
 
 

 

  

Abstract— This work presents a Genetic Fuzzy Controller 
(GFC), called Genetic Programming Fuzzy Inference System 
for Control tasks (GPFIS-Control). It  is based on Multi-Gene 
Genetic Programming, a variant of canonical Genetic 
Programming. The main characteristics and concepts of this 
approach are described, as well as its distinctions from other 
GFCs. Two benchmarks application of GPFIS-Control are 
considered: the Cart-Centering Problem and the Inverted 
Pendulum. In both cases results demonstrate the superiority 
and potentialities of GPFIS-Control in relation to other GFCs 
found in the literature. 

 Keywords— Fuzzy Logic Control, Genetic Fuzzy Controller, 
Muti-Gene Genetic Programming. 

I. INTRODUCTION 
UZZY Logic Controllers (FLCs) [1] have been 
extensively used as an alternative to manipulate and 

describe complex systems when traditional control methods 
do not provide viable solutions. FLCs have the capacity of 
modeling systems by using fuzzy "if-then" rules, normally 
provided by an expert. Classical approaches employ either a 
Mamdani-type Fuzzy Inference System (FIS) [2-3] or a 
Takagi-Sugeno (TSK) FIS [4-5]. FLC parameters (rule base, 
membership function parameters, etc.) can be tuned by an 
expert or by employing a learning approach. In this respect, 
the current work considers Genetic Fuzzy Systems [3,6], or, 
to more specific, Genetic Fuzzy Controllers. 

In Genetic Fuzzy Controllers (GFC) the automatic learning 
and tuning is based on a Genetic-based Meta-Heuristic 
(GBMH). Some works consider FLCs embedded with a 
Genetic Algorithm (GA) to tune membership function 
parameters [7-8] or to search for concise fuzzy rule bases 
[9-10]. More recent works explore Genetic Programming 
(GP) to build an FLC by using methodologies and concepts 
similar to those employed on a GA based FLC [11-12]. 

In general, it is advantageous to use a GBMH exclusively 
to search for the FLC best configuration. In this perspective, 
the meta-heuristic is seen as a tool to build an FLC and not as 
a mechanism that may change reasoning. Still, in frameworks 
with a high level of hybridization, in which a genetic-based 
meta-heuristic has a higher participation, it may be possible to 
obtain better accuracy. Examples are Neuro-Fuzzy models 
[13,14], where Neural Networks play an important role in the 
hybrid architecture, enabling high accuracy and fast 
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convergence. 
This work deals with a GFC called Genetic Programming 

Fuzzy Inference System for Control tasks (GPFIS-Control). It 
makes use of Multi-Gene Genetic Programming [15-16] for 
extracting knowledge from the plant. The resulting 
architecture should: (1) automatically tune  the FLC 
parameters, (2) make the plant output reach the setpoint as 
fast as possible, (3) provide linguistic comprehension for each 
FLC action and (4) be easy to implement. 

This paper is organized as follows: the next section 
describes related works on GFC and considers some 
applications involving GP. Section III describes Multi-Gene 
Genetic Programming and GPFIS-Control in detail. Case 
studies are considered in Section IV and section V concludes 
the work. 

II. RELATED WORKS 
The first attempt to build an FLC by using GBMH 

algorithms was presented in [7], where a GA was used to tune 
membership functions parameters of input and output 
variables. Subsequently, many other works have employed 
evolutionary algorithms, mostly GA, to tune FLC parameters 
and search for concise rule bases [17-19].  

Several works can be found in the GFC area, such as [9], 
which presents an evolutionary procedure to modify rules, 
initially set by an expert, for a Mamdani type FLC. In [20] 
membership functions, rule sets and consequent types (TSK 
or Mamdani types) are tuned by a GA based on Symbiotic 
Evolution. Two other approaches are: [8], which employs 
linguistic hedge operators, selected by a GA, to tune 
membership functions, and [10] where a hierarchical 
self-organized GA-based scheme is proposed.  

Recently, most works that make use of GA to tune FLCs 
focus on real applications [19,21,22]. Type-2 FLC have also 
been tuned through GA [18]. Lastly, some non-GBMH works 
for tuning an FLC consider Particle Swarm Optimization [23] 
and other bio-inspired algorithms [24]. 

