

Abstract— This work presents a Genetic Fuzzy Controller
(GFC), called Genetic Programming Fuzzy Inference System
for Control tasks (GPFIS-Control). It is based on Multi-Gene
Genetic Programming, a variant of canonical Genetic
Programming. The main characteristics and concepts of this
approach are described, as well as its distinctions from other
GFCs. Two benchmarks application of GPFIS-Control are
considered: the Cart-Centering Problem and the Inverted
Pendulum. In both cases results demonstrate the superiority
and potentialities of GPFIS-Control in relation to other GFCs
found in the literature.

 Keywords— Fuzzy Logic Control, Genetic Fuzzy Controller,
Muti-Gene Genetic Programming.

I. INTRODUCTION
UZZY Logic Controllers (FLCs) [1] have been
extensively used as an alternative to manipulate and

describe complex systems when traditional control methods
do not provide viable solutions. FLCs have the capacity of
modeling systems by using fuzzy "if-then" rules, normally
provided by an expert. Classical approaches employ either a
Mamdani-type Fuzzy Inference System (FIS) [2-3] or a
Takagi-Sugeno (TSK) FIS [4-5]. FLC parameters (rule base,
membership function parameters, etc.) can be tuned by an
expert or by employing a learning approach. In this respect,
the current work considers Genetic Fuzzy Systems [3,6], or,
to more specific, Genetic Fuzzy Controllers.

In Genetic Fuzzy Controllers (GFC) the automatic learning
and tuning is based on a Genetic-based Meta-Heuristic
(GBMH). Some works consider FLCs embedded with a
Genetic Algorithm (GA) to tune membership function
parameters [7-8] or to search for concise fuzzy rule bases
[9-10]. More recent works explore Genetic Programming
(GP) to build an FLC by using methodologies and concepts
similar to those employed on a GA based FLC [11-12].

In general, it is advantageous to use a GBMH exclusively
to search for the FLC best configuration. In this perspective,
the meta-heuristic is seen as a tool to build an FLC and not as
a mechanism that may change reasoning. Still, in frameworks
with a high level of hybridization, in which a genetic-based
meta-heuristic has a higher participation, it may be possible to
obtain better accuracy. Examples are Neuro-Fuzzy models
[13,14], where Neural Networks play an important role in the
hybrid architecture, enabling high accuracy and fast

A.S. Koshiyama, M.M.B.R. Vellasco and R. Tanscheit are with the with

the Department of Electrical Engineering, Pontifical Catholic University of
Rio de Janeiro, Marquês de São Vicente street, 225, Gávea - Rio de Janeiro,
RJ - Brasil – CEP: 22451-900 Cx.P.: 38097 - Tel: (55 21) 3527-1001 (e-mail:
[adriano,tatiana,marley,ricardo]@ele.puc-rio.br).

This work was supported in part by Brazil Reseach Council (CNPq and
CAPES) and Pontifical Catholic University.

convergence.
This work deals with a GFC called Genetic Programming

Fuzzy Inference System for Control tasks (GPFIS-Control). It
makes use of Multi-Gene Genetic Programming [15-16] for
extracting knowledge from the plant. The resulting
architecture should: (1) automatically tune the FLC
parameters, (2) make the plant output reach the setpoint as
fast as possible, (3) provide linguistic comprehension for each
FLC action and (4) be easy to implement.

This paper is organized as follows: the next section
describes related works on GFC and considers some
applications involving GP. Section III describes Multi-Gene
Genetic Programming and GPFIS-Control in detail. Case
studies are considered in Section IV and section V concludes
the work.

II. RELATED WORKS
The first attempt to build an FLC by using GBMH

algorithms was presented in [7], where a GA was used to tune
membership functions parameters of input and output
variables. Subsequently, many other works have employed
evolutionary algorithms, mostly GA, to tune FLC parameters
and search for concise rule bases [17-19].

Several works can be found in the GFC area, such as [9],
which presents an evolutionary procedure to modify rules,
initially set by an expert, for a Mamdani type FLC. In [20]
membership functions, rule sets and consequent types (TSK
or Mamdani types) are tuned by a GA based on Symbiotic
Evolution. Two other approaches are: [8], which employs
linguistic hedge operators, selected by a GA, to tune
membership functions, and [10] where a hierarchical
self-organized GA-based scheme is proposed.

