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Abstract— With the advance of computing and electronic
technology, quantitative data, for example, continuous data
(i.e., sequences of floating point numbers), become vital
and have wide applications, such as for analysis of sensor
data streams and financial data streams. However, existing
association rule mining generally discover association rules
from discrete variables, such as boolean data (’0’ and ’1’)
and categorical data (’sunny’, ’cloudy’, ’rainy’, etc.) but
very few deal with quantitative data. In this paper, a novel
optimized fuzzy association rule mining (OFARM) method is
proposed to mine association rules from quantitative data.
The advantages of the proposed algorithm are in three
folds: 1) propose a novel method to add the smoothness and
flexibility of membership function for fuzzy sets; 2) optimize
the fuzzy sets and their partition points with multiple objective
functions after categorizing the quantitative data; and 3)
design a two-level iteration to filter frequent-item-sets and
fuzzy association-rules. The new method is verified by three
different data sets, and the results have demonstrated the
effectiveness and potentials of the developed scheme.

Index Terms—Quantitative Association Rule; Fuzzy sets;
Optimized Partition Points; Objective Function;

I. INTRODUCTION

With the advance of computing and electronic technology,
how to analyse quantitative data, for example, continuous
data (i.e. sequences of floating point numbers) has become
a crucial issue to solve, such as for analysis of sensor
data streams and financial data streams. However, classical
methods for association rule mining concern only non-
quantitative variables such as binary and categorical data
objects. Binary variables are also called boolean variables,
whose values are either 0 (false) or 1 (true). Categorical
variables are often labelled with category names, such as
“sunny”, “cloudy”, “rainy”. It is also very often to represent
categorical values with integers, which can be considered as
groups of binary values. In contrast, the values of quantitative
variables are usually represented by floating point numbers,
they are so different to binary and categorical variables that
conventional association rule approaches are not suitable
for quantitative variables [1]. Therefore, several methods
have been proposed to convert the quantitative attributes to
categorical data objects, so these classical methods can be
used.

Frawley et al. proposes a mining approach, which par-
titions quantitative attributes into intervals [3]. Then, some
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approaches try to discover interval conditions on quantitative
attributes using association rule with clustering [4], rule
templates [5], specific interest measures [6] and genetic
algorithms [7].

Most studies focus on how to group quantitative data into
different sets. In all of the above methods, the quantitative
data are transformed into category data and the association
rule therefore can be achieved. But as direct discretization
methods, they reduce the precision of data objects and if the
pre-transformed data are close to the partition points, sharp
boundaries problems will emerge when pre-transformed data
transform into fuzzy sets. Real-world applications, however,
usually need to keep this advantages of quantitative values
as well as cutting down the sharp boundaries in partitioning
process.

Fuzzy association rule is a suitable method consisting
more information for quantitative data. For instance, in Lee et
al.’s paper [8], fuzzy sets are first introduced as an extension
of association rules, which keep the precision of quantitative
data with fuzzy sets and diminish the sharp boundaries while
dividing the intervals to change fuzzy transactions into crisp
ones. Then Delgado et al. [9] proposes a general model to
discover association rules, using the definition of certainty
factors and very strong rules to get the proper fuzzy associ-
ation rules. Different from these, dozens of researchers have
presented numerous methods to improve fuzzy association
rule mining: Dubois et al. [10] develops an assessment
approach partitioning the data into two groups using a given
rule: those against the rule (the counterexamples) and those
that are irrelevant; De Cock et al. [11] introduce new quality
measures identifying the set of positive as well as the set of
negative examples; some other papers [12][13] apply extra
measures (such as clustering, classifying) to modify fuzzy
association rule methods.