Few attempts have been made to build an FLC by using 
GP, despite its dynamic structure that benefits rule base 
codification [6]. The first works in this sense were [25] and 
[26], which used a type-constrained GP to build a fuzzy rule 
based system. In [27] an FLC based on GP for mobile robot 
path tracking is presented. More recently, [12] proposes the 
use of Memetic GP to build a TSK FLC. All those approaches 
adapt the GP structure to formulate an FLC in a canonical 
way, similarly to a GA common procedure. Small advantages 
of GP are effectively used by these authors, but many 
possibilities arise, such as the use of combinations of different 
t-norms and t-conorms, of linguistic hedges and of different 
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aggregation operators. 
GPFIS-Control is a novel GFC based on Multi-Gene 

Genetic Programming. This model builds a Pittsburgh-type 
Fuzzy Rule Based System, making use of a different 
reasoning method to learn fuzzy rules. 

III. GPFIS-CONTROL 

A. Multi-Gene Genetic Programming 
Genetic Programming (GP) [28-29] belongs to the 

Evolutionary Computation field. Typically, it employs a 
population of individuals, each of them denoted by a tree 
structure that codifies a mathematical equation, which 
describes the relationship between the output Y and a set of 
input terminals Xj (j=1,...,J) (features, in the current work).  

 Multi-Gene Genetic Programming (MGGP) [15-16] 
denotes an individual as a structure of trees, also called genes, 
that receives Xj and tries to predict Y (Figure 1). Each 
individual is composed of D functions fd (d=1,…D) that map 
Xj variables to Y through user-defined mathematical 
operations. In GP terminology, the Xj input variables are 
included in the Terminal set, while the mathematical 
operations (plus, minus, etc.) are inserted in the Function Set 
(or Mathematical Operations Set). 

With respect to genetic operators, mutation in MGGP is 
similar to that in GP. As for crossover, the level at which the 
operation is performed must be specified: it is possible to 
apply crossover at high and low levels. Figure 2 presents a 
multi-gene individual with five equations (D=5) 
accomplishing a low level crossover, while Figure 3 shows 
the mutation operation.  

 
Fig. 1. Example of a multi-gene individual. 

The low level is the space where it is possible to 
manipulate the structures (terminals and functions) of 
equations present in an individual. In this case, both 
operations are similar to those performed in GP.  

 
Fig. 2. Low-level crossover in a multi-gene individual. 

     The high level, on the other hand, is the space where 
expressions can be manipulated in a macro way. An example 
of high level crossover is displayed in Figure 4. By observing 

the dashed lines, it can be seen that the equations were 
switched from an individual to the other. 

 
Fig. 3. Mutation operation in a multi-gene individual. 

The cutting point can be symmetric – the same number of 
equations is exchanged between individuals –, or asymmetric. 
Intuitively, high level crossover has a deeper of effect on the 
output than low level crossover or mutation has. In case of 
GPFIS-Control, the high level crossover used is symmetric. 

 
Fig. 4. High level crossover in a multi-gene individual. 

B. GPFIS-Control 
The GPFIS-Control model is shown in Figure 5. The 

control signal yt is sent to the plant at time t (t=0,1, ..., T). The 
plant outputs ztk (k=1,…K) are fed back to the input, so that    
the result of the difference between each feedback and its 
respective setpoint is the error signal xtk = ztk – Refk. By using 
xtk it is possible to build a control signal yt in order to satisfy 
performance criteria.  

In general guidelines, the GPFIS-Control model is 
comprised of four sections: fuzzification, inference, 
defuzzification and evaluation. The inference process begins 
when each feedback error xtk is mapped on fuzzy sets. Then, 
functions that map each linguistic state of xtk to a state of yt are 
synthesized based on MGGP principles. The crisp control 
signal is obtained through defuzzification. This solution is 
evaluated and then selection and recombination operators are 
applied. These steps are repeated until a stopping criterion is 
met.  

 

 
Fig. 5. Block diagram of GPFIS-Control model. 
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1) Fuzzification 
 
Let xtk and yt admit J distinct linguistic terms, or fuzzy sets. 

These are defined by by normalized and uniformly distributed 
membership functions [30], as shown in Figure 6, for the k-th 
plant output. 

 

 
Fig. 6. Example of membership functions. 

 After fuzzification of each input xtk, the GPFIS-Control 
inference process initiates. 
 

2) Inference 
 
The inference procedure consists of three stages: 

Formulation, Partitioning and Aggregation. In Formulation 
t-norm, t-conorm, linguistic hedges and negation operators 
are defined. In Partitioning the mechanism that connects each 
antecedent with a consequent is established.  In Aggregation 
operators used to combine all rules are defined. Figure 7 
shows a diagram of this process. 

