
An Investigation of Methods of Parameter Tuning
For Q-Learning Fuzzy Inference System

Ahmad A. Al-Talabi∗† and Howard M. Schwartz∗
∗Department of Systems and Computer Engineering, Carleton University

1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
Email: ahmadaltalabi@cmail.carleton.ca, Howard.Schwartz@sce.carleton.ca

† Mechatronics Engineering Department, Al-Khwarizmi College of Engineering, Baghdad University,
Baghdad, Iraq

Abstract—This paper investigates four methods of imple-
menting a Q-Learning Fuzzy Inference System(QFIS) algo-
rithm to autonomously tune the parameters of a fuzzy inference
system. We use an actor-critique structure and we simulate
mobile robots playing the differential form of the pursuit
evasion game. Both the critique and the actor are fuzzy
inference systems. The four methods come from the fact
whether it is necessary to tune all the parameters (i.e. all the
premise and the consequent parameters) of the critique and
the actor or just tune their consequent parameters. The four
methods are applied to three versions of the pursuit evasion
games. In the first version just the pursuer is learning. In
the second version, the evader uses its higher maneuverability
and plays intelligently against a self-learning pursuer. In the
final version, both the pursuer and the evader are learning.
We evaluate which parameters are best to tune and which
parameters have little impact on the performance.

I. INTRODUCTION

Reinforcement learning (RL) represents one of the most
widely used approaches to learn through interaction with
the environment. In RL, the Q-learning algorithm [1], [2]
is normally used to estimate the action-value function. The
Q-learning algorithm is a tabular method that uses discrete
state and action spaces. So, it can not be used directly
with pursuit-evasion differential games. Hence, to solve this
problem, it is possible to discretize the state and action
spaces such that the resulting Q-table is not too large.
However, for real-world problems the resulting Q-table will
be large. Furthermore, the discretization of the state and
the action space is not an easy task [3]. In order to avoid
the discretization process, one could use an approximation
method to deal directly with the state and the action spaces
that are continuous. Therefore, one can use fuzzy logic to
generalize the state and action spaces.

Fuzzy logic control (FLC) is a good choice for dealing
with processes that are ill-defined and/or involve uncertainty
or continuous change. Moreover, it is well known that fuzzy
inference systems are widely used as function approximators
[4], [5]. Reinforcement fuzzy learning methods have recently
been proposed for the problem of learning in differential
games [5]–[9] . In [5], only the consequent parameters of
the FLC and fuzzy inference system (FIS) are tuned using
a fuzzy actor-critic learning algorithm. A FIS is used as an
approximation to the value function, V(s). Furthermore, it is

supposed that only the pursuer learns its behaviour strategy
while the evader plays an optimal control strategy [5]. In [6]–
[8], a Q-learning fuzzy inference system (QFIS) is applied
to the pursuit-evasion differential game. All the premise and
consequent parameters of the FIS and the FLC are tuned. In
addition the FIS is used as an approximation to the action-
value function, Q(s,a). In [9], fuzzy actor-critic learning is
applied to the guarding territory differential game. In this
learning technique, the consequent parameters are tuned to
allow the defender to learn its Nash equilibrium strategy.

In the previous work, the researchers did not investigate
which parameters were best to tune. Hence, we need to know
whether it is necessary to tune all the parameters of the FIS
and the FLC or just tune their consequent parameters. As
we know, it would be computationally efficient to just tune
the consequent parameters. But, would there be a significant
loss in performance measures if only a subset of the available
parameters were tuned?

The organization of this paper is as follows: In Section
II, we discuss the problem statement, Section III describes
the pursuit-evasion game and its model. The structure of the
FLC is presented in Section IV. RL is presented in Section
V. The QFIS is described in Section VI. In Section VII,
the simulation results are presented. Finally, conclusions and
guidelines are given in Section VIII.

II. PROBLEM STATEMENT

In this paper, we will investigate methods of parameter
tuning for the QFIS algorithm used in [8]. Four possible
methods of parameter tuning are taken into consideration.
The four methods come from the fact whether it is necessary
to tune all the parameters (i.e. all the premise and the
consequent parameters) of the FIS(i.e. the critique) and the
FLC(i.e. the actor) or just tune their consequent parameters
as explained in Table I. Three pursuit-evasion games are
considered [8]: in the first game the pursuer self learns
its control strategy while the evader uses a deterministic
strategy which is to run away along the line of sight (i.e.
we define this as the default control strategy). In the second
game, the evader uses its higher maneuverability and plays
intelligently against a self-learning pursuer, and in the final
game, both players interact with each other in order to self-
learn their control strategies.