Just like the fuzzy association rule mining methods men-
tioned in these papers, in the fuzzy context, one can extend
the boolean values 0, 1 (indicating absence and presence)
to the interval [0, 1]. Whether a tuple contains an item is
characterized by the membership. Consider blood pressure
test as an example. Suppose a patient took a blood pressure
test, and a doctor tries to determine whether the patient’s
blood pressure is high or not. Note that blood pressure is
measured quantitatively, i.e., what the doctor measures is a
real number, not a boolean or binary value. For example with
classification of blood pressure for adults, there are normally
two criteria: systolic and diastolic pressure. If the systolic
pressure falls into the interval of 120-139 mmHG and the
diastolic pressure falls into 80-89 mmHG, the patient will be
diagnosed as pre hypertension. But the hard cut might not
always apply to all adult patients. Imagine if the patient only
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meets one criterion (i.e. diastolic) for hypotension not two,
the hard quantitative interval will lose the power to determine
if the adults with or without the hypertension. The doctor can
estimate the membership value [8] of the blood pressure to
the high-blood-pressure fuzzy set. Actually, what the doctor
thinks about is that how much the blood pressure belongs
to “high”, and this membership value lies between 0 and 1,
where 0 indicates that the blood pressure is not high, and
1 indicates that the blood pressure is high. However, if the
blood pressure given as time series data (continuous data),
methods mentioned above are difficult to extend.

Classical fuzzy association rule mining methods are,
however, still absence of the optimization to the partition
points used for generating the rules (while converting the
quantitative data into fuzzy sets, the partition points are
used to divide every two neighboring fuzzy sets). These
partition points are essential parts of forming fuzzy sets
in almost every Fuzzy Association Rule Mining models
(abbreviated as FARM in the rest of this paper). So when
we originally divide systolic pressure into three fuzzy sets
(−∞, 110], (110, 150], (150,+∞) with two partition points
110, 150 (which is not accurate and it is inconsistent with
general knowledge 120, 139), some optimization methods are
needed to improve the partition points. However, the common
FARM methods take little notice of it. Different from these,
the measures to filter association-rules and to smooth the
membership function [9][10] are still needed to improve in
common FARM methods.

According to the current restrains in FARM, a generic Op-
timized Fuzzy Association Rule Mining (OFARM) method is
proposed in this paper, which is easy to extend for continuous
data. It for the first time optimizes the partition points for
fuzzy sets, where a multiple objective function is used. Then,
a flexible measure is presented to smooth membership func-
tion and further lessen the sharp phenomenons. Ultimately,
we use a two-level iterative to generate association-rules. To
achieve these, main steps of our OFARM are shown as the
follows:

1) Use the membership function and original partition
points to convert the quantitative data; 2) generate original
frequent itemsets with Apriori Algorithm [14]; 3) optimize
the partition points in a defined multiple objective function
and generate the final frequent itemsets; 4) employ certainty
factor [9] and confidence [14] to generate frequent itemsets
and filter fuzzy association rules.

The rest of this paper is organized as follows. Section
II presents the preliminaries of our algorithm. Section III
describes the OFARM algorithms including processes about
the multiple objective optimization, membership function and
two-level iteration. The experimental results are presented
in Section IV to validate the effectiveness of our OFARM
algorithm. Finally, Section V concludes the paper.

II. PRELIMINARIES

In this section, we present the preliminary knowledge of
fuzzy association rules, which contains the explanations of

some user-defined thresholds and the optimized method used
in this paper to mine the real-interesting rules.

A. The Support and Confidence of Fuzzy Association Rule

Generally, with the membership function introduced in the
fuzzy association rule [12][13], the support of an item-set can
be counted as follows. Let the database be D and an item-set
A = A1, A2, · · · , Al ⊂ I , where I is the set comprised of
all items in D as in the crisp association rule. The support
of a transaction t ∈ D to the item-set A can be defined as

Supp(A, t) = µA(t) = µ∩l
i=1Ai

(t).

where µAi(t) denotes the membership value of the item Ai

in the transaction t and µ∩l
i=1Ai

(t) denotes the fuzzy logic
∩ of these membership values. Taking this fuzzy logic ∩ as
the well-known product, the support of A from the database
D is thus defined as

Supp(A) =
∑
t∈D

Supp(A, t) =
∑
t∈D

µA(t) =
∑
t∈D

l∏
i=1

µAi(t).

There are also other possibilities for the fuzzy logic ∩ as
long as they are a triangular norm (t-norm for short). For
simplicity, however, we use the product to calculate the item-
set support because, given a transaction t = t1, t2, · · · , tm
and the set of all items I = I1, I2, · · · , Ik, the support of I
from the transaction t will be always 1 by the normalization
assumption. Therefore, the support of an association rule
A→ B is defined as

Supp(A→ B) =
Supp(A ∪B)

|D|
=

∑
t∈D

∏
x∈A∪B µx(t)

|D|
,

(1)
and the confidence of the rule therefore is

Conf(A→ B) =
Supp(A ∪B)

Supp(A)
=

∑
t∈D

∏
x∈A∪B µx(t)∑

t∈D

∏
x∈A µx(t)

.