Recently, most works that make use of GA to tune FLCs
focus on real applications [19,21,22]. Type-2 FLC have also
been tuned through GA [18]. Lastly, some non-GBMH works
for tuning an FLC consider Particle Swarm Optimization [23]
and other bio-inspired algorithms [24].

Few attempts have been made to build an FLC by using
GP, despite its dynamic structure that benefits rule base
codification [6]. The first works in this sense were [25] and
[26], which used a type-constrained GP to build a fuzzy rule
based system. In [27] an FLC based on GP for mobile robot
path tracking is presented. More recently, [12] proposes the
use of Memetic GP to build a TSK FLC. All those approaches
adapt the GP structure to formulate an FLC in a canonical
way, similarly to a GA common procedure. Small advantages
of GP are effectively used by these authors, but many
possibilities arise, such as the use of combinations of different
t-norms and t-conorms, of linguistic hedges and of different

GPFIS-Control: A Fuzzy Genetic Model for Control Tasks
Adriano S. Koshiyama, Tatiana Escovedo, Marley M. B. R. Vellasco, and Ricardo Tanscheit

F

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1953

aggregation operators.
GPFIS-Control is a novel GFC based on Multi-Gene

Genetic Programming. This model builds a Pittsburgh-type
Fuzzy Rule Based System, making use of a different
reasoning method to learn fuzzy rules.

III. GPFIS-CONTROL

A. Multi-Gene Genetic Programming
Genetic Programming (GP) [28-29] belongs to the

Evolutionary Computation field. Typically, it employs a
population of individuals, each of them denoted by a tree
structure that codifies a mathematical equation, which
describes the relationship between the output Y and a set of
input terminals Xj (j=1,...,J) (features, in the current work).

 Multi-Gene Genetic Programming (MGGP) [15-16]
denotes an individual as a structure of trees, also called genes,
that receives Xj and tries to predict Y (Figure 1). Each
individual is composed of D functions fd (d=1,…D) that map
Xj variables to Y through user-defined mathematical
operations. In GP terminology, the Xj input variables are
included in the Terminal set, while the mathematical
operations (plus, minus, etc.) are inserted in the Function Set
(or Mathematical Operations Set).

With respect to genetic operators, mutation in MGGP is
similar to that in GP. As for crossover, the level at which the
operation is performed must be specified: it is possible to
apply crossover at high and low levels. Figure 2 presents a
multi-gene individual with five equations (D=5)
accomplishing a low level crossover, while Figure 3 shows
the mutation operation.

Fig. 1. Example of a multi-gene individual.

The low level is the space where it is possible to
manipulate the structures (terminals and functions) of
equations present in an individual. In this case, both
operations are similar to those performed in GP.

Fig. 2. Low-level crossover in a multi-gene individual.

 The high level, on the other hand, is the space where
expressions can be manipulated in a macro way. An example
of high level crossover is displayed in Figure 4. By observing

the dashed lines, it can be seen that the equations were
switched from an individual to the other.

Fig. 3. Mutation operation in a multi-gene individual.

The cutting point can be symmetric – the same number of
equations is exchanged between individuals –, or asymmetric.
Intuitively, high level crossover has a deeper of effect on the
output than low level crossover or mutation has. In case of
GPFIS-Control, the high level crossover used is symmetric.

Fig. 4. High level crossover in a multi-gene individual.

B. GPFIS-Control
The GPFIS-Control model is shown in Figure 5. The

control signal yt is sent to the plant at time t (t=0,1, ..., T). The
plant outputs ztk (k=1,…K) are fed back to the input, so that
the result of the difference between each feedback and its
respective setpoint is the error signal xtk = ztk – Refk. By using
xtk it is possible to build a control signal yt in order to satisfy
performance criteria.

