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Abstract—In the area of fuzzy systems, one of the main
problems is finding the set of rules that can give us the best
results in specific problems. Further, the finding of this set is a
combinatorial problem. There are several techniques for building
these sets, but it is possible to group them in two main classes: The
bottom-up approaches and the top-down approaches. This work
proposes a new top-down approach to the fuzzy systems learning
based in clustering and optimization techniques. The algorithm
is split in two stages: First, it determines the fuzzy sets of each
input and output linguistic variable, and second, it calculates
the fuzzy rules from the obtained fuzzy sets. For the first part,
a Dirichlet Mixture (DM) is used to cluster data to assign a
fuzzy sets to each new cluster, since a fuzzy set can be seen as
a generalized probability function, and hence the fuzzy sets of a
given linguistic variable can be seen as a mixture of probabilities
(a Gaussian Mixture). Then, an optimization problem is solved by
using Ant Colony Optimization (ACO) to generate the minimum
set of possible rules for classification by using a version of the
Least Absolute Shrinkage and Selection Operator(LASSO) for the
fitness function. This ACO was implemented in a CUDA GPU to
deal with the combinatorial problem of rule generation. Finally,
this new algorithm is used to attack the problem of color image
segmentation.

I. INTRODUCTION

THE theory of fuzzy logic, developed by Zadeh [1] in
1965, has been used in a lot of different areas as computer

vision, decision making, control, among others. The main use
of fuzzy logic in those areas is the development of fuzzy rule
systems in order to take decisions about learning, selection and
control. However, the main problem on these methods is the
explosion of rules when experts try to generate these fuzzy
rule systems. For this reason, the need of generating fuzzy
set systems by minimizing the help of experts, and with a
minimum size is a must. A lot of works has been developed
to deal with this problem in different areas. They mostly
use a series of interpolation methods, optimization techniques,
clustering and bio-inspired methods in order to overcome the
lack of an expert.

In order to understand this problem, the fuzzy sets in a
linguistic variable can be seen as a partition of the linguistic
variable in a series of classes. Based on this, it is possible to
use an initial approximation using a Mixture Model [2] [3]
to obtain the fuzzy sets of each linguistic variable. Here is
where the Dirichlet Process [4] method can help to find the
fuzzy sets. A Dirichlet Process [5] is a stochastic process using
Bayesian non-parametric models of data. The Dirichlet process
as a stochastic clustering method can be used to obtain the

mixture distribution without the need of knowing something
beforehand about the structure of the data [6] [7] [8]. This
property allows to construct mixtures of data with certain
properties. In the case of this work, these mixtures represent
the possible fuzzy sets for a fuzzy system to do color image
segmentation.

Xu et al. [9] propose two models to solve the evolutionary
clustering problem based on the Dirichlet Process (DP). In this
work, the authors try to solve the clustering problem where the
data items evolves over time. Their Dirichlet Process Mixture
Chain [6] (DPChain) model is based in a Dirichlet Process
Mixture [8] (DPM) model and Markov Chain Monte Carlo
Model [10] (MCMC) method. Additionally, they propose a
second method called Hierarchical Dirichlet Process Evolu-
tionary Clustering Model [6] (HDP-EVO), which is inspired
in the Hierarchical Dirichlet Process [11] (HDP) with the
capacity of evolve over time. In another example Zare et al.
[12] use the DP in hyper-spectral images to find the number of
endmembers. Their method is a bottom-up algorithm, where
at initialization, there is only one component, and new compo-
nents are added when needed. It assumes that each pixel of the
image is a combination of the endmembers of the image, i.e.
each pixel has an influence on every endmember. It is based
on the particular DPM case named Chinese Restaurant Process
(CRP). A limitation on this work is that does not estimate
some of parameters that need to be used in the algorithm. In
other example Bouguila et al. [7] propose a no supervised
algorithm to learn a finite mixture model of multivariate
data. Their hypothesis is that the vector ~x = (x1, · · · , xd)
follows a Dirichlet distribution, and the samples comes from a
Dirichlet Mixture Model (DMM). With this in mind, they use a
Maximum Likelihood (ML) algorithm [13] [14] to estimate the
number of components M and the parameters of each Dirichlet
component. This method is top-down because it needs an
overestimated number of components. Then, the algorithm
decreases the number of components until the parameters of
each component do not vary.