(2)

B. The Certainty Factor of Fuzzy Association Rule

The support-confidence framework [16] introduced above
is regarded as the classical theory of association rule mining
models. It is not perfect, however, and many have pointed
out its defects. To complement this framework, new measures
for evaluation of association rules were proposed, including
conviction [17], interest [18] and certainty factor [9] [15][16].
Among these, certainty factor is regarded as one of the most
effective measures. It is defined as below:

CF (A→ B) ={
Conf(A→B)−Supp(B)

1−Supp(B) , Conf(A→ B) >= Supp(B),
Conf(A→B)−Supp(B)

Supp(B) , Conf(A→ B) < Supp(B).
(3)

Obviously,
−1 ≤ CF (A→ B) ≤ 1,

and when CF (A → B) > 0, the antecedent of the rule
is positively correlated to the consequence; when CF (A→
B) < 0, it is negatively correlated; when CF (A→ B) = 0,
it is independent to the consequence.
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C. Gradient-based Optimization Methods

Gradient-based optimization methods [19] are based on
the observation that the value of the function grows fastest
along the gradient of the function. Among these methods,
one of the simplest is the steepest descent method. This
method is also called gradient descent, and it is a first-order
optimization algorithm. In this method, it takes proportional
steps to the negative of the gradient of the objective function,
so that it approaches a local minimum of the function.
Specifically, suppose that the multivariate objective function
F (x) is defined and differentiable in a neighborhood of the
point P0, then the direction, along which F (x) decreases
fastest, is the negative direction of the gradient ∇F (P0).
The method therefore goes through the following iteration

xn = xn−1 − γn∇F (xn−1) (4)

to find the local minimum, where the sequence {xn} is
constructed by the method, and it converges to the local
minimum if the parameters γ1, γ2, . . . are chosen carefully.
A common approach is to do an iterative line search for each
γn by halving the value of such γn repeatedly until the new
point xn makes F (xn) < F (xn−1).

For our optimization algorithm, we extend the idea of
steepest descend method by relaxing the constraint on the
search direction. It is unnecessary to search strictly along
the gradient, especially when we search for improvement of
multiple objective functions at the same time. Our algorithm
is described in next section.

III. OPTIMIZED FUZZY ASSOCIATION RULE

The Optimized Fuzzy Association Rule Mining (OFAR-
M) we proposed is differ itself from the common fuzzy
association rule in taking an additional two-level iteration
to optimize the mining-output after generating the initial
frequent-item-sets and association-rules, as illustrated by
Figure 1. The inner level of the iteration aims at finding
optimized membership functions of the fuzzy sets with
several objective functions with respect to the parameters
of the fuzzy-set membership functions (actually, the param-
eters are the partition points in our algorithm), whereas the
outer level of the iteration finds updates frequent item-sets
and association rules with the fuzzy-sets improved by the
inner level. Therefore, our OFARM algorithm will eventu-
ally doscover optimized association rules after repetitively
improving fuzzy-set partitions and finding frequent item-sets.

A. A Multi-objective Optimization Scheme

Our OFARM tries to optimize the partition points of the
fuzzy sets with respect to multiple objectives at the same
time, where the objectives include:

1) the supports of the rules,
2) the confidences, and
3) the certainty factors.

However, it is inconvenient to optimize the partition points
for all these objectives over all association rules at the
same time, so we construct some reasonable approximate
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Fig. 1. Flowchart of Optimized Fuzzy Association Rule Mining (OFARM)

objectives. First, for a given association rule r, the following
function

φ(r) = min

 Supp(r)−minSupp
Conf(r)−minConf
CF(r)−minCF

 (5)

is used for rule quality control, where minSupp, minConf
minCF are predefined thresholds. It is clear that a larger
value of φ(r) indicates a better quality of r, so based on
this rule quality control function, we define the following
objectives for optimization:

1) Φ1 = maxr φ(r), i.e., the quality of the best rule,
2) Φ3 = maxr1,r2,r3

∑3
i=1 φ(ri), i.e., the sum of the

quality of the best three rules (if there are not enough
rules, the worst rule is duplicated for multiple times to
complete this sum),

3) Φ5, the sum of the quality of the best five rules,
4) Φ10, the sum of the quality of the best ten rules, and
5) Φn/2, the sum of the good half of the rules we have

mined, where n is the number of these rules.
Now our OFARM tries to optimize these five objectives
simultaneously, by searching in the domain of the partition
points along a direction that is computed by the algorithm
in Table I.

