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Abstract—In this paper we introduced the concept of three-
dimensional triangular fuzzy number and their properties are
investigated. It is shown that this set has important metrical
properties, e.g convexity. The paper also provides a rotation
method for such numbers based on quaternion and aggregation
operator.

I. INTRODUCTION

The quaternions was discovered by William Rowan Hamil-
ton in 1837. The History says that Hamilton and his wife
Helen were walking at the Royal Irish Academy when he
thought how to add and multiply four dimensional elements.
Excited with his discovery, while the couple was going over
the Broome Bridge of the Royal Canal, he caverd in the stone
wall of the bridge the famous equations:

i2 = j2 = k2 = ijk = −1

which, implicitly, contain the equations.

ij = k = −ji, jk = i = −kj, ki = j = −ik

He was also aware of the greatest problem of his time,
coming from Physics: constructing a language which would
be appropriate to develop the field of Dynamics in a similar
way that Newton created Calculus. In order to achieve it, it was
necessary to create an algebra to manipulate the vectors. He
noticed that it would not be possible to construct such structure
based on geometrical considerations, but on operators acting
on vectors, more precisely with a four-dimensional algebra.

He considered elements of the form α = a+ bi+ cj+ dk,
which he called quaternions, where the coefficients a, b, c, d
are real numbers and i, j, k are formal symbols called basic
units. It was obvious to him that two elements should be added
componentwise by the formula:

(a + bi + cj + dk) + (a′ + b′i + c′j + d′k) = (a + a′) +
(b+ b′)i+ (c+ c′)j + (d+ d′)k.

The main difficulty was to define the product of two
elements. Since this product should have the usual properties
of a multiplication, such as the distributive law, it would
actually be enough to decide how to multiply the symbols

i, j, k among themselves. This demanded a considerable effort
from the young Hamilton. He also implicitly assumed that
the product should be commutative. It was perfectly possible,
since he was about to find the first non-commutative algebra in
the entire history of Mathematics. Afterwards, he presented an
extensive memoir on quaternions to the Royal Irish Academy.
His discovery came as a shock to the mathematicians of the
time, because it opened the possibilities for new extensions of
the field of complex numbers.

There are many applications of quaternions. In Physics, we
highlight applications in quantum mechanics [1] and theory of
relativity [2]. Moreover, we can find applications in aerospace
projects [3] and flight simulators [4]. In computer graphics,
it is relatively easy to visualize a translation and express
it mathematically. However, the same does not happen to
rotations. Nowadays, Mathematicians offer a wide variety of
rotation techniques such as quaternion rotation which has a
more compact representation than a rotation matrix. Also,
the quaternion algebra allows us to compose rotations easily.
Thus, game programmers discovered the high potential of
quaternions and started using it as a powerful tool to describing
rotation about an arbitrary axis [5].

According to the standard literature, a fuzzy number is
a convex and a normalized fuzzy subset of real numbers.
The Zadeh’s extension principle [6] allows us to define the
arithmetical operations among fuzzy numbers by extending the
classical ones. Dubois and Prade [7], [8], [9] drew attention to
their arithmetic properties and Buckley [10] gave the first steps
towards the extension from fuzzy real numbers to complex
fuzzy numbers. This paper shows that the fuzzy complex
numbers is closed under arithmetic operations and they may be
performed in terms of α-cuts. In 1992, Zhang [11] introduced a
new definition for fuzzy complex numbers and obtained some
results which are analogous to those in Mathematical Analysis.
In 2011, Tamir [12] introduced fuzzy complex numbers with
an axiomatic approach. Finally, in 2013, the authors in [13]
proposed to extend the real fuzzy numbers to quaternions fuzzy
numbers and to investigate their properties.

In this paper, we investigate a special subset of fuzzy
numbers called triangular fuzzy numbers as well as their
properties. Also, the concept of three-dimensional triangular
fuzzy numbers (T 3) is built. At the end of the paper we
give an example of the rotation algorithm in T 3 based on an
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aggregation operator; we drew attention to the fact that each
aggregation operator produces different results.

This paper has the following structure: section 2 gives an
overview of fuzzy numbers; section 3 and section 4 develop
some properties about triangular fuzzy numbers, specially that
the set of triangular fuzzy numbers is convex; section 5 intro-
duces an overview about the rotation in R3 via quaternions;
section 6 provides a method to rotate two vectors in T 3

based on an aggregation operator; section 7 provides the final
remarks.