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2594

TABLE I. METHODS OF PARAMETER TUNING

The tuned parameters
for FLC for FIS

Method(1) The consequent parameters The consequent parameters
Method(2) The consequent parameters All parameters
Method(3) All parameters The consequent parameters
Method(4) All parameters All parameters

III. PURSUIT-EVASION GAME

The application that we will use for this study is the
pursuit-evasion differential game [10]. In the pursuit-evasion
game there are one or several pursuers that attempt to capture
one or several evaders in minimal time while the evaders try
to escape or to maximize the capturing time [10]. Hence, this
problem can be considered as an optimization problem with
conflict objectives [11]. In the pursuit-evasion game each
player should learn the best action to take at each instant of
time to adapt to an uncertain or changing environment. Fig.
1 shows the pursuit-evasion model with its parameters.

 (

)

x

y

xe

xp

ye

yp

Vp

Ve

The pursuer

The evader

Fig. 1. The pursuit evader model

The dynamic equations that describe the motions of the
pursuer and the evader robots in this game are [8], [12]

ẋi =Vi cos θi
ẏi =Vi sin θi

θ̇i =
Vi

Ri
tan ui

(1)

where i is ”e” for the evader and is ”p” for the pursuer.
Also, (xi,yi), Vi, θi, Li, and ui refer to the position, the
velocity, the orientation, the wheelbase, and the steering
angle respectively. The steering angle is bounded and is
given by −uimax ≤ ui ≤ uimax , where uimax is the maximum
steering angle. The minimum turning radius of each robot
is calculated from

Rdimin =
Li

tan(uimax)
(2)

We assume that the pursuer is faster than the evader (Vp >Ve)
and at the same time the evader is more maneuverable than
the pursuer (upmax < uemax). As in [8], we define the default
control strategy for this game as

ui =

{ −uimax : δi <−uimax
δi : −uimax ≤ δi ≤ uimax

uimax : δi > uimax

(3)

where δi represents the angle difference and is given by

δi = tan−1
(

ye− yp

xe− xp

)
−θi (4)

This control strategy allows the player to run away along
the line of sight. The distance between the pursuer and the
evader at time t is given by

D(t) =
√

(xe(t)− xp(t))2 +(ye(t)− yp(t))2 (5)

and the capture occurs when this distance is less than a
certain value , `, which is called the capture radius.

IV. FUZZY LOGIC CONTROLLER STRUCTURE

We used a FLC with two inputs and one output [8]. The
two inputs are the angle difference, δi, and its derivative, δ̇i,
and the output is the steering angle ui. The fuzzy system
is implemented using zero-order Takagi-Sugeno (TS) rules
with constant consequents [13]. It consists of linguistic rules
in the form

Rl : IF z1 is Al
1 and ... and zN is Al

N

T HEN fl = Kl (6)

where z1 is Al
1 and ... and zN is Al

N is called the premise or
the antecedent part, and fl = Kl is called the consequence
or the conclusion part. Also, zi is the ith input variable, N
is the number of input variables, Al

i is the Fuzzy set of the
input zi in rule l, Kl is the consequent parameter of the
fuzzy rule l, L is the number of the Fuzzy rules, and fl is
the output of rule l. In our problem we have two inputs z1,
and z2 which represent δi and δ̇i respectively. Each one of
them has three Gaussian membership functions (MFs). The
three Gaussian MFs have the following linguistic values:
P (positive), Z (zero), and N (negative). The Gaussian MF
takes the following form

µ(z) = exp

(
−
(

z−m
σ

)2
)

(7)

where m and σ are the mean and the standard deviation
respectively and represent the tunable input parameters. So,
we have 2×6 = 12 parameters in all MFs which are called
the premise parameters. The mean and the standard deviation
for the jth MF of the input zi can be denoted by mi j and
σi j respectively. Moreover, the number of rules depends on
the number of inputs and their corresponding MFs. In our
case, we have 2 inputs δi and δ̇i and each input has 3 MFs.
Hence, we need to build 3× 3 = 9 rules, and each rule
contains one consequent parameter, ”Kl”. The fuzzy rules
can be constructed using the fuzzy decision table as shown
in Table II.