The idea of this direction-computation algorithm is as
follows. Given a fixed input of partition points, for each
objective function, its gradient at the input determines a
unique plane that takes this gradient as its normal vector
and contains this input. This plane separates the domain of
the partition points into two halves. When searching along
any direction located within the half pointed by the gradient
vector, the value of objective function will increase at the
neighbourhood of the input vector. For convenience, we call
such directions positive directions of this objective function,
and call the half of the domain containing positive directions
the positive half space of the objective function. Note that
it is unnecessary to confine the search along the gradient
direction, searching along any positive directions will work
as well. Now we need a direction that is a positive direction
of all objective functions. Obviously this can be fulfilled by
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finding the intersection of the positive half spaces of these
objective functions.

TABLE I
COMPUTE DIRECTION.

Algorithm 1

Input: minimum support(minSupp); minimum confidence
(minConf); minimum certainty factor (minCF); a given
vector of partition points X0, the number of rules (n),
and the gradients of objective functions at X0:

g1 = ∇Φ1, g2 = ∇Φ3, g3 = ∇Φ5,

g4 = ∇Φ10, g5 = ∇Φn/2,

Output: the direction γ along which hopefully all objective
functions increase at the neighbourhood of x.

1: Initialization: γ ← {0, . . . , 0}.
2: for i = 1, . . . , 5 do

3: β ← gi;
4: for j 6= i do

5: if 〈β,gj〉 < 0 then

6: β ← β −
〈β,gj〉
〈β,β〉 gj ;

7: end if

8: end for

9: γ ← γ + β;
10: end for

11: Return γ;

Since the optimization objective function is with respect to
the parameters of the fuzzy-set membership functions, let’s
consider the fuzzy sets and their membership functions.

B. Fuzzy Sets and Membership Functions

Suppose that all transactions in a dataset take a common
set of quantitative attributes, also suppose that the data of
each quantitative attribute will be converted to categorical
data by dividing the range of that attribute into three fuzzy
sets. In such a case, let FSL, FSM , FSR denote these three
fuzzy sets, with the subscripts L, M , R indicating their
position in the range of the attribute data (i.e., Left, Middle,
Right).

To generate these three fuzzy sets for each quantitative
attribute, we first partition the range of the attribute data into
five intervals, with each of the intervals containing almost
equal number of transaction data items. Actually, to make
this partition, we sort the transaction data of this attribute
by their value, and then compute four dividing points that
separate these five intervals as follows:

DPi = 0.5
(
s⌊i·m/5⌋ + s⌊i·m/5⌋+1

)
, i = 1, 2, 3, 4,

where DPi is the i-th dividing point, sk is the k-th sorted
value of the transaction data items, and m is the number of
transactions. Now we assign the whole 1st (i.e. the leftmost)
interval to FSL, so that within this interval, the membership
function of FSL is 1 and those of other fuzzy-sets are

0. Similarly, we assign the whole 3rd interval to FSM ,
the whole 5th interval to FSR. For another two intervals,
we let interval 2 partially belongs to FSL and partially
belongs to FSM , and let interval 4 partially belongs to FSM

and partially belongs to FSR. This partitioning process is
illustrated by Figure 2.
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Fig. 2. Flow Chart of Generating the Fuzzy Sets

Obviously, the central task of the construction of the
membership functions is at interval 2 and interval 4 as
mentioned above, since each of these two intervals are shared
between two fuzzy sets. So let’s formulate the membership
functions.

Take interval 2 as example, it is shared by FSL and FSM .
Let µL, µM denote the membership function of FSL, FSM

respectively, then for all x ∈ [DP1, DP2] (i.e., interval 2),
by the definition of membership function,

µL(x) + µM (x) = 1,

µL(x) ≥ 0, µM (x) ≥ 0.

Now let’s make the membership functions and their deriva-
tives continuous at the dividing points of the intervals, then

µL(DP1) = 1, µL(DP2) = 0, µ′
L(DP1) = µ′

L(DP2) = 0,

µM (DP1) = 0, µM (DP2) = 1, µ′
M (DP1) = µ′

M (DP2) = 0.