All these works propose a solution for the clustering
problem using a DPM. This can help to make a first approach
for the generation of fuzzy sets of each linguistic variable
as mixture models. Next, it is necessary to have a way to
generate the set of fuzzy rules for the system. This generation
of rules is constrained by the need to have as few rules as
possible, which is a desirable characteristic to minimize noise
by the system. For example, Casillas et al. [15] introduce a
learning system based in the ACO to learn the fuzzy rules.
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In order to learn these fuzzy rules, the authors map the
problem to a Quadratic Assignment Problem (QAP). The main
weakness of this method is that it requires the fuzzy sets
before the execution of the algorithm. This can be overcome
by using the previous ideas about linguistic variables. Another
method is proposed by Chia-Feng et al. [16]. Their method
is an auto-generated fuzzy system with learning abilities. For
this, the authors used an On-Line Self- Aligning Clustering
(OSAC) to create the fuzzy sets, and an Ant and Particle
Swarm Cooperative Optimization (APSCO) to obtain the fuzzy
rules. In their work, they try to learn a control equation to
make a circle. Bellaaj et al. [17] propose a method for fuzzy
rule base reduction using similarity concepts and interpolation
techniques. The method begins with an initial rule base, then
it computes the similarity between rules. Next, it deletes rules
with a high similarity to the accepted rule base. Further, when
new data is presented, the system is able to produce new rules
using a simple method: If there is a minimum number of fire
rules, then add a new one using an interpolation method. A
drawback of the method is its sensitivity to outliers.

Important observations to be made are that all these tech-
niques, for fuzzy rule generation, are very specific for each of
the studied problems. In addition, most of them use fuzzy sets
provided in a prior way by experts and their data set inputs are
quite small. These are reasons why this work proposes the use
of Dirichlet Mixture for automatic fuzzy set generation and the
ACO optimization under LASSO [18] for rule set minimization
as a way to try to automatize the generation of the fuzzy rule
system.

Thus, this work is divided in the following sections: In
section II, a basic review of the theory behind the proposed
algorithm is given, from Dirichlet Mixtures to Mamdani fuzzy
inference. In section III, an exposition of the proposed al-
gorithm is done, from the generation of the fuzzy sets to
the minimization of the rule base. Section IV, shows the
experimental results for the generated Segmentation Fuzzy
System by the proposed algorithm. Finally, in section V some
conclusion of the work are given.

II. BASIC THEORY

A. Dirichlet Mixture for Clustering

The use of the Dirichlet distribution is an excellent option
to model data [7] when not underlaying model exists. In our
specific case, it is important for analyzing data clustering for
automatic fuzzy set generation.

The Dirichlet Mixture consists of M Dirichlet components.
Each of the j-th components has a parameters vector ~αj that
defines the Dirichlet distribution, and an associated mixture
proportion P (j) (0 < P (j) < 1). The sum of all the mixture
proportion is equal to one (

∑M
j=1 P (j) = 1). Finally, a

Dirichlet mixture with M components is defined in (Eq. 1):

p(~x|Θ) =
M∑
j=1

p(~x|j,Θj)P (j), (1)

where p(~x|j,Θj) is the Dirichlet distribution, which is shown

in (Eq. 2), and Θj = (~αj).

p(~x|j,Θj) = p(x1, · · · , xd|αj,1, · · · , αj,d+1)

=
Γ(|~αj |)∏d+1
i=1 Γ(αj,i)

d+1∏
i=1

xi
αi−1 (2)

where
d∑
i=1

xi < 1 (3)

|~x| =
d∑
i=1

xi, 0 < xi < 1 ∀i = 1 · · · d (4)

xd+1 = 1− |~x| (5)

|~αj | =
d+1∑
i=1

αj,i, αj,i > 0 ∀j = 1 · · ·M, ∀i = 1 · · · d+ 1 (6)

Θ = (~α1, · · · , ~αM , P (1), · · · , P (M)). (7)

The problem is to determine Θ. This is done by using
Maximum Likelihood (ML) estimation (Eq. 8).