In general guidelines, the GPFIS-Control model is
comprised of four sections: fuzzification, inference,
defuzzification and evaluation. The inference process begins
when each feedback error xtk is mapped on fuzzy sets. Then,
functions that map each linguistic state of xtk to a state of yt are
synthesized based on MGGP principles. The crisp control
signal is obtained through defuzzification. This solution is
evaluated and then selection and recombination operators are
applied. These steps are repeated until a stopping criterion is
met.

Fig. 5. Block diagram of GPFIS-Control model.

1954

1) Fuzzification

Let xtk and yt admit J distinct linguistic terms, or fuzzy sets.

These are defined by by normalized and uniformly distributed
membership functions [30], as shown in Figure 6, for the k-th
plant output.

Fig. 6. Example of membership functions.

 After fuzzification of each input xtk, the GPFIS-Control
inference process initiates.

2) Inference

The inference procedure consists of three stages:

Formulation, Partitioning and Aggregation. In Formulation
t-norm, t-conorm, linguistic hedges and negation operators
are defined. In Partitioning the mechanism that connects each
antecedent with a consequent is established. In Aggregation
operators used to combine all rules are defined. Figure 7
shows a diagram of this process.

Fig. 7. Diagram of Inference procedure.

a) Formulation

Through each ߤሺݔ௧ሻ (membership degree of xtk to a
fuzzy set Ajk), GPFIS-Control evolves a controller whose
ouput has several terms (B1 = Negative Big, ..., B7 = Positive
Big, for example), with membership degrees given by:

௧ሻݕభሺߤ ൌ ݃ ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻݕమሺߤ ௧ሻ൰ቃ ሺ1ሻݔೕ಼ሺߤ ൌ ݃ ቂ ௗ݂א௦మ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻ൰ቃ ሺ2ሻݔೕ಼ሺߤ
௧ሻݕሺߤ ... ൌ ݃ ቂ ௗ݂א௦ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻ൰ቃ ሺ3ሻݔೕ಼ሺߤ

where ௗ݂א௦ೕ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻ൰ݔೕ಼ሺߤ represents a set of

functions, where each one combines all ߤೕೖሺݔ௧ሻ, k=1,.., K,
by using a set of user-defined mathematical operations; ݏ
(j=1,…, J) is an index set that describes which d-th function fd

is related to the j-th consequent term (݀ א). Methods toݏ
define ݏ are best described in the Partitioning stage. In order
to each function fd associated to ݏ behave as a fuzzy rule, it
needs to employ t-norm, t-conorm, negation and linguistic
hedges operators, with the aim to represent logic connectives
for each linguistic term induced by ߤೕೖሺݔ௧ሻ . Finally, g
aggregates the activation degrees of each rule set (represented
by ௗ݂א௦ೕ) in a final value. Therefore, if a set Ajk is activated,
GPFIS-Control builds a rule set (function set) that combines
all membership degrees (ߤೕೖሺݔ௧ሻ) and produces an action.

In Formulation some parameters of GPFIS-Control are
defined. In MGGP, initial parameters are called Terminals
(input variables) and Mathematical Operations or Function
Set (plus, times, etc.). In GPFIS-Control, the terminology will
be Input Fuzzy Sets and Fuzzy Operators Set, respectively.
Table I presents the initial user-defined parameters.

Subsequently, by using the Fuzzy Operators Set, each ߤೕೖሺݔ௧ሻ is combined in order to best describe the actions ߤೕሺݕ௧ሻ taken by the controller. It is possible to enter into the
Input Fuzzy Sets stage with a negated or modified ("hedged")
fuzzy set, instead of using negation and linguistic hedge
operators in the Fuzzy Operators Set stage. This entails a
larger search space, but can be of help in rules analysis.

b) Partitioning

Let S={s1,s2,...,sJ}, where each sj represents which fd
(d={1,...,D}) is related to the j-th consequent Bj. The method
that describes which d-th function is associated to sj is called
Uniform Division. This partitioning method makes use of a
simple heuristic, given by:

1. Compute: ܷ ൌ ہ .ہ where) ۂ .(is the floor operator ۂ
2. Partition: s1 = {1,...,U}, s2 = {U+1,..., 2*U},...,

sJ = {U*(J-1)+1,...,U*J}.