As a result, we have 12+9=21 parameters that may be
tuned during the learning phase. The Fuzzy output ui is
defuzzified into a crisp output using the following weighted
average defuzzification method

ui =

L

∑
l=1

((
N

∏
i=1

µ
Al

i (zi))Kl

L

∑
l=1

(
N

∏
i=1

µ
Al

i (zi))

(8)

Fig. 2 and Table III show MFs of the pursuer and the evader
before learning and their fuzzy decision table. The reason for
choosing these initial settings is to prevent the pursuer from

2595

catching the evader at the beginning of the pursuit evasion
game. It is possible to use different initial settings and this
will certainly affect the period of the learning process.

TABLE II. FUZZY DECISION TABLE

δ̇i
N Z P

δi

N K1 K2 K3
Z K4 K5 K6
P K7 K8 K9

Fig. 2. Initial MFs of the pursuer and the evader

TABLE III. FUZZY DECISION TABLE OF THE PURSUER AND THE
EVADER BEFORE LEARNING

δ̇i
N Z P

δi

N -0.50 -0.25 0.00
Z -0.25 0.00 0.25
P 0.00 0.25 0.50

V. REINFORCEMENT LEARNING

The main concept of RL is for the agent to learn how
to achieve a specific goal by interacting with its environ-
ment. The agent is the learner and the decision-maker and
everything outside the agent and that interacts with it, is
called the environment. The interaction between the agent
and the environment is done in a simplified manner and
is shown in Fig. 3 [1]. The agent selects actions and the
environment responds to those actions and produces new
situations to the agent. Furthermore, the environment gives
rise to numerical values which are called rewards, that
should be maximized by the agent over time. According to

reward
tr

state
ts

1tr

1ts

action
ta

Agent

Environment

Fig. 3. Agent-environment interaction in reinforcement learning

the concept of discounting, the agent tries to select actions
that maximize the sum of the received discounted rewards
into the future. The return reward, Rt , is given by:

Rt = rt+1 + γrt+2 + γ
2rt+3...=

τ

∑
k=0

γ
krt+k+1 (9)

where γ is a parameter, (0 < γ ≤ 1). The term γ is the
discount factor and τ is the terminal time. One of the most
popular types of RL is Q-learning. In Q-learning, the action
value function under policy π , Qπ(s,a), is evaluated to get
the best expected return reward and is given by:

Qπ(s,a) = Eπ

(
∞

∑
k=0

γ
krk+t+1|st = s,at = a

)
(10)

The main task of RL is to find the appropriate policy that
maximizes the agents reward over the long run. In RL,
the reward function selection process is a task dependent
problem. The right choice of this function enables the agent
to update its value function accurately. For the pursuit-
evasion game, the main task is to enable the pursuer to catch
the evader in minimum time. So, the right choice for this
function is defined by Desouky et al. [8] and is given by

rt+1 = ∆D(t)/∆Dmax (11)

where
∆D(t) = D(t)−D(t +1) (12)

and
∆Dmax = (Vp +Ve)T (13)

where T represents the sampling time.

VI. Q-LEARNING FUZZY INFERENCE SYSTEM QFIS

Desouky et al. [8] proposed an actor-critique learning
technique called the Q(λ)-learning fuzzy inference system
(QLFIS) and applied it to the problem of the pursuit evasion
game.1 The QLFIS tunes all the parameters of the FIS and
the FLC. The FIS is used to approximate the action-value
function, Q(s,a). The learning system proposed by Desouky
et al. [8] is shown in Fig. 4. The FLC determines the control
signal u. For exploration, a white Gaussian noise with zero
mean and standard deviation σn is added to the signal u to
generate the control signal uc.

),(max 11 usQr t
u

t
 


 

ts

u
 cu

),(usQ tt

t

+ -
FIS

FLC Environment

Ɲ(0,σn)
+

+

ts

Fig. 4. Q-learning fuzzy inference system(QFIS)

1Desouky et al. [8] used eligibility traces defined by λ , as their RL algo-
rithm. It has been discovered that the eligibility trace had little advantage
in this application and as such we are not using it in our subsequent work.