II. PRELIMINARIES

We consider R as the set of real numbers and H as the set
of quaternion numbers.

Definition 1: A fuzzy real set is a function Ā : R −→
[0, 1].

Definition 2: A fuzzy subset Ā of X is convex if Ā(λx1+
(1− λx2)) ≥ min(Ā(x1), ¯A(x2)), x1, x2 ∈ X and λ ∈ [0, 1].
Alternatively, a fuzzy subset is convex if all of its α-cut sets
are convex.

Definition 3: A fuzzy subset Ā of X is normalized if there
exists x ∈ X such that Ā(x) = 1.

Definition 4: A fuzzy number is a convex and normal-
ized fuzzy subset of R.

In this paper the set of all fuzzy real numbers is denoted
by RF .

Definition 5: Given Ā, B̄ ∈ RF we define:

Ā ∗ B̄(z) = sup{Ā(x) ∧ B̄(y) : z = x ∗ y}, where ∗
represents the usual arithmetical operations: +,−,×,÷.

According to Dubois and Prade [7] the structures (RF ,+)
and (RF ,×) are semi-groups.

We can see that R ⊂ RF , since every a ∈ R can be written
as a : R −→ [0, 1], where a(x) = 1 if x = a and a(x) = 0 if
x 6= a.

III. TRIANGULAR FUZZY NUMBERS

In this section we prove some properties of triangular fuzzy
numbers.

A triangular fuzzy number can be represented by three
points as follows: Ā = (a1, a2, a3), a1, a2, a3 ∈ R. This
representation is interpreted as the following membership
function:

Ā(x) =


x−a1
a2−a1 , x ∈ [a1, a2]
a3−x
a3−a2 , x ∈ [a2, a3]

0 otherwise

We get a crisp interval by an α-cut operation as follows:
Ā[α] = [a1 + (a2 − a1)α, a3 − (a3 − a2)α] where α ∈ [0, 1].

A triangular number is called positive, whenever ai > 0,
for all i = 1, 2, 3, and negative, whenever ai < 0, for all
i = 1, 2, 3.

Two triangular fuzzy numbers Ā = (a1, a2, a3),B̄ =
(b1, b2, b3) are equal if ai = bi for all i = 1, 2, 3.

Consider Ā = (a1, a2, a3), B̄ = (b1, b2, b3) triangular
fuzzy numbers and λ ∈ R, then:

(i) Addition: Ā+ B̄ = (a1 + b1, a2 + b2, a3 + b3).

(ii) Subtraction: Ā− B̄ = (a1 − b3, a2 − b2, a3 − b1).

(iii) Multiplication:

Ā× B̄ = (min(a1b1, a1b3, a3b1, a3b3), a2b2,

max(a1b1, a1b3, a3b1, a3b3)).

(iv) Scalar Multiplication: λĀ = (λa1, λa2, λa3);

(v) Division:
Ā

B̄
=

(min(a1/b1, a1/b3, a3/b1, a3/b3), a2/b2,

max(a1/b1, a1/b3, a3/b1, a3/b3)).

Note that it is possible Ā−Ā 6= (0, 0, 0) and
Ā

B̄
6= (1, 1, 1).

The solution of the fuzzy linear equation Ā + B̄ = C̄ is not
as we would always expect: B̄ = C̄ − Ā.

In this paper the set of all triangular fuzzy numbers will
be denoted by T .

Definition 6: Let Ā = (a1, a2, a3) and B̄ = (b1, b2, b3) in
T . We say Ā ≤ B̄ iff a2 ≤ b2. Note that ≤ is a total order.

Definition 7: Let Ā = (a1, a2, a3) and B̄ = (b1, b2, b3) in
T . We define the distance of Ā, B̄ as d(Ā, B̄) = |a1 − b1| +
|a2 − b2|+ |a3 − b3|.

It is easy to see that d is a metric in T . Thus, (T, d) is a
metric space.

The next two definitions are necessary to T become a
topological space.
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Definition 8: The open ball of radius r > 0 centered at a
point Ā ∈ T is the set B(Ā, r) = {B̄ : d(Ā, B̄) < r}. The
closed ball is B[Ā, r] = {B̄ : d(Ā, B̄) ≤ r}.

