation X·j ,
GCM’s map response Y·j is:

Y·j = f(W?X·j) (3)

In the discussed model weights are assumed to be intervals
included in the bipolar unit interval [−1, 1]. For given i-th
row and j-th column of weight’s matrix W, weight wij is the
interval denoted as [w−

ij , w
+
ij ] and satisfies inequalities −1 6

w−
ij 6 w+

ij 6 1. Therefore, we can decompose the granular
weights matrix W into two numeric matrices W− and W+

of left and right ends of intervals.

Responses Y of a GCM modeled by Formula (1) are
defined as intervals. Alike weight, GCM’s response yij is
the interval denoted as [y−ij , y

+
ij ] that satisfies inequalities

0 6 y−ij 6 y+ij 6 1. We can decompose the granular responses
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Y into two numeric matrices Y − and Y + of left and right
limits of intervals. Namely, the i-th item yij of the response
to j-th activation X·j is the interval yij = [y−ij , y

+
ij ] with ends

defined as follows:

y−ij = f(W−
i· ∗X·j) = f

( n∑
k=1

w−
ik · xkj

)
y+ij = f(W+

i· ∗X·j) = f
( n∑
k=1

w+
ik · xkj

)
(4)

It is worth to notice that inequalities 0 6 y−ij 6 y+ij 6 1 are
assured by Formula (4), nonnegative values of activations and
source inequalities of weights w−

kl 6 w+
kl for all k, l ∈ [1, n].

C. Generality vs. specificity

For a Cognitive Map built on knowledge granules it is
necessary to consider several important architectural issues.
Knowledge granules have the ability to represent information
in a very general fashion. This feature is on one hand very
attractive - modeling capabilities of the system are widened.
On the other hand, too general knowledge representation
scheme is in conflict with precision of the model. The more
general data representation, the less accurate model outputs
and predictions.

Knowledge granules generalize information units. While
constructing a GCM we have to resolve the conflict between
generality and specificity. Map shall describe a system of
phenomena as precisely as possible. At the same time, we
want the model to represent and include certain variability -
or in other words generality. The need for generality is not
only, but also caused by imperfectness of information.

If we use interval representation for knowledge granules,
balance between precision and generality is manipulated with
lengths of intervals. The longer the interval, the more gen-
eral given knowledge granule and in consequence the wider
spectrum of phenomena it reflects. The shorter the knowledge
granule interval, the higher precision.

In this paper we discuss weights granulation, which then
propagates to responses as a secondary effect of their granula-
tion. It is worth to underline that in discussed model, granules
of map’s responses are fully determined by weights granules
and activations, c.f. Formulas (1), (3) and (4).

The simplest approach to interval-based granulation relies
on setting the same length κ of all weights’ granules, i.e. κ =
w+
ij − w−

ij , where wij = [w−
ij , w

+
ij ] for all i, j ∈ [1, n]. In

such the case, generality/specificity is controlled only by the
single parameter κ. Obviously, flexibility of such granularity
architecture is low.

The approach applied in this paper allows constraint opti-
mization of granules sizes. Granules lengths are flexible - to
certain extent. Sum of all weights’ granules cannot exceed
fixed threshold. As a consequence, if we increase sizes of
selected granules, lengths of other granules have to be simul-
taneously decreased. Moreover, we may add an upper limit on
the length of a single granule. This outcome directly concerns
granules of weights and indirectly (by propagation) granules
of map’s responses. Of course, our interest is in managing

granularity of responses more than granularity of weights.
However, in our model, granularity of responses is a secondary
effect of granularity of weights. Therefore, weights granularity
is directly controlled with analysis of aimed granularity of
responses. In other words, in our approach we distinguish:

• local granularity and
• global granularity.

Local granularity admits variability of granules’ sizes while
global granularity keeps the whole system inside assumed
average level of generality/specificity. Specifically, we assume
that average length of weights’ interval does not exceed a given
value κ and we allow length of some intervals to be increased,
but not exceed certain size, i.e. κ multiplied by some constant
%. This is described by the following conditions for given
matrix of weights’ granules W:

max
{
w+
ij − w

−
ij : i, j ∈ [1, n]

}
6 % · κ

n∑
i=1

n∑
j=1

(w+
ij − w

−
ij) 6 n2 · κ (5)

where wij = [w−
ij , w

+
ij ] and κ and % are constants as above.

D. Quality of modeling

In order to assess the quality of a GCM we calculate how
well granular map responses cover targets.