Θ̂ = max
Θ

p( ~X|Θ) (8)

Thus, using the Lagrange Multipliers the function becomes
(Eq. 9):

Φ(~x,Θ,Λ) =
N∑
i=1

ln
( M∑
j=1

p(~xi|j,Θj)P (i)
)
+

Λ
(
1−

M∑
j=1

P (j)
)
+

µ

M∑
j=1

P (j) ln(P (j)), (9)

where Λ is the Lagrange multiplier,
∑M
j=1 P (j) ln(P (j) is an

entropy criteria used in Gaussian Mixture cases [2] [19], and
µ is the compensation between data likelihood and the number
of components.

The estimation of the ~α parameters is done by the Fisher
Scoring Method (FSM). We use αj,` = eβj,` to hold the
restriction over α. The iterative scheme is given by (Eq. 10):

β̂
t

= β̂
t−1

+ C×Υt−1, (10)

where j is the class number, β̂
t−1

is the vector
[β̂t−1
j,1 , · · · , β̂

t−1
j,k+1]T , C is the variance-covariance matrix,

and Υt−1 is the vector
[

∂
∂β̂j,1

Φt−1, · · · , ∂
∂β̂j,k+1

Φt−1
]T

. The
variance-covariance matrix is obtained as the inverse of the
Fisher information matrix F defined as:

F = I`1,`2 = −E
[ ∂2

∂βj,`1∂βj,`2
Φ(~x,Θ,Λ)

]
. (11)

Now, this work proposes a variation of the Dirichlet Mixture
Estimation (DME) algorithm [7] used in the estimation of the
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mixture values. This variation consists on the update of the Pj
values by (Eq. 12):

P (j)t =
N t−1
j

N
, (12)

where N t−1
j is the number of elements belonging to the j-th

cluster, N is the total number of data. This idea comes from
the Chinese restaurant process [20] [21]. This updating allows
to control the convergence of the information matrix used in
the DME under the case studies considered for this work.

B. Ant Colony Optimization

The ACO is an algorithm inspired in nature [22] [23], and
it takes its inspiration on the behavior of the ants when they are
searching for food. For example, each ant leaves a pheromone
trail over the path used by that ant to reach the food. Thus,
other ants may choose the same path, or make a new path
to the food. At the end, the path with a highest quantity of
pheromones is a good or optimal path to the food [23]. In
graph theory, this is related with the problem of finding the
shortest path between two nodes.

An ant is a tabu list which records the vertices visited and
leaves a quantity of pheromone over the edges. When the goal
vertex is in the tabu list the algorithm evaluate the path of the
ant using a fitness function defined for each particular problem.
An intensity of trail matrix τ is used to keep the pheromones
left by the ant. In addition, a evaporation coefficient ρ is
defined to determine which amount of pheromones is removed
from each path.

For the evaluation of the path of each ant is necessary to
know the cost between two nodes, and this is kept in the cost
matrix δ. Thus, it is necessary to have a visibility matrix η
that help to define the transition probability which is used by
the ant to select to which vertex it should go. This is shown
in (Eq. 13):

pi,j(t) =
(τij(t))

α(ηij)
β∑N

k=0 (τik(t))α(ηik)β
(13)

where pi,j(t) is the transition probability in the t-th iteration
to go form vertex i to a vertex j, α and β are parameters that
allow a user control on the relative importance of trail versus
visibility.