Definition 9: Let A ⊂ T . We say that A is an open set if
for each Ā ∈ A there exists an open ball B(Ā, r) ⊂ A. The
collection of all open sets of T is denoted by ΓT .

Proposition 1: (T , ΓT ) is a topological space.

Proof: Straightforward.

Proposition 2: Let ∆K = {(a1, a2, a3) ∈
T : a1, a2, a3 ∈ K ⊂ R}. If K is a compact set of
R, then ∆K is a compact set of T .

Proof: Straightforward.

Note that the boundary BK = {Ā ∈ T : B(Ā, r) ∩K 6=
∅ and B(Ā, r) ∩ K 6= ∅ for all r > 0.} = {(a, 0, b) ∈
T : a, b ∈ R} ∪ {(a, 1, b) ∈ T : a, b ∈ R}.

Again, it is not hard to see that T is a vector space over
R and V̄1 = (1, 1, 1), V̄2 = (0, 1, 1), V̄3 = (0, 0, 1) is a basis
for T , e.g given Ā = (a1, a2, a3) ∈ T let λ1 = a1, λ2 =
a2 − a1, λ3 = a3 − a2. Thus, Ā = λ1V̄1 + λ2V̄2 + λ3V̄3.

Proposition 3: The function ‖ · ‖: T −→ R, where
‖ Ā ‖= d(0̄, Ā) = |a1|+ |a2|+ |a3| is a norm on T .

Proof: i) If ‖ Ā ‖ = 0, then a1 = a2 = a3 = 0. ii)
‖ λĀ ‖= |λ|(|a1|+ |a2|+ |a3|) = |λ| ‖ Ā ‖. iii) ‖ Ā+ B̄ ‖=
|a1 + b1|+ |a2 + b2|+ |a3 + b3| ≤ |a1|+ |a2|+ |a3|+ |b1|+
|b2|+ |b3| =‖ Ā ‖ + ‖ B̄ ‖.

Proposition 4: Let fx : T −→ T , x ∈ R such that
fx(Ā) = f((a1 + x, a2 + x, a3 + x)). Then fx preserves the
distance d.

Proof: d(fx(Ā, fx(B̄))) = d((a1+x, a2+x, a3+x), (b1+
x, b2 +x, b3 +x)) = |(a1 +x)− (b1 +x)|+ |(a2 +x)− (b2 +
x)|+ |(a3 + x)− (b3 + x)| = d(Ā, B̄).

Proposition 5: T is convex.

Proof: Given Ā, B̄ ∈ T . Let f : [0, 1] −→ T , where
f(t) = (1− t)Ā+ tB̄. Thus, f(0) = Ā and f(1) = B̄.

IV. THREE-DIMENSIONAL TRIANGULAR FUZZY NUMBERS

In this section we deal only with the concept of tree-
dimensional triangular fuzzy numbers.

Definition 10: T 3 = T × T × T ⊂ R3
F is called three-

dimensional triangular fuzzy numbers; i.e. if v ∈ T 3, then
v = (v̄1, v̄2, v̄3), where v̄i ∈ T for i = 1, 2, 3.

Definition 11: Let v = (v̄1, v̄2, v̄3),u = (ū1, ū2, ū3) in T 3

and λ ∈ R. We can define:

i) Addition: v + u = (v̄1 + ū1, v̄2 + ū2, v̄3 + ū3);

ii) Subtraction: v − u = (v̄1 − ū1, v̄2 − ū2, v̄3 − ū3);

iii) Scalar Multiplication: λv = (λv̄1, λv̄2, λv̄3)

Clearly T 3 is a vector space over R, where 0 = (0̄, 0̄, 0̄).

Definition 12: Let be v = (v̄1, v̄2, v̄3), u = (ū1, ū2, ū3)
in T 3. We define the distance of v to u as: D(v, u) =
min{d(v̄1, ū1), d(v̄2, ū2), d(v̄3, ū3)}.

Proposition 6: Let v = (v̄1, v̄2, v̄3) ∈ T 3, where v̄i =
(v1i , v

2
i , v

3
i ) ∈ T for i = 1, 2, 3. Then the function ‖ · ‖:

T 3 −→ R, where ‖ v ‖= D(0, v) = min{|v21 |, |v22 |, |v23 |} is a
norm on T .