2596

It is well known that the update rule for Q-learning is

Qt+1(st ,at) = Qt(st ,at)+α4t (14)

where (0 < α ≤ 1) is the learning rate parameter, and 4t is
the temporal difference error. The term 4t is defined by

4t = rt+1 + γ max
á∈A(st+1)

Qt(st+1, á)−Qt(st ,at) (15)

where A(st+1) refers to the set of actions available in
state st+1 and á is the action that gives us the maxi-
mum action-value function. We assumed Qt(st+1,at+1) ≈
maxá∈A(st+1) Qt(st+1, á) [3]. Let φ represent the parameter
vector of the FLC and the FIS. Where φ is given by

φ = (σ m K)
T (16)

The parameter vector φ of the FIS and the FLC are updated
according to the following gradient based formulas [8]

φQ(t +1) = φQ(t)+η∆t
∂Qt(st ,ut)

∂φQ
(17)

φu(t +1) = φu(t)+ξ ∆t(
uc−u

σn
)

∂u
∂φu

(18)

where η and ξ are the learning rate of the FIS and the FLC
respectively and they are defined by [8]

η = 0.1−0.09
(

i
Max. Episodes

)
(19)

ξ = 0.1η (20)

where i is the current episode. The terms ∂Qt (st ,ut)
∂φQ

and ∂u
∂φu

are given by

∂Qt(st ,ut)

∂φQ
=


∂Qt (st ,ut)

∂σi j
∂Qt (st ,ut)

∂mi j
∂Qt (st ,ut)

∂Kl

=


(Ḱ−Qt (st ,ut))

∑
9
l=1 ωl

ώT 2(zi−mi j)
2

(σi j)3

(Ḱ−Qt (st ,ut))

∑
9
l=1 ωl

ώT 2(zi−mi j)

(σi j)2

ω l


(21)

∂u
∂φu

=


∂u

∂σi j
∂u

∂mi j
∂u
∂Kl

=


(Ḱ−u)
∑

9
l=1 ωl

ώT 2(zi−mi j)
2

(σi j)3

(Ḱ−u)
∑

9
l=1 ωl

ώT 2(zi−mi j)

(σi j)2

ω l

 (22)

where ωl and ω l represent the firing strength and the
normalized firing strength of the rule l which are calculated
from [8]

ωl =
2

∏
i=1

exp

(
−(

xi−ml
i j

σ l
i j

)2

)
(23)

ω l =
ωl

9

∑
l=1

ωl

(24)

The two terms, Ḱ and ώ are two vectors containing the con-
sequence and the strength of certain rules respectively. As an
example, the parameter σ23 represents the standard deviation
for the third MF of the second input z2 and it appears in the

rules R3, R6, and R9. So, we can calculate ∂Qt (st ,ut)
∂σ23

from
(21) with Ḱ = [K3 K6 K9] and ώ = [ω3 ω6 ω9]. The
QFIS learning algorithm is given in Algorithm 1.

Algorithm 1 Learning in the QFIS.
1) Initialize the premise and the consequent parameters

of the FLC as shown in Fig. 2 and Table III,
respectively.

2) Initialize the premise parameters of the FIS with the
same values as those of the FLC and initialize the
consequent parameters to zeros.

3) Set γ ← 0.95, and σn← 0.08.
4) For each episode (game)

a) Calculate η from (19) and calculate ξ from
(20).

b) Initialize the position of the pursuer, (xp,yp) to
(0,0).

c) Initialize the position of the evader, (xe,ye),
randomly.

d) Calculate the initial state, s = (δi, δ̇i), from (4).
e) Calculate the output of the FLC, u, from (8).
f) For each step (play) Do

i) Calculate the output uc = u+N (0,σn).
ii) Calculate the output of the FIS, Q(s,u),

from (8).
iii) Run the game for the current step and

observe the next state st+1.
iv) Get the reward, r, from (11).
v) From (8), calculate Q(st+1,u′).

vi) Calculate the TD-error, ∆t , from (15).
vii) Calculate the gradient for the premise

and the consequent parameters of the
FIS and the FLC from (21),and (22)
respectively.

viii) Update the parameters of the FIS from
(17).

ix) Update the parameters of the FLC from
(18).