The fitness function is generally a function to be maximized
or minimized, and its definition is entirely dependent of the
problem. For this, an ant keeps a path which is a possible
optimal solution for the problem, thus the need of a high
number of ants to have a complete exploration of the solution
space. In order to accomplish this, each ant walks the graph
independently of the others ants. This makes the ACO a highly
parallelizable algorithm. This parallel feature of the ACO
allows for a clean implementation of the algorithm on GPUs
through the use of CUDA [24] [25]. Finally, in (Algorithm 1),
it is possible to see the basic ACO algorithm.

C. Mamdani Fuzzy Inference
The Mamdani Fuzzy Inference was proposed by Mamdani

et al. [26], in 1975, to control a steam engine and a boiler
combination by a set of linguistic control rules obtained from
experienced human operators. A Mamdani fuzzy rule of two

Algorithm 1 ACO algorithm

1: ρ ← initEvapCoefficinet() // Initialize the evapora-
tion coefficient

2: t← 0
3: τ t ← initTrailIntensity()
4: bt ← initAntP lace()
5: for r, s ∈ V do
6: ∆τ t(r, s)← 0
7: Repeat until tabu list is full:
8: // r is the actual vertex and s is the possible next vertex

to move on.
9: for i← 1 to n do

10: // for every vertex
11: for k ← 1 to bt(i) do
12: Choose the vertex to move to with

aggTransProb rs(r, s)
13: Move the k-th ant to the chosen vertex (in

bt+1(s))
14: ∆τ t,t+1

k (r, s)← aggDTau rs(r, s, k,M T )
15: ∆τ(r, s)t,t+1 ← ∆τ t,t+1

k (r, s) + ∆τ(r, s)t,t+1

16: end for
17: end for
18: end for
19: for r, s ∈ V do
20: τ t+1(r, s)← ρτ t(r, s) + ∆τ t,t+1(r, s)
21: P t+1(r, s)← aggTransPobrs(r, s)
22: end for
23: Memorize the shortest path (or the path with the lowest

cost) and empty all tabu list
24: if not end test then
25: t← t+ 1
26: ∀r, s ∈ V do ∆τ t(r, s)← 0
27: go to line 5
28: else
29: return the shortest path
30: end if

input variables and two output variables can be described by
(Eq. 14):

IF x1 is C1 AND x2 is C2 THEN y1 is B1, y2 is B2 (14)

where x1 and x2 are the input variables, and y1 and y2

are the output variables. In addition, C1 and C2 are in-
put fuzzy sets, and B1 and B2 are the output fuzzy sets.
In order to operate over these fuzzy sets AND/min (T-
norm) and OR/max (T-conorm) operators are used. Thus,
“IF x1 is C1 AND x2 is C2” is called the rule antecedent,
whereas the remaining part is named th rule consequent.

In (Fig. 1), it is possible to see the operations used by
the Mamdani Fuzzy Inference. For example, µ(xi) is the
membership value given by xi when is evaluated in one of
the membership function for the input fuzzy variable xi. Thus,
µ(y1) is the membership value for the output fuzzy variable
y1. B is the fuzzy set obtained by the inference process. The
defuzzification is the way a crisp value is obtained from the
fuzzy set B. The centroid method [27] is one of the most used
methods for defuzzification.
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Fig. 1: Mamdani Fuzzy Inference

Finally, two methods of defuzzification are used in this
work, the centroid method, and the index with the maximum
value (IMV) (Eq. 15):

yi = arg max
k

(~y), (15)

where ~y = (y′1, · · · , y′p) is the vector of the fuzzy values for
the p output fuzzy set given by the inference engine, and yi
is the output of the system.

III. LEARNING FUZZY SYSTEMS

This section shows the basics of the proposed algorithm.
For this, the fuzzy system algorithm is divided in two stages:

1) In the first stage, the fuzzy sets are obtained for each
input and output linguistic variables through the use
of the Dirichlet Mixtures.

2) In the second stage, the proposed algorithm builds a
first approximation of the Rule Base. Then, it mini-
mizes the set of rules by using an ACO algorithm.