In case of FCMs quality of modeling is defined by distance
(error) between targets and responses. In contrast, coverage
of targets by map responses is a basic criterion to evaluate
the quality of the GCM. Meaning of covering a single target
by a corresponding response depends on granules definition.
There are two basic approaches to calculate coverage of the
whole targets:

• step-alike coverage,
• gradual coverage.

In step-alike coverage approach, the final coverage factor
is increased by a constant value each time a target value falls
into granule of corresponding response. Otherwise, the final
coverage factor is not increased. Therefore, step-alike coverage
has locally binary character. In contrast, gradual coverage
approach assumes locally smooth coverage change.

In this study we assume that, for interval-based granules,
a target value is covered by a corresponding map’s response,
if and only if the target belongs to the interval. Namely, the
target gij is covered by the response Yij if and only if the
following inequalities hold y−ij 6 gij 6 y+ij .

We can distinguish two most important kinds of coverages:

• weak coverage,
• strict coverage.

For weak coverage, the final coverage factor is increased
by a constant value, say 1, each time a target gij falls into the
corresponding granular map response yij = [y−ij , y

+
ij ]. Let us

define local coverage factor cvgij as follows:

cvgij =

{
1 y−ij 6 gij 6 y+ij

0 otherwise
(6)
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then, the coverage factor CV Gj for j-th observation is defined
by the formula:

CV Gj =
n∑
i=1

cvgij (7)

and finally, the next formula defines the unscaled weak cover-
age factor:

CV Gweak =
N∑
j=1

CV Gj =
N∑
j=1

n∑
i=1

cvgij (8)

Strict coverage factor CV Gstrict counts observations, for
which all target values are covered by granules of correspond-
ing map’s response. This factor is increased if and only if for
given j-th observation the coverage factor CV Gj equals to n.
The formula for unscaled strict coverage is as follows:

CV Gstrict =
N∑
j=1

⌊
CV Gj
n

⌋
(9)

Unscaled weak coverage can assume values from [0, n ·N ]
while unscaled strict coverage assumes values from [0, N ]. In
order to represent coverages on a comparative and scale [0, 1]
we have to compute mean values of these factors dividing them
by n ∗N and by N , respectively:

MWC =
CV Gweak
N · n

MSC =
CV Gstrict

N
(10)

E. Reconstructing Granular Cognitive Maps

The objective of the article is to present developed ap-
proach to GCM reconstruction. The goal of this procedure is
to produce granular weights’ matrix that describes phenomena
of interest most faithfully. We use the term ”reconstruction” on
purpose. We treat the real system (phenomena and relations)
as the ideal model and the goal is to reconstruct it with GCM.

GCM reconstruction procedure restores granular weights
matrix W and chosen granularity parameters through maxi-
mization of coverage. Optimization procedure aims at fitting
weights and optionally granularity parameters so that the
map output covers the greatest number of targets. Figure 1
illustrates the our methodology for GCM reconstruction and
validation. Three synthetic datasets are used:

• train not distorted,
• train distorted,
• test.

Train not distorted is the ideal dataset, which we never have
when we deal with real data. Perfect information in nature gets
distorted. Usually we distinguish two types of distortions: ran-
dom and systematical. Systematical distortions are generated
for example by malfunctioning measuring devices. Random
distortions happen, e.g. by human mistake.

Therefore, in the experiments on synthetic data we disturb
perfect data and we use distorted train dataset for model
training. Distorted train dataset contains (on purpose) a lot of
0’s and 1’s. These values cannot be covered by map responses,
because of asymptotic properties of the sigmoid function. It

will be shown, that even if coverage on distorted data is not
excellent, the model describes very well the perfect data.

On the input we have:

• W - initial FCM weights matrix.
• X - activations matrix with input data for training.
• TGTD - distorted targets.

Weights matrix for the FCM gets augmented to granular
weights matrix Wfin. Such augmentation allows to estimate
base values of coverages prior to the map reconstruction.
Coverage before GCM reconstruction is the baseline coverage
that we want to improve.

We adjust granular weights alone or with granularity pa-
rameters to obtain the highest coverage. Optimization proce-
dure is based on Particle Swarm Optimization. As a result we
receive new set of granular weights and optionally new values
of granularity parameters ε - length of knowledge granules and
γ - symmetry parameter. Both ε andγ are n×n matrices with
separate values of parameters fro each granular weight wik.

Quality of the map is assessed on both training and testing
datasets. We evaluate how reconstructed GCM (comprising of
weights and granularity parameters) covers data. In Section
IV we present a comparative overview how optimization of
different elements of a GCM improves coverage.