As an example, consider D (nr. of functions) = 10 and J (nr.
of consequent terms) = 5. Thus U = 2, s1 = {1, 2}, s2 = {3,4},
s3 = {5,6}, s4 = {7,8}, s5 = {9,10}. Figure 8 illustrates this
process.

Fig. 8. Partitioning method: Uniform Division.

TABLE I
INPUT FUZZY SETS AND FUZZY OPERATORS

Input Fuzzy Sets Fuzzy Operators Set ߤೕభሺݔ௧ଵሻ, … , ௧ሻ t-norms, t-conorms, negation andݔೕ಼ሺߤ
linguistic hedges operators

1955

In summary, each fd is uniformly divided for each sj so that a
consequent has at least one rule associated to it. This method
is similar to others GFS based on GP, such that consequent
and antecedent terms are both synthesized. Through the
definition of the rule set associated to each consequent
(S={s0,s1,s2,...,sJ}), the next step is to aggregate them, in order
to generate a final degree of activation.

c) Agreggation

Many works on aggregation operators may be found in the
literature [31-32].

Some examples of ݃ ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻ൰ቃݔೕ಼ሺߤ
are:

• ݃ ՜ max ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , :௧ሻ൰ቃݔೕ಼ሺߤ
max aggregation operator are the most common used on
Mamdani type FIS.

• ݃ ՜ ଵௗሺ௦ೕሻ ∑ ሾ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , ୱౠא௧ሻ൰ሿୢݔೕ಼ሺߤ :

arithmetic mean operator intends to provide same
weights for each element of the rule set associated to the
j-th consequent.

In [31] several aggregation operators are presented. It can

be shown that t-norms and t-conorms are special cases of
aggregation operators. After the user definition for the
aggregation operators, it is possible to compute the
membership degrees for different actions ߤೕሺݕ௧ሻ taken by
the controller. Then, the defuzzified control signal ݕ௧ is
computed.

3) Defuzzification

Basically, a defuzzification method (center of gravity,
mean of maximum, etc.) produces a crisp value that is an
interpretation of the information contained in a fuzzy set. In
GPFIS-Control the height method is used:

௧ݕ ൌ ∑ ܾୀଵ ∑௧ሻݕೕሺߤ ௧ሻୀଵݕೕሺߤ ሺ4ሻ

where ܾ represents the center (location) parameter of each Bj.
The maximum height method may be employed when the
control signal assumes values in some finite set:
௧ݕ ൌ ∑ ߶ ܾ ߤሺݕ௧ሻୀଵ∑ ߶ୀଵ ௧ሻݕሺߤ ሺ5ሻ

where ߶ is an indicator function, such that ߶ = 1, when ߤೕሺ ௧ܻሻ > ߤሺ ௧ܻሻ, for all l=1,...,J, e l ≠ j, e ߶ = 0, otherwise.

4) Evaluation

The right definition of the fitness function is crucial for a
good performance of GPFIS-Control. For optimal tracking of
a trajectory, a possible fitness function is the Mean Squared
Error (MSE):

ܧܵܯ ൌ ܭ1 ሺݔ௧ሻଶ
ୀଵ ሺ6ሻ

When MSE is minimized the GPFIS-Control model
successfully obtains a trajectory close to the setpoint. In
minimum time problems, the fitness function may be the time
(t) the output takes to reach an MSE < ε, where ε is a
tolerance.

GPFIS-Control tries to reduce the size and complexity of
the rule base by employing a simple heuristic called
Lexicographic Parsimony Pressure [33]. This technique is
only used in the selection phase: given two individuals with
the same fitness, the best one is that with fewer nodes. Fewer
nodes indicate rules with fewer antecedents, hedge and
negation operators, as well as few functions (fd), and,
therefore, a small rule set. After the evaluation process,
selection and recombination operators are applied in order to
generate a new population.

IV. CASE STUDIES

A. Experimental Settings

Two benchmark have been considered as applications for
the GPFIS-Control model: cart-centering problem [25,28]
and inverted pendulum [9,12].