 

 
Fig. 7. Diagram of Inference procedure. 

a) Formulation 
 

Through each ߤሺݔ௧ሻ (membership degree of xtk to a 
fuzzy set Ajk), GPFIS-Control evolves a controller whose 
ouput  has several terms (B1 = Negative Big, ..., B7 = Positive 
Big, for example), with membership degrees given by: 

௧ሻݕభሺߤ  ൌ ݃ ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻݕమሺߤ ௧ሻ൰ቃ                  ሺ1ሻݔೕ಼ሺߤ ൌ ݃ ቂ ௗ݂א௦మ ൬ߤೕభሺݔ௧ଵሻ, … ,  ௧ሻ൰ቃ                  ሺ2ሻݔೕ಼ሺߤ
௧ሻݕሺߤ ... ൌ ݃ ቂ ௗ݂א௦ ൬ߤೕభሺݔ௧ଵሻ, … ,  ௧ሻ൰ቃ                  ሺ3ሻݔೕ಼ሺߤ
 

where ௗ݂א௦ೕ ൬ߤೕభሺݔ௧ଵሻ, … , ௧ሻ൰ݔೕ಼ሺߤ  represents a set of 

functions, where each one combines all ߤೕೖሺݔ௧ሻ, k=1,.., K, 
by using a set of user-defined mathematical operations; ݏ 
(j=1,…, J) is an index set that describes which d-th function fd 

is related to the j-th consequent term (݀ א  ).  Methods toݏ
define ݏ are best described in the Partitioning stage. In order 
to each function fd associated to ݏ behave as a fuzzy rule, it 
needs to employ t-norm, t-conorm, negation and linguistic 
hedges operators, with the aim to represent logic connectives 
for each linguistic term induced by ߤೕೖሺݔ௧ሻ . Finally, g 
aggregates the activation degrees of each rule set (represented 
by ௗ݂א௦ೕ) in a final value. Therefore, if a set Ajk is activated, 
GPFIS-Control builds a rule set (function set) that combines 
all membership degrees (ߤೕೖሺݔ௧ሻ) and produces an action.  

In Formulation some parameters of GPFIS-Control are 
defined. In MGGP, initial parameters are called Terminals 
(input variables) and Mathematical Operations or Function 
Set (plus, times, etc.). In GPFIS-Control, the terminology will 
be Input Fuzzy Sets and Fuzzy Operators Set, respectively. 
Table I presents the initial user-defined parameters. 

Subsequently, by using the Fuzzy Operators Set, each ߤೕೖሺݔ௧ሻ is combined in order to best describe the actions ߤೕሺݕ௧ሻ taken by the controller. It is possible to enter into the 
Input Fuzzy Sets stage with a negated or modified ("hedged") 
fuzzy set, instead of using negation and linguistic hedge 
operators in the Fuzzy Operators Set stage. This entails a 
larger search space, but can be of help in rules analysis.  

b) Partitioning 
 

Let  S={s1,s2,...,sJ}, where each sj represents which fd 
(d={1,...,D}) is related to the j-th consequent Bj. The method 
that describes which d-th function is associated to sj is called 
Uniform Division. This partitioning method makes use of a 
simple heuristic, given by: 
 

1. Compute: ܷ ൌ ہ .ہ where) ۂ  .(is the floor operator ۂ
2. Partition: s1 = {1,...,U}, s2 = {U+1,..., 2*U},...,             

sJ  = {U*(J-1)+1,...,U*J}. 
 
As an example, consider  D (nr. of functions) = 10 and  J (nr. 
of consequent terms) = 5. Thus U = 2, s1 = {1, 2}, s2 = {3,4}, 
s3 = {5,6}, s4 = {7,8}, s5 = {9,10}. Figure 8 illustrates this 
process. 
 

 
Fig. 8. Partitioning method: Uniform Division. 

TABLE I 
INPUT FUZZY SETS AND FUZZY OPERATORS 

Input Fuzzy Sets Fuzzy Operators Set ߤೕభሺݔ௧ଵሻ, … ,  ௧ሻ t-norms, t-conorms, negation andݔೕ಼ሺߤ
linguistic hedges operators 
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In summary, each fd is uniformly divided for each sj so that a 
consequent has at least one rule associated to it. This method 
is similar to others GFS based on GP, such that consequent 
and antecedent terms are both synthesized. Through the 
definition of the rule set associated to each consequent 
(S={s0,s1,s2,...,sJ}), the next step is to aggregate them, in order 
to generate a final degree of activation. 

c) Agreggation 
 

Many works on aggregation operators may be found in the 
literature [31-32].  