IV. RECONSTRUCTING GRANULAR COGNITIVE MAPS

In this section we discuss a series of experiments conducted
according to the methodology illustrated in Figure 1. We are
interested in improvement of coverage. Therefore, we compare
baseline coverage (prior to optimization) with coverage after
the GCM reconstruction. Note that the baseline coverage is not
just random, it is a coverage provided by an augmented FCM.
The research presented in paper [12] proposes an augmentation
from FCM to GCM. The baseline coverage, which we try to
improve with our procedure is coverage discussed in the afore-
mentioned paper. Procedure proposed in this article allows to
improve the coverage without any loss in map’s specificity.

The optimization concerns intervals representing knowl-
edge granules of weights. Maximal possible length of the
interval is 2 (weights can assume values from the [−1, 1]).

We discuss GCMs built on several different levels of
specificity. Figures 3, 2 and 4 present coverage versus length of
intervals and symmetry of knowledge granules. Values of ε and
γ for GCMs prior to optimization are directly corresponding
to OX and OY axes. For GCMs after reconstruction, values of
the two parameters are a subject of constraints.

When we optimize granularity parameter ε we allow knowl-
edge granules intervals to vary. Moreover, at all time sum of all
knowledge granules for weights has to be smaller or equal to
n2 ∗ ε. As a result of the optimization procedure we increase
coverage and maintain the same balance between generality
and specificity. In other words we increase the quality of
the coverage provided by the map without a loss in map’s
precision. The aforementioned restrictions on interval lengths
were discussed in greater detail in Section III, Formula (5).

For each optimization strategy we have conducted 100
experiments for different values of γ and different restrictions
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Fig. 1. Granular Cognitive Map reconstruction and validation procedure.

on ε. In each case we reconstructed GCMs with γ from 0.1 to
1 by 0.1 and restrictions on the ε also from 0.1 to 1 by 0.1.

GCMs have been trained on distorted train datasets. Quality
of the procedure is assessed with mean weak coverage (MWC)
and mean strict coverage (MSC) - see Formulas (10). Results
are presented numerically in tables and visually in figures. We
do not expect to achieve good results on the distorted training
datasets. It is because of 0s and 1s, which cannot be covered
by map responses. MWC and MSC on not distorted dataset,
which is the ”perfect” data, shall be satisfying. High coverages
for not distorted train data means that the model describes
well the real system. We expect that for not distorted train
datasets, with the growth of the generality factor the coverage
will increase. Finally, we assess quality of the procedure on
test datasets, which are not related to train datasets in any way.
Test datasets are synthetic random values, so we expect that
the coverage will not be smooth.

Table I contains mean weak and mean strict coverages for
100 GCMs before their reconstruction procedure.

TABLE I. BASELINE MEAN COVERAGES (BEFORE RECONSTRUCTION).

train not distorted train distorted test
MWC 0.700 0.415 0.644
MSC 0.238 0.003 0.085

Discussed GCM reconstruction schemes are based on:

• adjustment of weights (Subsection IV-A),
• adjustment weights and ε (Subsection IV-B),

• adjustment of weights, ε and γ (Subsection IV-C).
In Figures 2, 3, and 4 we illustrate how named optimization
strategies improve coverage with maintaining given maps’
balance between specificity and generality. Each Figure shows
baseline coverage (in paler color) against improved coverage.
In addition, Tables II, III, and IV inform about numerical
differences in MWC and MSC for the whole series of 100
experiments with the respective three strategies of optimiza-
tion. With each listed procedure we were able to improve
the coverage. There are no qualitative differences between
obtained results. Differences are quantitative.

A. Optimization of granular weights

In this subsection we focus on GCM reconstruction strategy
that readjusts weights matrix Wfin. We optimize (move)
centers of weights’ granules. In this approach to GCM re-
construction the two granularity parameters remain at a fixed
level. There is the same ε and the same γ for all weights.
Figure 2 illustrates weak and strict coverage before and after
optimization of weights matrix.

Such strategy does not take full advantage of the assumed
granular information representation model, but it is successful.
In each case coverage has improved. For the ideal train dataset
coverage reaches 1. It is most difficult to achieve high coverage
on distorted train dataset. Distorted train set contains 0s and 1.
Coverage characteristics on test dataset, as we have expected,
is less smooth. Nevertheless, in each case there is improvement
in coverage after weights optimization.
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Fig. 2. Weak (top row) and strict (bottom row) mean coverage on not distorted train dataset (first column), distorted train dataset (second column) and test
dataset (third column) before and after optimization of granular weights.