Proof: Straightforward.

It is easy to see that D is a metric in T 3.

Definition 13: The open ball of radius r > 0 centered at a
point v ∈ T 3 is the set B(v, r) = {u : D(v, u) < r}. The
closed ball is B[v, r] = {u : D(v, u) ≤ r}.

Definition 14: Let A ⊂ T 3. We say that A is an open set
if for each v ∈ A there exists an open ball B(v, r) ⊂ A. The
collection of all open sets of T 3 is denoted by Γ3

T .

V. QUATERNION ROTATION OPERATOR

In this section we introduce the quaternion rotation operator
(see [14]).

We can see a quaternion number q = q0 + q1i+ q2j + q3k
as a sum of q0 = (q0, 0, 0) and vector q ∈ R3, where i =
(1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1); i.e.:

q = q0 + q,

and q = q1i+ q2j + q3k
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The addition of quaternions is componentwise. Let p =
p0 + p1i+ p2j + p3k and q = q0 + q1i+ q2j + q3k. Then

p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k

The multiplication of quaternions satisfies the fundamental
rules defined by Hamilton.

pq = (p0q0− p1q1− p2q2− p3q3) + (p0q1 + q0p1 + p2q3−
p3q2)i+(p0q2 +q0p2 +p3q1−p1q3)j+(p0q3 +q0p3 +p1q2−
p2q1)

or pq = p0q0 − p · q + p0q + q0p + p × q, where p =

(p1, p2, p3),q = (q1, q2, q3), p × q is an cross product in R3

and · is a inner product.

Let q = q0+q1i+q2j+q3k be a quaternion. The conjugate
of q is denoted by q∗ and defined as q∗ = q0 − q = q0 −
q1i − q2j − q3k. It is not hard to see that (q∗)∗ = qq∗ and
(pq)∗ = q∗p∗.

The norm of quaternion q is denoted by |q| =
√
q∗q and

a quaternion is called a unit if its norm is 1. It is not hard to

see that |pq|2 = |p|2|q|2. The inverse of q is q−1 =
q∗

|q|2 . If q

is a unit, i.e. |q| = 1, then q−1 = q∗.

Let q = q0+q, if q0 = 0, then q is called pure quaternion.

Let ‖ · ‖ be the euclidian norm in R3 and a unit quaternion
q = q0 + q. Then q20+ ‖ q ‖2= 1 implies that there exists θ
such that cos2θ = q20 and sin2θ =‖ q ‖2. In fact, there exists
θ ∈ [0, π], where cos θ = q0 and sin θ =‖ q ‖. Thus, we can
write q = cos θ + usin θ, where u = q/ ‖ q ‖.

Theorem 1: For any unit quaternion q = q0 + q = cos θ2 +
usin θ2 and any vector v ∈ R3 the action of the operator
Lq(v) = qvq∗ = (q20− ‖ q ‖)v + 2(q · v)q + 2q0(q× v)

on v may be interpreted geometrically as the rotation of
the vector v through an angle θ about u as the axis of rotation.

VI. APPLICATION: ROTATION OF THREE-DIMENSIONAL
TRIANGULAR FUZZY NUMBERS

Consider T 3 (three-dimensional triangular fuzzy numbers).
We will show in this section a method to rotate a vector v
through an angle θ about u as the axis of rotation.

Remark: Aggregation Operator has the purpose to sum-
marize simultaneous pieces of information. Aggregations have
been applied in many fields; for example: Neural networks,
possibility theory and fuzzy sets theory [15]. A well-known
aggregation is the Arithmetic Mean. Formally:

Definition 15: An aggregation operator is a function A :⋃
n∈N

[0, 1]n −→ [0, 1] such that:

i) A(x) = x for all x ∈ [0, 1] (Identity when unary) .

ii) A(x1, . . . , xn) ≤ A(y1, . . . , yn) if (xi ≤ yi) for 1 ≤
i ≤ n (Non decreasing).

iii) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 (boundary
conditions).

Each aggregation operator A can be represented by a family
(An)n∈N of n-ary operation functions An : [0, 1]n −→ [0, 1].

The most common aggregations are shown in Table I.