Some examples of ݃ ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … ,  ௧ሻ൰ቃݔೕ಼ሺߤ
are: 

 

• ݃ ՜ max ቂ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , :௧ሻ൰ቃݔೕ಼ሺߤ                    
max aggregation operator are the most common used on 
Mamdani type FIS.  

 

• ݃ ՜ ଵௗሺ௦ೕሻ ∑ ሾ ௗ݂א௦భ ൬ߤೕభሺݔ௧ଵሻ, … , ୱౠא௧ሻ൰ሿୢݔೕ಼ሺߤ  :  

arithmetic mean operator intends to provide same 
weights for each element of the rule set associated to the 
j-th consequent.  

 
In [31] several aggregation operators are presented. It can 

be shown that t-norms and t-conorms are special cases of 
aggregation operators. After the user definition for the 
aggregation operators, it is possible to compute the 
membership degrees for different actions ߤೕሺݕ௧ሻ taken by 
the controller. Then, the defuzzified control signal ݕ௧  is 
computed. 
 

3) Defuzzification 
 

Basically, a defuzzification method (center of gravity, 
mean of maximum, etc.) produces a crisp value that is an 
interpretation of the information contained in a fuzzy set. In 
GPFIS-Control the height method is used: 

௧ݕ  ൌ ∑ ܾୀଵ ∑௧ሻݕೕሺߤ ௧ሻୀଵݕೕሺߤ                                                                  ሺ4ሻ 

                   
where ܾ represents the center (location) parameter of each Bj. 
The maximum height method may be employed when the 
control signal assumes values in some finite set: 
௧ݕ  ൌ ∑ ߶ ܾ ߤሺݕ௧ሻୀଵ∑  ߶ୀଵ ௧ሻݕሺߤ                                                             ሺ5ሻ 

                        
where  ߶ is an indicator function, such that ߶  = 1, when ߤೕሺ ௧ܻሻ > ߤሺ ௧ܻሻ, for all l=1,...,J, e l ≠ j, e ߶ = 0, otherwise. 
 

4) Evaluation 
 

The right definition of the fitness function is crucial for a 
good performance of GPFIS-Control. For optimal tracking of 
a trajectory, a possible fitness function is the Mean Squared 
Error (MSE): 

ܧܵܯ  ൌ ܭ1 ሺݔ௧ሻଶ
ୀଵ                                                                   ሺ6ሻ 

 
When MSE is minimized the GPFIS-Control model 
successfully obtains a trajectory close to the setpoint. In 
minimum time problems, the fitness function may be the time 
(t) the output takes to reach an MSE < ε, where ε is a 
tolerance. 

GPFIS-Control tries to reduce the size and complexity of 
the rule base by employing a simple heuristic called 
Lexicographic Parsimony Pressure [33]. This technique is 
only used in the selection phase: given two individuals with 
the same fitness, the best one is that with fewer nodes. Fewer 
nodes indicate rules with fewer antecedents, hedge and 
negation operators, as well as few functions (fd), and, 
therefore, a small rule set. After the evaluation process, 
selection and recombination operators are applied in order to 
generate a new population. 

IV. CASE STUDIES 

A. Experimental Settings 
 

Two benchmark have been considered as applications for 
the GPFIS-Control model: cart-centering problem [25,28] 
and inverted pendulum [9,12]. 

The cart-centering problem consists of a cart with mass m, 
moving on a frictionless rail; at some instant t its position is xt 
(m), with velocity vt (m/s). The cart must stop (vt = 0) at a 
user-defined setpoint ref. Tolerance values ε may be 
considered, so that |xt – ref.| < ε and |vt – ref.|< ε. Plant 
dynamics are shown in Equations (7) and (8): 

௧ାఛݒ  ൌ ௧ݒ  ߬ ௧݉ܨ                                                                          ሺ7ሻ ݔ௧ାఛ ൌ ௧ݔ   ௧                                                                           ሺ8ሻݒ߬
 
where τ is the sampling period and Ft is the force (N) applied 
by the controller to the cart at time t. The objective is to reach 
the setpoint in minimum time. The performance of 

TABLE II 
CONFIGURATIONS SET FOR CART-CENTERING PROBLEM 

Variable Domain 
Ft [-2.5, 2.5] N 
vt [-2.5, 2.5] m/s 
xt [-2.5, 2.5] m 

Parameter Value 
τ 0.02s 
ε 0.5 
m 2.0 kg 

ref. xt = vt = 0 
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GPFIS-Control has been compared to the GFC presented in 
[25]. Several configurations for GPFIS-Control (t-norms, 
aggregation operators, etc.) have been evaluated. To perform 
a fair comparison, configurations were the same as those in 
[25] for all variables and parameters. Table II display these 
values. 