A. Creating the Fuzzy Sets

A fuzzy linguistic variable can be seen as a Mixture of
probabilities. Thus, it is possible to use Dirichlet Mixture
estimation to automatically obtain the mixture model. This
can be done by transforming the Dirichlet Distributions into
Gaussian distributions using (Eq.16):

Beta(α1, α2) ≈ N

(
α1

α1 + α2
,

√
α1α2

(α1 + α2)2(α1 + α2 + 1)

)
. (16)

In addition, a Dirichlet distribution of two variables is a beta
distribution, making possible to approximate the Gaussian if
it satisfies α1+1

α1−1 ≈ 1 and α2+1
α2−1 ≈ 1.

For this, the algorithms 2 and 3 are used to obtain the
Dirichlet Mixture for each color component and for the image
I . This is done in the following way: First, the Algorithm
2 initialize a first approximation for the Dirichlet mixture
for each component and for the complete image. Second,
the Algorithm 3 is launched for each component and for the
complete image to obtain the Dirichlet mixture. Finally, the
number of fuzzy sets and the parameter of each fuzzy set of
each linguistic variable is taken from the Dirichlet mixture.

In order to obtain the parameters of each fuzzy set of
each component of the input from the Dirichlet mixture, it is
necessary to assign a mean and a variance to get each Gaussian
membership function. Thus, the mean is simply the number of
the cluster (i.e. µi = i) generated by the DME. Finally, for each

Algorithm 2 Initialization Algorithm

1: ~X
2: M ← number of components
3: Apply the fuzzy C-means to obtain the elements, covari-

ance matrix and mean of each component
4: Apply the MM (Method of Moments) for each compo-

nent j to obtain the vector of parameters ~αj
5: Assign the data clusters, assuming that the current model

is correct
6: Update the P (j) using the following:
7: P (j) = #OfElementsInClassj

N
8: If the current model and the new model are sufficiently

close to each other, terminate, else go to 4
9: Return: Vector of parameters ~α

Algorithm 3 DME Algorithm

1: Xi ← Dimensional data, i = 1, · · · , N
2: M ← number of components
3: INITIALIZATION( ~X,M)
4: Update the ~αj using(10)
5: Update the P (j) using (12)
6: if P (j) < ε then
7: discard component j, and go to 4
8: end if
9: if Convergence test is passed then

10: terminate, else go to 4
11: end if
12: Vector of parameters ~αj of the cluster j and the number

of clusters M

fuzzy set in the input linguistic variables, and the variance is
obtained using an approximation by (Eq. 16).

The lack of information about the output fuzzy sets makes
difficult to select parameter for these outputs. The fuzzy sets
from a n-dimensional data given by a n-dimensional Dirichlet
mixture data, with n ≥ 2, are actually really hard to map. To
obtain the i-th fuzzy set of an output variable, it is necessary
the conversion of the i-th Dirichlet component of the i-th
cluster to a one dimensional Gaussian membership function.
In order to do this this work proposes two ways: In the first
one, the mean is the number of the cluster (i.e. µi = i), and
the variance is simply a constant value a (σi = a). In the
second, the mean is the number of the cluster (i.e. µi = i) and
a variable variance given by (Eq. 17):

σi =

∑Nm

j=1 σi,j

Nm
, (17)

where σi,j is the mean of the j-th marginal of the i-th cluster,
and Nm is the number of marginals.

It is more, the Beta distribution can be approximated to a
Gaussian distribution (Eq. 16), and the Dirichlet marginals are
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Beta distributions (Eq. 18):

Xi ∼ Beta(αi,
d∑
j=1

αj − αi), (18)

where αi are the α parameters of the Dirichlet distribution.
Thus, to obtain the means and the variances, equations (Eq.
16) and (Eq. 18) are used.

B. Creating the Base Rules

The initial combinatorial part of the algorithm is used to
create the first rule base approximation. Thus, for each training
data do the following:

• First build the fuzzification of the input variables and
obtain the antecedent fuzzy sets by looking at which
sets were activated through the use of a threshold.