The cart-centering problem consists of a cart with mass m,
moving on a frictionless rail; at some instant t its position is xt
(m), with velocity vt (m/s). The cart must stop (vt = 0) at a
user-defined setpoint ref. Tolerance values ε may be
considered, so that |xt – ref.| < ε and |vt – ref.|< ε. Plant
dynamics are shown in Equations (7) and (8):

௧ାఛݒ ൌ ௧ݒ ߬ ௧݉ܨ ሺ7ሻ ݔ௧ାఛ ൌ ௧ݔ ௧ ሺ8ሻݒ߬

where τ is the sampling period and Ft is the force (N) applied
by the controller to the cart at time t. The objective is to reach
the setpoint in minimum time. The performance of

TABLE II
CONFIGURATIONS SET FOR CART-CENTERING PROBLEM

Variable Domain
Ft [-2.5, 2.5] N
vt [-2.5, 2.5] m/s
xt [-2.5, 2.5] m

Parameter Value
τ 0.02s
ε 0.5
m 2.0 kg

ref. xt = vt = 0

1956

GPFIS-Control has been compared to the GFC presented in
[25]. Several configurations for GPFIS-Control (t-norms,
aggregation operators, etc.) have been evaluated. To perform
a fair comparison, configurations were the same as those in
[25] for all variables and parameters. Table II display these
values.

GPFIS-Control is required to move the cart until |xt – 0| <
0.5 and |vt – 0|< 0.5, given 16 initial values uniformly
distributed on the xt domain. The fitness function has been
defined as:

ݏݏ݁݊ݐ݅ܨ ൌ ఌݐ ௧|௧ݔ| ሺ9ሻ

where ݐఌ is the the time needed to satisfy the stopping criteria
(|xt – 0| < 0.5 and |vt – 0| < 0.5). An individual in the
GPFIS-Control population is considered unfeasible if it
cannot stop the cart in 10 seconds (500 sampling steps).
Given the best solution, it is applied to 1000 initial random
positions in order to evaluate the time taken by
GPFIS-Control to stop the cart. The following procedure has
been executed 10 times: (i) generate a GPFIS-Control model
and, (ii) applying it on 1000 random position, in order to
produce statistical relevant results. Finally, in each execution
25000 evaluations (population size = 50 and number of
generations = 500, respectively) have been performed to
generate a fair comparison with [25]. Table III displays the
parameters.

Based on the best configurations for the GPFIS-Control
model in the cart-centering problem, the second experiment
consists of a comparison with [12] regarding the inverted
pendulum problem. In this, a cart of mass M with a pole of
mass m and height l attached to its center moves on a
frictionless rail. The controller must apply several Ft in order
to increase or decrease vt, and consequently change the
angular velocity ωt and the pendulum angle θt. The dynamic
model can be found in [12,28].

In order to perform a fair comparison with [12], the feasible
domain for each variable was set as: ωt ߳ [-0.87, 0.87] rad/s,
θt ߳ [-0.34, 0.34] rad, Ft ߳ [-25, 25] N, while xt and vt are
unconstrained, M=1kg, m=0.1kg, l=0.5m,g=9.8m/s2 and
τ=0,01s. Two initial conditions were considered:
θ0 = {-0,18, 0,18}rad, with ω0 ={0,0}rad/s and the setpoint is

ref=0 rad with ε=0.01. The time allowed for the position
|θt – 0| < 0.01 to be reached is at most 1 second (100 sampling
steps).

As in [12], 100,000 evaluations (population size = 100 and
number of generations 1000) have been made. All this
procedure was repeated 10 times, in order to generate
statistical relevant results. Table III exhibit the remaining
parameters used. The fitness function is [12]:

ݏݏ݁݊ݐ݅ܨ ൌ ሺߠ௧ െ ሻଶ ଵ݂݁ݎ
௧ୀଵ ሺ10ሻ

 In both experiments seven fuzzy sets have been assigned to
each variable (Ft, xt, vt, ωt, θt), as shown in Figure 6. In some
cases, the negation of a fuzzy set was entered in the Input
Fuzzy Sets stage of the GPFIS-Control routine (as described
in section 3.1a). All experiments were performed in
MATLAB R2010a [34].