x) Set st ← st+1 and u← u′.
g) end for

5) end for

VII. COMPUTER SIMULATION

For the purpose of simulation, we choose the same values
used by Desouky et al. [8] unless stated otherwise. It is
assumed that the pursuer is faster than the evader with Vp =
2m/s and Ve = 1m/s and the evader is more maneuverable
than the pursuer with -1≤ −uemax ≤ 1 and -0.5≤ −upmax
≤ 0.5. The wheelbases of the pursuer and the evader are
the same and equal to 0.3m. In each episode, the pursuer’s
motion is started from the origin with an initial orientation
θp = 0 while the evader’s motion is chosen randomly from
a set of 64 different positions with θe = 0. The selected
capture radius is `= 0.1m except for the second game where
`= 0.05m and the sample time is T = 0.1sec. The number
of episodes/games is chosen to be 1000, and the number
of plays in each game is 600. Hence, the game terminates
when the time exceeds 60sec or when the pursuer captures
the evader.

2597

A. Evader follows a default control strategy

In this game, we assume that the evader plays its default
control strategy as defined by (3) and (4). Also, we assumed
that the pursuer does not have any information about its
default strategy or the evader’s strategy. The goal is to make
the pursuer self learn its control strategy by interacting
with the evader. Furthermore, to find the best methods of
parameters tuning for this game, the four methods that have
been discussed in Section II are implemented. Their results
are compared with the default control strategy. The capture
times for different initial evader positions using the default
control strategy and these methods are given in Table IV.
The pursuer-evader paths using these methods compared
with the default control strategy are shown in Fig. 5, Fig.
6, Fig. 7 and Fig. 8 (i.e. for the evader position (-6,7)).
From Table IV and Fig. 5 and Fig. 6, it is clear that the
performance of the first two methods are the same. Also,
their capture times differ slightly from the default control
strategy. On the other hand, from Table IV and Fig. 7 and
Fig. 8 we can say that the performance of the last two
methods are the same and approaches the performance of
the default control strategy both on the capture times and
on the pursuer-evader paths. Moreover, Fig. 8 shows that the
pursuer-evader paths using Method(4) and the default control
strategy are very close, so it is very difficult to distinguish
between them. So, we can conclude that the performance of
the learning algorithm is slightly effected by changing the
method of tuning for the FIS but it is significantly effected
by changing the method of tuning for the FLC. Furthermore,
the results show that the pursuer is able to learn its control
strategy in all methods but the last two methods outperform
the first two methods. As an example, Fig. 9 and Table V
show the MFs and the fuzzy decision table of the FLC for
the pursuer after learning using Method(3).

TABLE IV. CAPTURE TIME(SEC) FOR DIFFERENT EVADER INITIAL
POSITIONS

Evader initial position
(-6,7) (-7,-7) (2,4) (3,-8) (-4,5)

Default control strategy 9.6 10.4 4.5 8.5 6.8
QFIS(Method(1)) 10.1 10.7 4.7 8.8 7.2
QFIS(Method(2)) 10.0 10.6 4.7 8.7 7.1
QFIS(Method(3)) 9.7 10.4 4.5 8.6 6.8
QFIS(Method(4)) 9.6 10.4 4.5 8.5 6.8

Fig. 5. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(1)) (dotted line)

Fig. 6. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(2)) (dotted line)

Fig. 7. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(3)) (dotted line)

Fig. 8. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(4)) (dotted line)

Fig. 9. Method(3): MFs of the FLC for the pursuer after learning

2598

TABLE V. METHOD(3): FUZZY DECISION TABLE OF THE PURSUER
AFTER LEARNING

δ̇p
N Z P

δp

N -1.6967 -0.8306 -1.2808
Z -0.7253 -0.4021 -0.6387
P 1.4108 0.8850 1.2287

B. Evader using its higher maneuverability advantageously

The second version of the pursuit-evasion game allows
the evader to use its advantage of higher maneuverability.
The dynamic equations that describe the motions of the
pursuer and the evader robots are given by (1). In this game,
the robot velocity, Vi, slows down in the turn and is defined
by

Vi = vi cos(ui) (25)

where vi represents the robot maximum velocity. Desouky
et al. [8] modified the evader default strategy to allow the
evader to use its higher maneuverability advantageously as
follows:

1) If the evader is far enough from the pursuer (i.e
D(t) is greater than a certain value, d), then the
evader will run away along the line of sight. So,
the evader control strategy is

ue = tan−1
(

ye− yp

xe− xp

)
−θe (26)

2) Otherwise the evader uses its advantage of higher
maneuverability and takes the opposite direction of
the pursuer. So, the evader control strategy is

ue = (θp +π)−θe (27)

where d is the minimum turning radius of the pursuer,
Rdpmin .