• Then, makes the fuzzification of the output variables
by the Dirichlet Cluster algorithm to obtain a conse-
quent by the same procedure.

This allows to generate the minimal possible activation an-
tecedent and consequent sets. Finally, combinations of these
two groups are done to obtain a preliminary rule set. This first
approximation is denoted like RB0.

A modified ACO is used to minimize this first approxima-
tion, RB0, to the rule base [15]. In the proposed algorithm,
the ACO uses a new version of the fitness function, (Eq. 20),
using a LASSO [18] regularization to obtain a minimal set of
rules by the use of a sparsity component. This fitness function
is a modified Means Square Error (MSE) with a L1-Norm
regularization term:

arg min
β

N∑
i=1

||yi −Xβ||+ λ||β||1 (19)

For this, a modified version of the LASSO is proposed (Eq.
19) in this work:

MSE(RBi) =
1

2 · |E|
∑
ek∈E

(yk − Fi(~xk))2

+ λ

NR∑
i=1

|δ(i)|ψ(i), (20)

where λ is the tuning parameter of the LASSO, ψ(i) indicates
if the i-th rule was activated, δ(i) is the weight of the activated
rule, ek is an element of the training data (ek = (~xk, yk)) and
E is the training data set. Basically, this new version uses the
weight matrix of the ACO as the β parameters to be found, and
the Xβ as the output of the Fuzzy System for the given input
X . Finally, the Fi(~x

k) is the output obtained by the Fuzzy
Rules Based System (FRBS), which is used by the Rule Base
(RB) generated by the ants using the input ~xk.

Next, the rules are formed by an antecedent and a con-
sequent. Thus, the rules on the rule base can be seen as a
bipartite graph. In which one node set represents the set of
antecedents, and the other the set of the consequents (Fig. 2).

Fig. 2: Bipartite graph for the rule base

Therefore, the tabu list is a set of rules that have an edge
in the bipartite graph. The tabu list of each ant (RBi, i-th ant)
has a subset of the first rule base (RB0), i.e. RBi ⊂ RB0. The
initial pheromone value is given by (Eq. 21) and (Eq. 22):

ηi = max
j=1,··· ,Nc

ηij (21)

τ0 =

∑Na

i=1 ηi
Na

, (22)

where:

ηij =

max
ek∈E

(
min (µCi,1

(xk1), · · · , µCi,d
(xkd), µBj

(yk))
)

(23)

with µCi,j
as the membership function of the j-th input

variable of the i-th antecedent (with j = 1, · · · , d), µBj

as the membership function of the j-th consequent, and
(xk1 , · · · , xkd, yk) as the k-th data training vector.

C. Proposed Algorithm

The final proposed algorithm is shown in (Algorithm 4).
First, the algorithm takes an image and decomposes it in its
color components (HSV) normalizing both the components and
the image. Then, for each color component Xc a Dirichlet
Mixture cluster is obtained to generate the antecedent fuzzy
sets. Next, using the segmentation of entire Image I by DME,
it is possible to obtain the consequent fuzzy sets. Thus, the
calculation of the input fuzzy sets and output fuzzy sets for
each linguistic variable is done by the conversion of the
Dirichlet distribution to an a Gaussian approximation given
by (Eq. 16), and the two ways proposed in the Section III-A.
Further, the first approximation of the knowledge Base is done
by a combinatorial approach explained in the Section III-B.
Finally, the ACO algorithm is run to minimize the number of
rules.

The ACO algorithm was proposed because its high degree
of parallelization when generating the rule system. Moreover,
the restriction on dynamic memory at the CUDA kernels limits
other types of algorithms when creating new elements during
execution time.