B. Results and Discussions

1) Cart-Centering Problem

The main results are presented in Table IV, considering the
linguistic hedge square root, the classic negation operator and
different aggregation operators (max and average) and
defuzzification methods (height and maximum height). It can
be seen that for almost all configurations, the use of the
average aggregation operator reduces by about 39% the mean
time taken by the controller to position the cart at |xt – 0| < 0.5
and |vt – 0| < 0.5. It may also be noted that the maximum
height defuzzification reduces that time in 14% in average.
However, the use of the negation operator does not incur in
any substantial time decrease, although fewer rules are
generated. In fact, the negation operator has a summarizing
power, due to the enlargement of a fuzzy set support in the
universe of discourse.

Fig. 9. Initial and final position for the best individual in an execution of

GPFIS-Control, using Product+Root-Sq+MaxHeight and average
aggregation operator configurations.

TABLE III
REMAINING GPFIS-CONTROL CONFIGURATIONS
Parameter Value

Tournament Size 5
Maximum Tree Depth 5

Elitism Rate 1%
Maximum rules per individual 50

Low level crossover rate 75%
High level crossover rate 50%

Mutation rate 20%
Direct reproduction rate 5%

Input Fuzzy Sets 7 Fuzzy Sets + Classical Negation*
of each Fuzzy Sets per variable

Fuzzy Operators Set
t-norm: product,

others: described for each
experiment

* Used when first advised.

1957

 The best configurations were: maximum height method for
defuzzification and average as the aggregation operator.
Figure 9 present the 16 initial positions and final positions
when |xt – 0| < 0.5 and |vt – 0|< 0.5. Figure 10 exhibits the
response surface for GPFIS-Control best configuration for
(a): maximum height defuzzification method and (b): height
defuzzification method. It can be seen that the surface for (b)
is smoother than that for (a), due to broader set of values that
Ft can assume when the height method is chosen.
 The average best result for GPFIS-Control (135.8 steps)
compares favorably with those of [25] (158 steps) and [35]
(149 steps). The optimal solution is 129 steps.

2) Inverted Pendulum

Based on the best configuration previously established,
GPFIS-Control has been applied to the inverted pendulum
problem. Figure 11 shows the controller’s behavior,
generated by the best individual in 100,000 evaluations, given
two initial conditions: θ0 = {-0,18, 0,18}rad, with ω0
={0,0}rad/s. The average best result found for GPFIS-Control
was 0.27 seconds to reach and stay at |θt – 0|<0.01 during 1.00
second, generating in 14 rules in average. In [12] the GFC
took 0.61 seconds to perform the same task, however
producing few rules (7 rules).

Fig. 11. Initial and final position for the best individual in an execution of
GPFIS-Control, using Product+Root-Sq+MaxHeight and average
aggregation operator configurations.

Fig 10. Response surface for the best individual in cart-centering for different defuzzification methods: (a): maximum height; (b) height.

(a) (b)

TABLE IV
RESULTS FOR GPFIS-CONTROL: CART-CENTERING PROBLEM

Attribute
Aggregation operator = Max

Product+Root-Sq+
Height

Product+Root-Sq+
MaxHeight

Product+Root-Sq+
Neg+Height

Product+Root-Sq+
Neg+MaxHeight

Average Steps (0.02s) 215.9 243.6 224.6 203.5
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78

Average Time (s) 4.318s 4.872 4.492 4.07
Average Rules 21 24 14 15

Attribute
Aggregation operator = Average

Product+Root-Sq+
Height

Product+Root-Sq+
MaxHeight

Product+Root-Sq+
Neg+Height

Product+Root-Sq+
Neg+MaxHeight

Average Steps (0.02s) 160.2 135.8 205.5 144.9
Std. Dev. Steps (0.02s) 18.92 18.94 38.99 11.43