For simplicity and without loss of generality, let DP1 = 0
and DP2 = 1, then the only degree-3-polynomial configu-
ration of the membership functions satisfying the relations
above is to let

µM (x) = x2(−2x+ 3), µL(x) = 1− µM (x). (6)

However, this configuration does not give us the flexibility
of adjusting the membership. Hence, a small modification is
made:

µM (x) = r(x)2(−2r(x) + 3), µL(x) = 1− µM (x), (7)

where
r(x) = xα, (8)

such that the parameter α is given by

r(x0) = 0.5, (9)

where x0 is an adjustable point in (DP1, DP2) , and it is the
parameter which will be used in the optimization objective
function.
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Similarly, we define another parameter x1 for interval 4,
so that the two fuzzy sets sharing interval 4 (i.e., FSM and
FSR) are adjustable.

Note that if there are K quantitative attributes in data
sets, we will need one pair of x0, x1 for each of these
attributes, that means we need 2K of such parameters. For
the convenience of reference, let X denotes the set comprised
of all these parameters at the rest of this paper.

According to this measure proposed above, the number of
fuzzy sets of the categorical attributes derived by dividing
quantitative attributes can easily extend to q. Suppose q to
be an odd number, then we will partition the range of the
attribute data into (q− 1)× 2+1 intervals. The situations of
the first fuzzy sets and the last fuzzy sets are corresponding
the situations of fuzzy sets FSL and FSR, which come from
the first two intervals and the last two intervals respectively.
Then all the fuzzy membership function of other fuzzy sets
including the median fuzzy sets can be defined as the same
as it is in the fuzzy set FSM , that is, they are all generated
from three corresponding intervals. Likewise, the definition
of fuzzy membership function could be accomplished by
dividing the range of the attribute data into 2q intervals
without the median fuzzy sets, if the q were an even number.

C. Strong Rules

An association rule r is called strong rule if and only if
the certainty factor and confidence of X → Y are greater
than the two user-defined thresholds minCF and minConf,
and the support of frequent itemset X ∪ Y is greater than
minSupp. Note that this means

φ(r) > 0,

where φ is the rule-quality control function as defined in (5).

D. The Inner Iteration

The inner iteration aims at finding optimized fuzzy-set
partitions with the objective function mentioned above. For
this purpose, it will use the association rules from last
iteration, except that at the first inner iteration, which uses
the association rules generated by the unoptimized fuzzy-
sets. The pseudo-code is shown in Table II. From the Line
2 to Line 14 is the whole inner iteration process, Line 4-9
updates the three user-defined thresholds. Then the Line 10-
13 show the step to optimize the objective function, Line 12
computes the search direction like the algorithm of Table I.

E. The Outer Iteration

The outer iteration searches for appropriate association
rule sets and frequent item-sets with the fuzzy-set partition
parameters improved by the inner iteration. The pseudo-code
is shown in Table III. All of the steps of the outer iteration
are shown from Line 1 to Line 8. After initialization step
including Line 1-5, the Line 6-8 illustrate the optimization
step for partition points, which is just the inner iteration step
of Table II.

TABLE II
OPTIMIZE FUZZY-SET PARTITION PARAMETERS.

Algorithm 2

Input: initial (or previous) partition parameters X0, the

maximum number of iterations I;

Output: optimized partition parameters X ; the optimized

set of frequent item-sets F and the optimized set of

Association Rules R;

1: Initialization: X ← X0;

2: Generate frequent item-sets F and association rules R,

make sure R contains only strong rules;

3: for i = 0 to I do

4: for fs ∈ F do

5: Update Supp(fs,X );
6: end for

7: for r ∈ R do

8: Update Supp(r,X ), Conf(r,X ), and CF(r,X );
9: end for

10: Compute the objective functions;

11: Richardson extrapolation: calculate derivatives;

12: Use Algorithm 1 to compute a search direction γ;

13: Do a line-search along γ for step size λ, update

X ← X + λγ

to make the values of the objective functions larger;

14: end for

15: Return X , F,R;

TABLE III
SEARCH FOR ASSOCIATION RULE SETS.