In order to find the best methods of parameter tuning
for this game, the QFIS learning process is implemented
for each method. The results are compared with the default
control strategy of this game. The capture times for different
initial evader positions using the default control strategy and
the four tuning methods are given in Table VI. The pursuer-
evader paths for these methods compared with the default
control strategy are shown in Fig. 10, Fig. 11, Fig. 12 and
Fig. 13 (i.e. for the evader position (-4,5)). From Table VI
and Fig. 10 and Fig. 11, it is clear that the first two methods
of parameter tuning are not good enough to get a good
performance. There are significant differences in the capture
times and the pursuer-evader paths are different from the
default control strategy. It is clear that the pursuer does not
learn well. On the other hand, from Table VI and Fig. 12 and
Fig. 13 we can say that the performance of the third method
is quite similar to the performance of the fourth method and
outperforms the first two methods both on the capture times
and on the pursuer-evader paths. So, we can conclude that
the performance of the QFIS is slightly effected by changing
the method of tuning of the FIS. But, the performance will
be much better by changing the method of tuning for the
FLC. The fuzzy decision table and the tuned MFs of the
pursuer after learning using Method(3) are shown in Table
VII and Fig. 14 respectively.

TABLE VI. CAPTURE TIME(SEC) FOR DIFFERENT EVADER INITIAL
POSITIONS

Evader initial position
(-6,7) (-7,-7) (2,4) (3,-8) (-4,5)

Default control strategy 18.6 11.9 4.3 10.2 10.2
QFIS(Method(1)) 15.8 16.5 10.7 14.8 8.4
QFIS(Method(2)) 15.3 16.2 10.2 14.5 8.4
QFIS(Method(3)) 18.6 11.9 4.3 8.4 10.3
QFIS(Method(4)) 18.6 11.9 4.3 8.4 10.2

Fig. 10. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(1)) (dotted line)

Fig. 11. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(2)) (dotted line)

Fig. 12. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(3)) (dotted line)

2599

Fig. 13. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(4)) (dotted line)

Fig. 14. Method(3): MFs of the FLC of the pursuer after learning

TABLE VII. METHOD(3): FUZZY DECISION TABLE OF THE PURSUER
AFTER LEARNING

δ̇p
N Z P

δp

N -0.9866 -0.6775 -1.0195
Z 0.2777 0.1783 0.2399
P 1.0779 0.7357 0.9164

C. Multi-robot learning

In this game, we assumed that each robot does not have
any information about its default strategy or the other robot
strategy. The goal is to make both players interact with each
other in order to self-learn their control strategies simultane-
ously without using the advantage of higher maneuverability.

The capture times for different initial evader positions
using the default control strategy and the four methods of
parameter tuning are given in Table VIII. The pursuer-evader
paths using these methods compared with the default control
strategy are shown in Fig. 15, Fig. 16, Fig. 17, Fig. 18 (i.e.
for the evader position (-6,7)). From Table VIII and Fig.
15 we can see that the first method of parameter tuning is
not good enough for multi-robot learning to get the desired
performance compared with the default control strategy. It is
clear that the evader does not learn well and it gets captured
too soon. As we see there are differences in the capture times
and the pursuer-evader paths are completely different. Also,
from Table VIII we can see that the capture times of the
last three methods of parameter tuning are slightly different

from that of the default control strategy. From Fig. 16 we
can see that the pursuit-evader path is different from the
path of the default control strategy. Furthermore, from Fig.
17 and Fig. 18 we can see that the pursuer-evader paths of
the last two methods differ slightly from that of the default
control strategy. As a result, we can say that tuning all
the parameters of the FLC gives us the best performance
regarding the capture time and the pursuer-evader path. The
fuzzy decision tables of the pursuer and the evader after
learning using Method(3) are given in Table IX and Table X.
Fig. 19 shows the tuned MFs for both players after learning.