Arithmetic Mean M(x1, . . . , xn) = 1
n

n∑
i=1

xi

Geometric Mean G(x1, . . . , xn) =

(
n∏

i=1

xi

) 1
n

Harmonic Mean H(x1, . . . , xn) =
n

n∑
i=1

1

xi

Quadratic Mean Q(x1, . . . , xn) =

(
1
n

n∑
i=1

x
2
i

) 1
2

TABLE I. COMMON AGGREGATION OPERATORS.

Application

Given v,u ∈ T 3. Let’s rotate a vector v through an angle
θ about u as the axis of rotation. For this end, consider v =
(v̄1, v̄2, v̄3) and u = (ū1, ū2, ū3), where v̄i = (v1i , v

2
i , v

3
i ) and

ūi = (u1i , u
2
i , u

3
i ) for i = 1, 2, 3.

The first step is to rotate the vector m(v) = (v21 , v
2
2 , v

2
3)

(where m : T 3 −→ T is a projection on the second coordinate,
i.e m(v) = m(v̄1, v̄2, v̄3) = v̄2) through an angle θ about m(u)
via quaternion method for R3, in which we call (w1, w2, w3) ∈
T . Now consider the function D : T −→ R, where D(v̄i) =
v3i − v1i and v̄i = (v1i , v

2
i , v

3
i ).

The second step is to calculate the dispersion disi =
A(D(ūi), D(v̄i), where A is an aggregation operator. The
rotation of v around the axis u with angle θ is given by:

w = (w̄1, w̄2, w̄3) ∈ T 3, where

w̄i = (wi − disi, wi, wi + disi) for i = 1, 2, 3.

Example 1: Now consider the following numerical exam-
ple, let

v =

(
(−0.5,0, 13 )
(0.5,1,2)

(− 1
3 ,0,0.5)

)
, u =

(
(−0.25,0, 13 )
(−1,0,−1)
(− 1

3 ,1,1.5)

)
∈ T 3

and θ = π.

The rotation of v around the axis u, with a rotation angle
π is:
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Algorithm 1: Algorithm to build triangular fuzzy number

Input: v and u ∈ T 3 - Vector for rotation; θ - Angle
for rotation

Output: w ∈ T 3 - Vector obtained by rotation
vmid← m(v)
umid← m(u)
/* unitary quaternion form */
q ← cos θ + umid× sin θ
/* Multiplication quaternion explained

in Theorem 1. */
wmid← q × vmid× q−1
for (i =0 to 3) do

dispersion← A(D(ui), D(vi)) /* A is
aggregation operator */

wi =
(wmidi−dispersion,wmidi, wmidi+dispersion)

1 - Using A as arithmetic mean:

w =

(
(−1.354,−1,−0.6458)

(−0.875,0,0.875)
(−0.667,0,0.667)

)

2 - Using A as geometric mean:

w =

(
(−1.517,−1,−.483)
(−1.118,0,1.118)
(−0.917,0,0.917)

)

3 - Using A as quadratic mean:

w =

(
(−1.68,−1,−0.319)
(−1.132,0,1.132)
(−0.917,0,0.917)

)

Each triangle in the figure 1 shows the components of v
and u. Figure 2 shows the rotation using different aggregation
operator.

0 10
0

1
v ∈ T 3

00 1
0

1
u ∈ T 3

Fig. 1. Components of v and u.

VII. FINAL REMARKS

The rotation in T 3 proposed here is different from rota-
tion in R3. This fact was observed when we evaluated the
distance from the axis vector. In other words, let v,u be in
T 3 and w the rotation of v around u by θ. The distance
‖ v − u ‖6=‖ w − u ‖, but when we rotate v around u we
have an oscillation correspondent to the dispersion, then v lies
in the torus. The figure 3 give us an idea about this oscillation,
W1 and W2 is v rotate aroud u by Θ1 and Θ2 respectively.

−1.708 0.667−1.000 0.0000.000
0

1
w ∈ T 3 - with Arithmetic Mean

−1.645 0.618−1.000 0.0000.000
0

1
w ∈ T 3 - with Geometric Mean

−1.766 0.712−1.000 0.0000.000
0

1
w ∈ T 3 - with Quadratic Mean

Fig. 2. The rotation of v around the axis u, with a rotation angle π using
different aggregation operator

x

y

z

θ1

u

v

w1

w2

θ2

Fig. 3. The rotation of v around the axis u, with a rotation angle Θ1 and
Θ2.
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