Algorithm 3

Input: a database D; minimum support(minSupp); mini-

mum confidence (minConf); the maximum number of

outer iterations J and the maximum number of inner

iterations I;

Output: the optimized set of frequent item-sets F and the

optimized set of Association Rules R;

1: Initialization: load D and compute DP1, . . . , DP4 for

each quantitative attributes, where DPi’s are dividing

points of the intervals as mentioned in section B;

2: for X components x0, x1 of each numeric attribute

(fuzzy-set partition parameters) do

3: x0 ← 0.5 ∗ (DP0 +DP1);
4: x1 ← 0.5 ∗ (DP2 +DP3);
5: end for

6: for j = 0 to J do

7: Algorithm:Optimize Fuzzy-set Partition Parameters,

with input parameters X and I;

8: end for

9: Return F,R obtained from Line 7;
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IV. EXPERIMENTS

A. Corresponding Method and Experimental Datasets

In this section, we evaluate optimized fuzzy association
rule mining (OFARM) we proposed by comparing it with a
general fuzzy association rule mining (GFARM) algorithm in
[9]. The membership function of GFARM and our OFARM
is defined in section III-B and strong rules they using are
defined in section III-C. Three datasets, including “Wisconsin
Diagnostic Breast Cancer (WDBC) ”, “Wisconsin Prognostic
Breast Cancer (WPBC)”, “Pima Indians Diabetes” from UCI
(University of California at Irvine) repository, have been
used to demonstrate the effectiveness and efficiency of our
OFARM algorithm. The objective functions Φ1,Φ3,Φ5,Φ10

and Φn/2 are defined in section III-A. The maximum number
of outer iterations and the number of fuzzy sets are set to
be J = 5, q = 3 respectively. The pruning method [14] is
added to monitor association rules, to avoid huge number of
fuzzy-set rules.

The details of our OFARM are shown in Figure 1. To
ensure the integrity and quality of results, different thresholds
of minSupp, minConf and minCF are selected for three
datasets. The higher the thresholds are, the better the quality
of the discovered association rules are. So if lower thresholds
are chosen, there will be numerous of low quality rules,
however, when too high thresholds are chosen, the number of
rules will be hard to improve. Thus, we should set a suitable
threshold to adapte to datasets.

B. Output of Strong Rules

In this section, we discover strong rules (related with
diabetes) from ”Pima Indians Diabetes”, which comprises
768 instances from UCI. All of the attributes are described
in Table IV, and which shows the examples of strong rules
defined in section III-C.

TABLE IV
ATTRIBUTES IN PIMA INDIANS DIABETES DATASET.

Attribute ID Attribute Description
0 Number of times pregnant
1 Plasma glucose concentration a 2 hours in an oral

glucose tolerance test
2 Diastolic blood pressure (mm Hg)
3 Triceps skin fold thickness (mm)
4 2-Hour serum insulin (mu U/ml)
5 Body mass index (weight in kg/(height in m)2)
6 Diabetes pedigree function
7 Age (years)
8 Class variable (0 or 1)

We group attributes 0-7 (non-categorical data objects)
into three fuzzy sets. Attribute 8 (binary data object: 0
denotes non-diabetes and 1 denotes diabetes) is the most
important one. Next, we fix three user-defined thresholds
as minSupp = 0.1,minConf = 0.5 and minCF = 0.1.
Then, every rule in this section is given in two parts,
antecedent (on the left side of →) and consequent (on the
right side). The antecedent is represented by a sequence of
pairs (attribute ID, fuzzy set ID), while the consequent is

TABLE V
STRONG RULES COMPARISON ON PIMA INDIANS DIABETES DATASET.

Model Strong Rules Partitioning Points(Fuzzy Sets)

GFARM

(0, 2) → (8, 1) ML,0 = 1.5,MR,0 = 5.5;
(7, 2) → (8, 1) ML,1 = 102,MR,1 = 136;

(0, 2)(7, 2) → (8, 1) ML,2 = 66,MR,2 = 78;
(1, 2) → (8, 1) ML,3 = 25.5,MR,3 = 32.5283;
(4, 2) → (8, 1) ML,4 = 121.372,MR,4 = 168.519;

(1, 2)(4, 2) → (8, 1) ML,5 = 28.3,MR,5 = 35.75;
(4, 2)(7, 2) → (8, 1) ML,6 = 0.2615,MR,6 = 0.572;

ML,7 = 25,MR,7 = 38;