Average Time (s) 3.204 2.796 4.11 2.89
Average Rules 27 28 26 24

1958

V. CONCLUSIONS
 A novel approach for solving control problems has been
presented. It consists of a Genetic Programming Fuzzy
Inference System for Control tasks (GPFIS-Control), based
on Multi-Gene Genetic Programming. Its model considers the
usual stages of a Genetic Fuzzy Inference System:
fuzzification, inference, defuzzification and evaluation.
 The performance of GPFIS-Control has been evaluated
through two benchmarks problems: cart-centering and
inverted pendulum. The use of aggregation, defuzzification
and negation operators has been analyzed. It was shown that
the right choice of defuzzification and aggregation operators
improves results, while the use of negation may reduce the
number of rules. When compared to other Genetic Fuzzy
Controllers, GFPIS-Control has shown a better performance
in average.
 Future works shall consider other benchmark and actual
problems, as well as new methods in formulation, partitioning
and aggregation. For example, rules could be aggregated by
using a weighted average, with adaptive weights for the rules
during the controller operation. This could improve results
with fewer rules. Build of others partitioning methods could
help GPFIS-Control to select the most promising rules for
each consequent. A sensitivity analysis of some parameters
(tournament size, maximum tree depth, etc.) would help to
evaluate their influence on the final result.

REFERENCES
[1] J. M. Mendel, Fuzzy logic systems for engineering: a tutorial.

Proceedings of the IEEE, Vol.83, No.3, p.345-377, 1995.
[2] C. Elmas, C., O. Deperlioglu, and H. H. Sayan, Adaptive fuzzy logic

controller for DC–DC converters. Expert Systems with Applications,
Vol.36, No.2, pp.1540-1548, 2009.

[3] O. Cordón, A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems. International Journal of
Approximate Reasoning, Vol.52, No.6, pp.894-913, 2011.

[4] J.S.R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft
computing: a computational approach to learning and machine
intelligence. Englewood Cliffs, NJ: Prentice-Hall, 1997.

[5] R.E. Precup, and H. Hellendoorn, A survey on industrial applications of
fuzzy control. Computers in Industry, Vol.62, No.3, pp.213-226, 2011.

[6] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena,
Ten years of genetic fuzzy systems: current framework and new trends.
Fuzzy sets and systems, Vol.141, No.1, pp. 5-31, 2004.

[7] C. Karr, Genetic algorithms for fuzzy controllers. Ai Expert, Vol.6, No.
2, pp.26-33, 1991.

[8] B. D. Liu, C. Y. Chen, and J. Y. Tsao, Design of adaptive fuzzy logic
controller based on linguistic-hedge concepts and genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, Vol.31, No.1, pp.32-53, 2001.

[9] F. Herrera, M. Lozano, and J. L. Verdegay, A learning process for
fuzzy control rules using genetic algorithms. Fuzzy sets and systems,
Vol. 100, No. 1, pp.143-158, 1998.

[10] T. Pal, and N. R. Pal, SOGARG: A self-organized genetic
algorithm-based rule generation scheme for fuzzy controllers.
Evolutionary Computation, IEEE Transactions on, Vol.7, No.4,
pp.397-415, 2003.

[11] E. Tunstel, and M. Jamshidi, On genetic programming of fuzzy
rule-based systems for intelligent control. Int. Journal of Intelligent
Automation and Soft Computing, Vol.2, No.3, pp.271-284, 1996.

[12] A. Tsakonas, Local and global optimization for Takagi–Sugeno fuzzy
system by memetic genetic programming. Expert Systems with
Applications, Vol.40, No.8, pp.3282-3298, 2013.

[13] N. Kasabov, and Q. Song, DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction. IEEE
Transactions on Fuzzy Systems, Vol.10, N.2, pp.144-154, 2002.

[14] R. J. Contreras, M.M.B.R. Vellasco, and R. Tanscheit, Hierarchical
type-2 neuro-fuzzy BSP model. Information Sciences, Vol.181, No.15,
pp.3210-3224, 2011.

[15] M. P. Hinchliffe, M. J. Willis, H. Hiden, M.T. Tham, B. McKay, and
G.W. Barton, Modeling chemical process systems using a multi-gene
genetic programming algorithm. in Proc. of the First Annual
Conference of Genetic Programming, Massachussets, pp. 56-65, 1996.