A parallel version of the proposed ACO algorithm was
implemented using NVIDIA [28] cards and CUDA. The algo-
rithm of the ant is splitted in four main sequential processes:
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Algorithm 4 Proposed Algorithm

1: I ← Image
2: Xch,s,v

← Ich,s,v

3: Normalize I,Xch,s,v

4: for c in {ch, cs, cv} do
5: Obtain the DME of Xc

6: DMEc ← CalculateDME(Xc)
7: end for
8: Obtain the DME of I by DME
9: DMEI ← CalculateDME(I)

10: Obtain the Fuzzy Sets
11: FZIN ← CalculateFuzzySets(DMEr,g,b)
12: FZOUT ← CalculateFuzzySets(DMEI)
13: XT ← DataTraining(I,Xr,g,b, DMEI , DMEr,g,b)
14: KB0 ← Combinatorial(XT , FZIN , FZOUT )
15: Minimize the number of rules in KB0 by ACO algorithm
16: KBBEST ← ACO(XT , FZIN , FZOUT ,KB0)
17: Output Fuzzy System: FS(FZIN , FZOUT ,KMBEST )

First, the launching the ants to make a path; second, the
evaluation of the paths found by the ants; third, the updating
of the pheromones’ path which were found by the ants; finally,
the update process of the principal matrix (τ matrix and the
transition probability matrix). Each of these processes is done
in parallel.

In the CUDA implementation a kernel [24] [25] represents
an ant traveling through the bipartite antecedent-consequent
graph, and its execution finishes when the goal is reached.
This goal is basically to store a certain given number of rules
kept in the tabu list. In the evaluation process, each kernel
evaluates the rule base stored by the ant with the data training
by using the (Eq. 20). In the updating pheromone process and
in the matrix update process, each kernel updates a part of the
pheromones τ , and the transition probability matrices if the
number of rows in the matrices are greater than a maximum
fixed number of kernels.

IV. EXPERIMENTAL RESULTS

In this section, the proposed algorithm is used to generate
a Fuzzy System capable of segmenting an image as the DME
does. The algorithm is tested over a data set of images from the
Berkeley Segmentation Dataset and Benchmark [29] (BSDB),
and the best results are shown in this work.

Because of the consequent problem, which was discussed
early, this work takes in account two different ways of gen-
erating these consequents. The first one uses the index of the
cluster given by the DME as a mean of the fuzzy set and it
uses a fixed σ = 0.7. The second one uses the index of the
cluster given by the DME, and a mean of the marginals (Eq.
26).

Taking in account that the marginals of a d-dimensional
Dirichlet distribution (Eq. 18), and the approximation of the
Beta distribution to a Gaussian distribution [30] (Eq. 16). The

variance of a fuzzy set output is given by (Eq. 24):

σ′ =var[Y ] =
αβ

(α+ β)2(α+ β + 1)
(24)

Y ∼ Beta(α, β) (25)

σk = ρ
σ′1 + σ′2 + σ′3

3
, (26)

ρ is a normalization factor.

The number of ants used was 256 per iteration in each
experiment. Fort this, the ants were divided into eight groups
of 32 ants. Each group have a different size for the tabu
list depending of the initial number of rules. For the four
experiments in this works, the sizes of the tabu list are shown
in (Table I).

In this work, the ant selects his elements in the tabu list in
two different ways: The first one is called All in One Iteration
(A1I). For each of the iteration, each ant selects from all the
rules (in RB0) a subset in which the output fuzzy set was
activated at least once. The second is called All Iterations
for One (AI1): For each of the consequents, in each of the
iteration, each ant select a subset from the initial rule set with
the restriction that each rule have the same consequent, i.e. in
each iteration the algorithm try to learn the minimum number
of rules for a given consequent. Finally, (Table II) shows the
methods used for the defuzzification, for the selection of the
elements in the tabu list, and for the methods used to obtain the
variance σ over the tests. Thus, after running the experiments,
it is possible to see in (Table III) some of the results. The
table is explained in the following way: The first column
corresponds to a test number; the second corresponds to the
initial number of rules in the rule base RB0; the third one is
the the initial MSE; the fourth one is the execution time to
learn the new fuzzy system; the fifth one is the the number of
misclassified pixels. Finally, from the sixth to the ninth column,
the same metrics after execution of the ACO algorithm.