OFARM

(6, 1)(7, 2) → (8, 1)
(0, 2)(7, 2) → (8, 1) ML,0 = 1.00417,MR,0 = 4.05981;
(2, 2)(7, 2) → (8, 1) ML,1 = 108.782,MR,1 = 125.105;

(1, 2) → (8, 1) ML,2 = 69.9052,MR,2 = 74.1035;
(1, 2)(3, 1) → (8, 1) ML,3 = 23.1856,MR,3 = 34.7484;
(1, 2)(6, 1) → (8, 1) ML,4 = 137.612,MR,4 = 178.725;

(4, 2) → (8, 1) ML,5 = 30.3625,MR,5 = 35.2095;
(1, 2)(7, 2) → (8, 1) ML,6 = 0.220179,MR,6 = 0.688003;
(0, 2)(1, 2) → (8, 1)
(1, 2)(4, 2) → (8, 1)
(1, 2)(5, 2) → (8, 1)

represented by a single pair (attribute ID, fuzzy set ID). In
this section, the strong rules will be shown only if their
consequent is (8, 1), which denotes diabetes relating with
the most important attribute 8 . As mentioned above, the
attribute IDs are ranged from 0 to 8, while the fuzzy set
IDs are ranged from 0 to 2. Fuzzy set ID being 0 means
the value on this is very small, while fuzzy set ID being 2
implies the value is great. Note that the concrete partition
points are shown in the third column of Table V. For
instance, ML,0 = 1.5,MR,0 = 5.5 shows the 0-th attribute
is divided into three fuzzy sets with these two partitioning
points (−∞, 1.5], (1.5, 5.5], (5.5,∞), which just corresponds
to the order number 0, 1, 2.

From table V, we can observe that the GFARM discovers
7 rules in all, while the OFARM we proposed gets 11
rules with 4 conjunct strong rules. Different from these
common rules, the GFARM has three rules with antecedent
(0,2), (7,2), (4,2)(7,2), while our OFARM discovers oth-
er 7 antecedents (6,1)(7,2),(2,2)(7,2), (1,2)(3,1), (1,2)(6,1),
(1,2)(7,2), (0,2)(1,2), (1,2)(5,2). Our OFARM finds more
specific and more non-high (attribute belonging to the middle
fuzzy sets) antecedents. Actually, the more specific the rules
are, the easier we find useful rules in real-world applications.
Generally, the higher the values of attributes, the more
possible individuals catch diseases. However, it is difficult
to predict/diagnose diseases from individuals, if the values
of their attributes are not higher than normal values. So, one
of the advantages of our OFARM algorithm is that it can find
two rules with low values of antecedents, while the GFARM
find nothing. Also, according to the pruning step in [14],
the less antecedents rules with less confidence are filtered,
so the GFARM performs not good since it find less specific
antecedents. In summary, our OFARM produces not only
more strong rules but also more useful and effective rules.
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Fig. 4. Comparison in Number of Rules Between GFARM and OFARM with Fixed minSupp.

TABLE VI
PERFORMANCE COMPARISON OF PIMA INDIANS DIABETES DATASET.

Minsupp,Minconf = 0.6 Model Φ10 Φ5 Φ3 Φ1

Minsupp=0.1 GFARM 0.385484 0.411058 0.424363 0.427242
OFARM 0.452308 0.495134 0.512719 0.525517

Minsupp=0.125 GFARM 0.359073 0.389162 0.40556 0.422856
OFARM 0.438575 0.473307 0.490337 0.501061

Minsupp=0.15 GFARM 0.325793 0.363516 0.38465 0.422856
OFARM 0.417732 0.458473 0.466242 0.476415

Minsupp=0.175 GFARM 0.287954 0.3329 0.361152 0.422856
OFARM 0.38062 0.419432 0.42623 0.433716

Minsupp=0.2 GFARM 0.243655 0.298565 0.329458 0.411097
OFARM 0.30872 0.364397 00.399143 0.423923

Minsupp=0.225 GFARM 0.195612 0.256611 0.288037 0.377087
OFARM 0.220501 0.28893 0.327691 0.39604

C. Comparisons and Analysis

The number of rules is a critical metric to evaluate the
association rules. In this subsection, we collect the number
among different minsup with fixed minConf = 0.6, and fixed
minCF = 0.1, to compare the number of rules between
the GFARM and OFARM we proposed. Figure 3(a)-3(c)
show that the number of strong rules discovered by GFARM
gradually increases with minSupp while that discovered by
our OFARM algorithm ascends more quickly; meanwhile,
our OFARM is persistently greater than the GFARM. That
is, our OFARM can filter more rules. So we can see from