[16] D. P. Searson, M. J. Willis, and G.A. Montague, Co-evolution of
non-linear PLS model components. Journal of Chemometrics, Vol. 2,
pp. 592-603, 2007.

[17] F. Herrera, Genetic fuzzy systems: taxonomy, current research trends
and prospects. Evolutionary Intelligence, Vol.1, No.1, pp.27-46, 2008.

[18] O. Castillo, and P. Melin, A review on the design and optimization of
interval type-2 fuzzy controllers. Applied Soft Computing, Vol.12,
No.4, pp.1267-1278, 2012.

[19] M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, and F. Herrera, A
Review of the Application of Multiobjective Evolutionary Fuzzy
Systems: Current Status and Further Directions. IEEE Trans. on Fuzzy
Sets, Vol.21, No.1, pp.45-65, 2013.

[20] C. F. Juang, J. Y. Lin, and C. T. Lin, Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, Vol.30,
No.2, pp.290-302, 2000.

[21] E. De Santis, A. Rizzi, A. Sadeghiany, and F. M. F. Mascioli, Genetic
optimization of a fuzzy control system for energy flow management in
micro-grids. in Proc. IFSA World Congress and NAFIPS Annual
Meeting, pp. 418-423., June 2013.

[22] L. H. Hassan, M. Moghavvemi, H. A. Almurib, O. Steinmayer,
Application of genetic algorithm in optimization of unified power flow
controller parameters and its location in the power system network.
International Journal of Electrical Power & Energy Systems, Vol.46,
pp.89-97, 2013.

[23] R. P. Prado, S. García-Galán, J. Exposito, and A. J. Yuste, Knowledge
acquisition in fuzzy-rule-based systems with particle-swarm
optimization. IEEE Trans. Fuzzy Systems, Vol.18, No.6,
pp.1083-1097, 2010.

[24] O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, and J. Soria,
Comparative study of bio-inspired algorithms applied to the
optimization of type-1 and type-2 fuzzy controllers for an autonomous
mobile robot. Information Sciences, Vol.192, pp.19-38, 2012.

[25] E. Alba, C. Cotta, and J. M. Troya, Type-constrained genetic
programming for rule-base definition in fuzzy logic controllers. in
Proc. of the First Annual Conference on Genetic Programming, pp.
255-260, July 1996.

[26] E. Tunstel, and M. Jamshidi, On genetic programming of fuzzy
rule-based systems for intelligent control. International Journal of
Intelligent Automation and Soft Computing, Vol.2, No.3, pp.271-284,
1996.

[27] A. Homaifar, D. Battle, E. Tunstel, and G. Dozier, Genetic
Programming Design of Fuzzy Logic Controllers for Mobile Robot
Path Tracking. International Journal of Knowledge Based Intelligent
Engineering Systems, Vol.4, No.1, pp.33-52, 2000.

[28] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Massachusetts: MIT Press, 1992.

[29] W. B. Langdon, and R. Poli, Foundations of Genetic Programming.
Heidelberg: Springer-Verlag, 2002.

[30] G. J. Klir, and B. Yuan, Fuzzy sets and fuzzy logic. New Jersey:
Prentice Hall, 1995.

[31] T. Calvo, A. Kolesárová, M. Komorníková, and R. Mesiar,
Aggregation operators: properties, classes and construction methods.
In: Aggregation Operators, T. Calvo et al. (Eds.), Heidelberg:
Physica-Verlag, 2002, pp.3-104.

[32] Yager, R. R., Kacprzyk, J., & Beliakov, G. Recent developments in the
ordered weighted averaging operators: theory and practice. Springer,
2011.

[33] S. Luke and L. Panait, Lexicographic parsimony pressure. In:
Proceedings of the Genetic and Evolutionary Computation Conference,
W. B. Langdon et al. (Ed.). New York: Morgan Kaufmann Publishers,
2002, pp. 829-836.

[34] MATLAB (2010). MATLAB 7.10.0 (R2010a). Massachusetts: The
MathWorks Inc.

[35] P. R. Thrift, Fuzzy Logic Synthesis with Genetic Algorithms. In: Proc.
International Conference on Genetic Algorithms, pp. 509-513, July
1991.

1959