No. Group
Test 1 2 3 4 5 6 7 8
01 8 16 20 32 40 64 80 128
03 8 12 16 25 32 45 64 90
08 2 3 4 6 8 13 16 20
12 2 3 4 6 8 13 16 20
18 2 3 4 6 8 13 16 20

TABLE I: Number of ants used by group.

Defuzzification Selection σ
Test method method selection
01 Centroid A1I Variable
03 Centroid A1I Variable
08 Centroid AI1 Fixed
12 IMV AI1 Variable
18 Centroid AI1 Variable

TABLE II: Number of ants used by group.
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Test Initial MSE Time (s) No Final MSE Time (s) No
#Rules Time (s) Classified #Rules Classified

01 216 1.6387 8.2100 0 8 3.1682 0.3300 14257
03 360 2.3451 11.590 0 12 4.6914 0.5700 18774
08 353 1.2773 11.850 0 47 2.4780 1.7200 2001
12 182 2.6500 12.380 0 27 2.3875 1.7300 45
18 178 1.2240 13.340 0 22 0.5887 1.7600 0

TABLE III: Number of rules on the KB before and after the ACO
algorithm.

The qualitative results of (Table III) can be seen at the
following figures. First, in (Fig. 3), there are the results for
the test 01: The upper image of the left is the image input; the
upper image on the right is the image in HSV color space; the
lower image on the left is the segmented image using DME;
the lower image on the middle gives the segmentation given
by the fuzzy system with the initial rule base (RB0); finally,
the lower image on the right is the segmented image by the
fuzzy system learned (with the minimized rule base by the
ACO algorithm). In the same way in (Fig. 4), (5), (6), and (7),
there are the results of the experiments 03, 08, 12, and 18,
respectively.

It is noticeable how the results show a qualitative improve-
ment, when a comparison is made between the segmentation
done by the Fuzzy System with a huge rule base, and the
segmentation done for the Fuzzy System with the rule base is
minimized by the ACO under LASSO.

The noise added to the fuzzy system by the initial rule base
(RB0) was reduced for the fuzzy system with the minimized
base rule. The use of the selection method A1I gives a less
rule reduction, and a high execution time compared to the use
of the selection method AI1. However, the number of pixels
not classified decreases drastically using AI1. In the same way,
it is possible to observe a decrement on the error values for
the tests using the selection method AI1.

V. CONCLUSION

This work presents a novel algorithm for Fuzzy System
Learning, using a Dirichlet Mixture estimation to determine
the Fuzzy Sets of the input linguistic variables and the number
of sets of the output linguistic variable. Due to the struc-
ture of proposed algorithm, several parts of it can be easily
implemented under parallelism. Specifically, the ACO was
implemented using the massive computational power of the
NVIDIA GPU to speed up its execution. In addition, the use
of the LASSO in the fitness function allows for an efficient
pruning of the rule base in order to improve classification.

Still, there is a lot of work left to be done in order to to
improve the proposed algorithm. For example, the study of
the type of defuzzification method is an important work that
could allow to have better approximations of the desired fuzzy
system. Additionally, the restrictions imposed on the possible
structures of the rules by the Mamdani fuzzy system, for the
base rule, tend to limit the results. Thus, it is necessary to
implement a better method to generate new rules that are not
in the initial rule base. For example, the way the fuzzy sets are
obtained implies a limitation in the granularity of these sets in
a given linguistic variable. Thus, it is necessary new methods
that allow the generation of new rules by taking into account
an initial rule base.
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Fig. 3: Results of the expriment 01. The original image is in the upper
left corner.

Fig. 4: Results of the experiment 03.

Fig. 5: Results of the experiment 08.
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Fig. 6: Results of the experiment 12.

Fig. 7: Results of the experiment 18.
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