GPFIS-Control is required to move the cart until |xt – 0| < 
0.5 and |vt – 0|< 0.5, given 16 initial values uniformly 
distributed on the xt domain. The fitness function has been 
defined as: 

ݏݏ݁݊ݐ݅ܨ  ൌ ఌݐ    ௧|௧ݔ|                                                           ሺ9ሻ 

 
where ݐఌ is the the time needed to satisfy the stopping criteria 
(|xt – 0| < 0.5 and |vt – 0| < 0.5). An individual in the 
GPFIS-Control population is considered unfeasible if it 
cannot stop the cart in 10 seconds (500 sampling steps). 
Given the best solution, it is applied to 1000 initial random 
positions in order to evaluate the time taken by 
GPFIS-Control to stop the cart. The following procedure has 
been executed 10 times: (i) generate a GPFIS-Control model 
and, (ii) applying it on 1000 random position, in order to 
produce statistical relevant results. Finally, in each execution 
25000 evaluations (population size = 50 and number of 
generations = 500, respectively) have been performed to 
generate a fair comparison with [25]. Table III displays the 
parameters.  

Based on the best configurations for the GPFIS-Control 
model in the cart-centering problem, the second experiment 
consists of a comparison with [12] regarding the inverted 
pendulum problem. In this, a cart of mass M with a pole of 
mass m and height l attached to its center moves on a 
frictionless rail. The controller must apply several Ft in order 
to increase or decrease vt, and consequently change the 
angular velocity ωt and the pendulum angle θt. The dynamic 
model can be found in [12,28]. 

In order to perform a fair comparison with [12], the feasible 
domain for each variable was set as:   ωt ߳ [-0.87, 0.87] rad/s, 
θt ߳ [-0.34, 0.34] rad, Ft ߳ [-25, 25] N, while xt and vt are 
unconstrained, M=1kg, m=0.1kg, l=0.5m,g=9.8m/s2 and 
τ=0,01s. Two initial conditions were considered:                         
θ0 = {-0,18, 0,18}rad, with ω0 ={0,0}rad/s and the setpoint is 

ref=0 rad with ε=0.01.  The time allowed for the position     
|θt – 0| < 0.01 to be reached is at most 1 second (100 sampling 
steps). 

As in [12], 100,000 evaluations (population size = 100 and 
number of generations 1000) have been made. All this 
procedure was repeated 10 times, in order to generate 
statistical relevant results. Table III exhibit the remaining 
parameters used. The fitness function is [12]: 

ݏݏ݁݊ݐ݅ܨ  ൌ  ሺߠ௧ െ ሻଶ ଵ݂݁ݎ
௧ୀଵ                                                  ሺ10ሻ 

 
   In both experiments seven fuzzy sets have been assigned to 
each variable (Ft, xt, vt, ωt, θt ), as shown in Figure 6. In some 
cases, the negation of a fuzzy set was entered in the Input 
Fuzzy Sets stage of the GPFIS-Control routine (as described 
in section 3.1a). All experiments were performed in 
MATLAB R2010a [34]. 

 

B. Results and Discussions 
 

1) Cart-Centering Problem 
 

The main results are presented in Table IV, considering the 
linguistic hedge square root, the classic negation operator and 
different aggregation operators (max and average) and 
defuzzification methods (height and maximum height). It can 
be seen that for almost all configurations, the use of the 
average aggregation operator reduces by about 39% the mean 
time taken by the controller to position the cart at |xt – 0| < 0.5 
and |vt – 0| < 0.5. It may also be noted that the maximum 
height defuzzification reduces that time in 14% in average. 
However, the use of the negation operator does not incur in 
any substantial time decrease, although fewer rules are 
generated. In fact, the negation operator has a summarizing 
power, due to the enlargement of a fuzzy set support in the 
universe of discourse.  
    

 
Fig. 9.  Initial and final position for the best individual in an execution of 

GPFIS-Control, using Product+Root-Sq+MaxHeight and average 
aggregation operator configurations. 