Fig. 15. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(1)) (dotted line)

Fig. 16. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(2)) (dotted line)

Fig. 17. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(3)) (dotted line)

2600

Fig. 18. The pursuit evader path using the default control strategies (solid
line) versus QFIS(Method(4)) (dotted line)

TABLE VIII. CAPTURE TIME(SEC) FOR DIFFERENT EVADER INITIAL
POSITIONS

Evader initial position
(-6,7) (-7,-7) (2,4) (3,-8) (-4,5)

default control strategy 9.6 10.4 4.5 8.5 6.8
QLFIS(Method(1)) 8.4 8.8 4.0 7.6 5.8
QLFIS(Method(2)) 9.5 10.3 4.6 8.8 6.6
QLFIS(Method(3)) 9.3 10.0 4.4 8.5 6.5
QLFIS(Method(4)) 9.5 10.3 4.5 8.5 6.7

Fig. 19. Method(3): MFs of the FLC of the pursuer and the evader after
learning

TABLE IX. METHOD(3):FUZZY DECISION TABLE OF THE PURSUER
AFTER LEARNING

δ̇p
N Z P

δp

N -0.8790 -0.7248 -0.9882
Z 0.4463 0.4341 0.5159
P 0.9057 0.3450 0.8912

TABLE X. METHOD(3):FUZZY DECISION TABLE OF THE EVADER
AFTER LEARNING

δ̇e
N Z P

δe

N -0.6914 -0.4082 -0.6211
Z -0.4277 -0.0994 0.4062
P 0.4836 0.4710 0.6662

VIII. CONCLUSION

Four methods of parameter tuning for QFIS are applied
to three pursuit-evasion games. The results show that the
performance of the QFIS in each game depends on the
parameter tuning method. In the first and second games,
the results demonstrate that the performance of the learning
algorithm is slightly effected by changing the method of
tuning for the FIS but it is significantly effected by changing
the method of tuning for the FLC. Furthermore, in the first
game, it was found that the pursuer is able to learn its control
strategy in all methods but the last two methods outperform
the first two methods. This is because the first game is so
simple. In the second game, it was found that the first two
methods of parameter tuning are not good enough to get a
good performance because the pursuer does not learn well.
So, it was found that it is necessary to tune all the parameters
of the FLC as in Method(3) and Method(4) to get best
performance regarding the capture time and the pursuer-
evader path. On the other hand, in the third game, the
results show that the performance of the learning algorithm
is effected by changing the method of tuning for both the
FIS and the FLC. But, changing the method of tuning for the
FLC as in Method(3) and Method(4) has significant impact
on the performance. In order to reduce the computational
complexity, it is better to use Method(1) in the first game
and Method(3) in the second and the third game.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[2] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D.
dissertation, Cambridge University, 1989.

[3] X. Dai, C. K. Li, and A. B. Rad, “An approach to tune fuzzy
controllers based on reinforcement learning for autonomous vehicle
control,” IEEE Transactions on Intelligent Transportation Systems,
vol. 6, no. 3, pp. 285–293, Sep. 2005.

[4] T. Ross, Fuzzy Logic with Engineering Applications. John Wiley
and Sons, 2004.

[5] S. N. Givigi, H. M. Schwartz, and X. Lu, “A reinforcement learning
adaptive fuzzy controller for differential games,” Journal of Intelli-
gent and Robotic Systems, vol. 59, pp. 3–30, 2010.

[6] S. F. Desouky and H. M. Schwartz, “Self-learning fuzzy logic
controllers for pursuit-evasion differential games,” Robotics and
Autonomous Systems, vol. 59, pp. 22–33, 2011.

[7] B. A. Faiya and H. M. Schwartz, “Q(λ)-learning fuzzy controller for
the homicidal chauffeur differential game,” in 2012 20th Mediter-
ranean Conference on Control and Automation (MED), 2012, pp.
247–252.

[8] S. F. Desouky and H. M. Schwartz, “Q(λ)-learning adaptive fuzzy
logic controllers for pursuit-evasion differential games,” International
Journal of Adaptive Control and Signal Processing, vol. 25, no. 10,
pp. 910–927, 2011.

[9] X. Lu, “Multi-agent reinforcement learning in games,” Ph.D. disser-
tation, Carleton University, March 2012.

[10] R. Isaacs, Differential Games. John Wiley and Sons, 1965.
[11] V. Gesu, B. Lenzitt, G. Bosco, and D. Tegolo, “Comparison of

different cooperation strategies in the prey-predator problem,” in
The International Workshop on Computer Architecture for Machine
Perception and Sensing, 2006, pp. 108–112.

[12] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[13] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modelling and control,” IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-15, no. 1, pp. 116–132,
Jan. 1985.

2601