Figure 3(a)-3(c), the curves of our OFARM are always over
the curves of GFARM, though the gaps between every two
curves varies. For instance, the numbers of rules discovered
by our OFARM algorithm show great upward trends than
GFARM when minSupp is low, however, only slight upward
trends are described when minSupp increases. That is, if
the minSupp is lower, our OFARM algorithm shows an
outstanding increase in the number of strong rules. However,
if the minSupp is higher, the improvement of our OFARM
algorithm will be lower but still outperforms the result of
GFARM. The reason is that the original strong rules are not
exact and frequently changed with even a slight adjustment
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when minSupp is small. However, with a higer minSupp,
the original strong rules which already have high quality, the
adjustment become difficult and unnecessary, so the number
of rules rise slightly. Supposing minSupp = 0.15 in Figure
3(b), the result of GFARM is around 400, while the result
of our OFARM algorithm is better by rising to over 600.
However, if the minSupp rises up to 0.3, the improvement is
only around 20.

Our OFARM algorithm also excels GFARM in terms
of gradual increasing confidence with fixed minSupp and
minCF. As it is demonstrated in Figure 4(a)-4(c) with fixed
minSupp = 0.15, minCF = 0.1, the number of strong
rules are also always greater in our OFARM algorithm than
in GFARM for the three datasets. Since only three points
(minConf = 0.5, 0.6, 0.7) are chosen, the gaps between
curves of our OFARM and GFARM are more stable in
Figure 4(a)-4(c). Meanwhile, the gaps still illustrate slowly
downward trends as the value of minConf goes up. For
instance, Figure 4(a) shows that the gap between two curves
is more than 100 with the minConf = 0.5; however, when
the minConf is equal to 0.7, the rule numbers of our OFARM
only slightly increase (approximating to 30).

We use four metrics to further verify our OFARM algorith-
m. The four metrics Φ1,Φ3,Φ5 and Φ10 as the assessments
of strong rules for dataset “Pima Indians Diabetes” are
collected in Table VI. Then Table VI shows that the results
of our OFARM algorithm invariably exceed the counterpart
algorithm GFARM. Though the improvement varies with
minSupp (from 0.1 to 0.225), that is, these four values
decrease when the minConf increase in both two algorithms.
Aslo, our OFARM witnesses great increase in all above four
metrics when minSupp is low, then the increase becomes
slow when minSupp increase. To be more specific, at the
point of minSupp = 0.1, our OFARM algorithm achieves
the slowest increase in metric Φ10. The Φ10 of our OFARM
performs 0.066824 better than that of GFARM; while the
highest increment point is 0.098275 on Φ1; When minSupp
rise to 0.225, the Φ1 shows the lowest increment 0.018953,
while the greatest one is 0.039654 shown at the metric: Φ3.
That is, the increment of our OFARM at minSupp = 0.1 is
twice of that with minSupp = 0.225.

In summary, comparing with the GFARM algorithm, our
OFARM algorithm demonstrates greater number of strong
rules and higher value of assessing metrics that can repre-
sent the quality of strong rules. That means, our OFARM
algorithm outperforms the corresponding algorithm in terms
of both quantity and quality of the number of strong rules.
That is, optimizing partition points increases the quantity of
the rules, while the multiple objective function enhancing the
quality of rules as a whole even with varible minSupp and
minConf thresholds.

V. CONCLUSIONS

In this paper, an optimized fuzzy-association-rule mining
algorithm based on a generic measure has been proposed.
We have shown that the features of the multiple objective
function optimization make the proposed model easy to

formulate and use for continuous data. Taking the two-level
iteration processes into account, the fuzzy association rules
and the frequent item-sets are optimized by improving the
fuzzy-set partition parameters repeatedly. The experiment al-
so demonstrates that the algorithm is capable of balancing the
weight of optimization between the quantity and the quality
of strong rules; that is, our OFARM algorithm outperforms
the counterpart algorithm GFARM in both rule quantity and
rule quality. Nevertheless, the experimental results about
gradual changing in minSupp and minConf shows stability
and robustness of the algorithm.
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