TABLE III 
REMAINING GPFIS-CONTROL CONFIGURATIONS 
Parameter Value 

Tournament Size 5 
Maximum Tree Depth 5 

Elitism Rate 1% 
Maximum rules per individual 50 

Low level crossover rate 75% 
High level crossover rate 50% 

Mutation rate 20% 
Direct reproduction rate 5% 

Input Fuzzy Sets 7 Fuzzy Sets + Classical Negation* 
of each Fuzzy Sets per variable 

Fuzzy Operators Set 
t-norm: product,  

others: described for each  
experiment 

* Used when first advised. 
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    The best configurations were: maximum height method for 
defuzzification and average as the aggregation operator. 
Figure 9 present the 16 initial positions and final positions 
when    |xt – 0| < 0.5 and |vt – 0|< 0.5. Figure 10 exhibits the 
response surface for GPFIS-Control best configuration for 
(a): maximum height defuzzification method and (b): height 
defuzzification method. It can be seen that the surface for (b) 
is smoother than that for (a), due to broader set of values that 
Ft can assume when the height method is chosen.  
    The average best result for GPFIS-Control (135.8 steps) 
compares favorably with those of [25] (158 steps) and [35] 
(149 steps). The optimal solution is 129 steps. 
 

2) Inverted Pendulum 
 

Based on the best configuration previously established, 
GPFIS-Control has been applied to the inverted pendulum 
problem. Figure 11 shows the controller’s behavior, 
generated by the best individual in 100,000 evaluations, given 
two initial conditions: θ0 = {-0,18, 0,18}rad, with ω0 
={0,0}rad/s. The average best result found for GPFIS-Control 
was 0.27 seconds to reach and stay at |θt – 0|<0.01 during 1.00 
second, generating in 14 rules in average. In [12] the GFC 
took 0.61 seconds to perform the same task, however 
producing few rules (7 rules).  

 

 
Fig. 11. Initial and final position for the best individual in an execution of 
GPFIS-Control, using Product+Root-Sq+MaxHeight and average 
aggregation operator configurations. 

 

 

 

 
Fig 10. Response surface for the best individual in cart-centering for different defuzzification methods: (a): maximum height; (b) height.   

  

(a) (b) 

TABLE IV 
RESULTS FOR  GPFIS-CONTROL: CART-CENTERING PROBLEM 

Attribute 
Aggregation operator = Max 

Product+Root-Sq+        
Height 

Product+Root-Sq+ 
MaxHeight 

Product+Root-Sq+ 
Neg+Height 

Product+Root-Sq+ 
Neg+MaxHeight 

Average Steps (0.02s) 215.9 243.6 224.6 203.5 
Std. Dev. Steps (0.02s) 25.73 94.09 37.89 60.78 

Average Time (s) 4.318s 4.872 4.492 4.07 
Average Rules 21 24 14 15 

Attribute 
Aggregation operator = Average 

Product+Root-Sq+        
Height 

Product+Root-Sq+ 
MaxHeight 

Product+Root-Sq+ 
Neg+Height 

Product+Root-Sq+ 
Neg+MaxHeight 

Average Steps (0.02s) 160.2 135.8 205.5 144.9 
Std. Dev. Steps (0.02s) 18.92 18.94 38.99 11.43 

Average Time (s) 3.204 2.796 4.11 2.89 
Average Rules 27 28 26 24 
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V. CONCLUSIONS 
   A novel approach for solving control problems has been 
presented. It consists of a Genetic Programming Fuzzy 
Inference System for Control tasks (GPFIS-Control), based 
on Multi-Gene Genetic Programming. Its model considers the 
usual stages of a Genetic Fuzzy Inference System: 
fuzzification, inference, defuzzification and evaluation.  
    The performance of GPFIS-Control has been evaluated 
through two benchmarks problems: cart-centering and 
inverted pendulum. The use of aggregation, defuzzification 
and negation operators has been analyzed. It was shown that 
the right choice of defuzzification and aggregation operators 
improves results, while the use of negation may reduce the 
number of rules. When compared to other Genetic Fuzzy 
Controllers, GFPIS-Control has shown a better performance 
in average.  
   Future works shall consider other benchmark and actual 
problems, as well as new methods in formulation, partitioning 
and aggregation. For example, rules could be aggregated by 
using a weighted average, with adaptive weights for the rules 
during the controller operation. This could improve results 
with fewer rules. Build of others partitioning methods could 
help GPFIS-Control to select the most promising rules for 
each consequent. A sensitivity analysis of some parameters 
(tournament size, maximum tree depth, etc.) would help to 
evaluate their influence on the final result. 
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