Table II gathers means of strict and weak coverages
obtained for 100 GCMs trained during the course of this
experiment.

TABLE II. MWC AND MSC AFTER ADJUSTMENT OF WEIGHTS.

train not distorted train distorted test
MWC 0.966 0.443 0.866
MSC 0.764 0.008 0.467

Coverage heavily depends on the choice of ε. The larger the
ε, the greater the coverage. Without optimization we are unable
to achieve very high coverage. Optimization procedure allows
to produce granular responses, which without a total decrease
in model specificity cover targets very well. In conclusion, the
proposed methodology of GCM reconstruction performs well.

B. Simultaneous optimization of granular weights and ε

In this subsection we combine two optimization subjects.
Granular Cognitive Map is reconstructed through a simulta-
neous optimization of granular weights and ε matrix. Quality
of reconstructed maps is assessed by weak and strict coverage
statistics plotted in Figure 3.

Table III presents mean weak and strict coverages for 100
GCMs reconstructed by optimization of W and ε.

TABLE III. MEAN COVERAGES AFTER WEIGHTS AND ε ADJUSTMENT.

train ND train D test
MWC 0.975 0.4532 0.879
MSC 0.778 0.010 0.449

The reconstructed GCM is of better quality, than before.
Coverage on the ideal dataset for all values of γ reaches 1
even for relatively small sizes of allowed knowledge granules
(when

∑n
i=1

∑n
j=1 εij 6 (n2 ∗ 0.4)). This is quite rigorous

restriction, because the maximal length of the εij is 2. We
are able to build a map that maintains an upstanding balance
between specificity and generality. As a result of optimization
we significantly increased coverage and maintained the same
generality of the whole map.

C. Simultaneous optimization of granular weights, ε and γ

Finally, we present improvement in coverage after we
simultaneously optimize weights and both granularity param-
eters: ε and γ.

Figure 4 shows that coverage after optimization of all
relevant GCM elements has significantly increased. The im-
provement in coverage is the highest. Nevertheless, results are
only slightly better, than for the previous optimization scheme
(weights and ε). At the same time, computational cost has
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Fig. 3. Improvement in coverage after adjustment of weights and ε.

increased. We parallelized computations, but still total time
required to calculate coverage for Figure 4 was over 24 hours.

Moreover, after analysis of these results we came to
a conclusion that for real life data and interval-based granules
representation model we will keep a fixed level of γ close
to 0.5, the exact value will be selected with crossvalidation.
Optimization of γ is more justifiable for other granules repre-
sentation models and for different strategies of optimization.

Table IV presents averaged weak and averaged strict cov-
erages for 100 GCMs after reconstruction procedure.

TABLE IV. MEAN COVERAGES AFTER RECONSTRUCTION (W , ε, γ).

train not distorted train distorted test
MWC 0.972 0.445 0.874
MSC 0.783 0.011 0.487

In conclusion, the proposed procedure of Granular Cogni-
tive Map reconstruction performs well. We have shown that,
produced models faithfully describes the data.

V. CONCLUSION

In the article a methodology for Granular Cognitive Map
reconstruction has been introduced. The goal of the procedure
is to produce granular weights matrix and relevant granularity
parameters that describe phenomena of interest most flexibly.

We have shown that assumed granular knowledge repre-
sentation model allows to represent aggregates of knowledge
with a desired balance between precision and generality. We
have introduced restrictions on two levels of granularity: global
and local. Restrictions, considered as local concern single
knowledge granules. Restrictions at the global level concern
the whole model - the whole GCM.

In this paper intervals represent knowledge granules. Gran-
ularity is introduced on the level of weights and is propagated
to map’s responses. Granular map responses are intervals. We
investigate how map responses cover targets. As a result of
GCM reconstruction we expect map responses to cover targets
to greater extent without a loss in the precision. We have
proposed three strategies for GCM reconstruction, which allow
to achieve this goal. Theoretical analysis of the discussed
issues was supported with a series of experiments.

Proposed procedures perform very well. In each case
baseline coverage has improved. The more elements of the
GCM we readjust, the better quality of the map we get.

The main contribution discussed in this paper is Granular
Cognitive Map reconstruction procedure that allows to build
from scratch a good GCM, that maintains fixed balance be-
tween specificity and generality and covers data very well. In
future research authors plan to apply developed methodology
to describe real-life datasets, for example time series.
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Fig. 4. Baseline MWC and MSC coverages (light color) against improved MWC and MSC coverages (darker color) on not distorted, distorted and test datasets.
Optimization concerned weights, ε, and γ.
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