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Abstract—In our previous investigations, two Similarity
Reasoning (SR)-based frameworks for tackling real-world
problems have been proposed. In both frameworks, SR is used
to deduce unknown fuzzy rules based on similarity of the given
and unknown fuzzy rules for building a Fuzzy Inference System
(FIS). In this paper, we further extend our previous findings by
developing (1) a multi-objective evolutionary model for fuzzy
rule selection; and (2) an evidential function to facilitate the use
of both frameworks. The Non-Dominated Sorting Genetic
Algorithms-1I (NSGA-II) is adopted for fuzzy rule selection, in
accordance with the Pareto optimal criterion. Besides that, two
new evidential functions are developed, whereby given fuzzy
rules are considered as evidence. Simulated and benchmark
examples are included to demonstrate the applicability of these
suggestions. Positive results were obtained.
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I. INTRODUCTION

Two interesting research areas in fuzzy modeling are
considered, i.e., fuzzy rule selection and Similarity Reasoning
(SR). On one hand, fuzzy rule section is a solution to the
design of a fuzzy inference system (FIS) for pattern
recognition, usually from numerical data, e.g. see [1-4].
Besides that, methods for fuzzy rule selection with the use of
multi-objective evolutionary algorithms are available [1,4].
On the other hand, a wvariety of SR schemes, e.g.,
Approximate Analogical Reasoning Schema (AARS) [5],
Fuzzy Rule Interpolation (FRI) [6], and qualitative reasoning
[7], have been developed. These schemes are useful to
deduce unknown fuzzy rules based on similarity of the given
and unknown fuzzy rules. An example from Zadeh [7] is as
follows:

R1: If pressure is high, Then volume is small
R2: If pressure is low, Then volume is large

Therefore, If pressure is medium, Then volume is (wl N
small + w2 n large), where w1l = sup (high N medium),
and w2 = sup (low N medium).

It is worth noting that traditional SR schemes usually
focus on reasoning and/or interpolation of two neighboring
fuzzy rules within a relatively small local region [8]. In our
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previous investigation [8], we have argued that SR may not be
efficient for the whole domain, or even a relatively large
region, in real-world applications. Furthermore, an
optimization-based SR scheme for the
monotonicity-preserving FIS was proposed, with a number of
real world applications demonstrated [8-11]. The importance
of the monotonicity property as an additional piece of
qualitative information for modeling the FIS has been pointed
out [12]. Our proposed optimization-based SR scheme [8-11]
attempts to exploit the monotonicity property as additional
qualitative information to increase reasoning accuracy for a
relatively large range of operating region.

We have previously proposed two application
frameworks that comprise SR-based schemes for tackling
real-world problems, i.e., a two-stage framework [8] and an
online updating framework [13]. The main aim of the
two-stage framework [8] is to search for a set of stage-1 fuzzy
rules in the whole domain such that reasoning and/or
interpolation for a relatively large region can be avoided or
minimized. Stage-1 fuzzy rules are solicited from experts.
An SR scheme is then used to deduce the remaining fuzzy
rules, which are denoted as stage-2 fuzzy rules. Applications
of the two-stage framework [8] to two real-world problems,
i.e., education assessment [10] and failure mode and effect
analysis [8], have also been demonstrated.

In [8, 10], a genetic algorithm (GA) has been used to
identify the stage-I fuzzy rules. The GA objective is to
minimize the number of stage-1 fuzzy rules, subject to a
constraint. The constraint is a pre-defined minimal similarity
measure between a set of stage-1 fuzzy rules and its stage-2
fuzzy rules. Tt is worth noting that various multi-objective
evolutionary algorithms [14-17] have been widely used
recently, owing to their ability to obtain pareto-optimal
solutions. As a result, the main motivation of this paper is on
the use of multi-objective evolutionary algorithm for
selecting the stage-1 fuzzy rules. Specifically, the
Non-Dominated Sorting in Genetic Algorithm II (NSGA-II)
[14, 17] is used in this study to select the stage-1 fuzzy rules.
Two objectives are considered: (1) minimize the number of
stage-1 fuzzy rules; and (2) maximize the similarity measure
between a set of stage-1 fuzzy rules and its stage-2 fuzzy rules.
With the use of NSGA-II, a Pareto optimal selection of
stage-1 fuzzy rules is obtained. The Pareto optimal selection
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provides a set of solutions that contain trade-offs between
the number of stage-1 fuzzy rules required and the similarity
measure between stage-1 fuzzy rules and its stage-2 fuzzy
rules.

Besides that, the use of evidential measures to facilitate
the modeling process of the FIS has been suggested in [13].
Three measures inspired from the Dempster-Shafer Theory
(DST) of evidence, i.e., belief, plausibility, and evidential
measures, have been introduced for modeling a monotone
Sugeno FIS model [13]. These measures are based on the
fuzzy membership values. In this paper, we further introduce
two generalized evidential functions that are based on fuzzy
membership values and distance.

This paper is organized as follows. In Section II, our
previous findings are explained. In Section III, the use of
NSGA-II to select the stage-1 fuzzy rules is presented.
Simulated and benchmark [18] examples are included too. In
Section IV, the idea of distance-based evidential measure is
presented. Finally, concluding remarks are presented in
Section V.

II. BACKGROUND

A. A two-stage framework

A two-stage framework for constructing an FIS model
proposed in [8] is outlined in Figure 1. It consists of five steps
(i.e., A to E). Each step is explained, as follows.

. . ® ﬂ
Designing fqzzy Using the GA for thammg stage-KC
membership ™= fur fuzzy rules from
- zzy rule search
functions users
D Y 5

Constructing the
FIS model

Approximating stage-2
fuzzy rules

i
<

Fig.1. The two-stage framework

Step (A): Designing fuzzy membership functions

The fuzzy membership functions are designed.

Step (B): Using the GA for fuzzy rule search

The GA is adopted to search for an optimal set of stage-1/

Nstage-1, ,Mstage-1
fuzzy  rules (denoted as Ropmon s Agtago s stagoed

Ngrage-1 = 1,2,3,...) with a predefined constraint. The
similarity measure between stage-1 fuzzy rules and its stage-2

Nstage-2

Suzzy rules (denoted as R0 2 A0 — b9 Ny g =

stage-2"""stage—2
. Mstage—2 Nstage—2 Mstage—1 Nstage-1
1'2’ 3' ) 1s N ( stage—2"’ Unsmge,l =1""stage—-1 The
: . Mstage—2 Nstage-2 Mstage-1 Nstage-1
constraint is nnstage_2=1(Asta oos Unps ' Actageoy ) 2 T, Where

b Nstage-1

Nstage-2=1

7 is predefined threshold.
Step (C): Obtaining stage-1 fuzzy rules from users
The stage-1 fuzzy rules are solicited from human.

Step (D): Approximating stage-2 fuzzy rules
The stage-2 fuzzy rules are approximated using an SR
scheme.

Step (E) Constructing the FIS model

The FIS model is constructed using the stage-/ and
stage-2 fuzzy rules.

B. Evidential Measures

Consider an FIS model in the form of y = f(x; 6), 6 is
the parameters of the model, x € X, and y €Y . The
evidential measure gives an indication whether x falls in the
regions that are not supported by any evidence, i.e., fuzzy
rules from domain experts. An example as depicted in Figure
2 is considered. There are six fuzzy membership functions in
domain X, ie., A, A}, A3, A,, A;, and Ag . There are
three stage-1 fuzzy rules, ie., Rggge-1:41 = By ,
Rgtage—1:44 = By and Rgtage—1:46 = Bg - There are
stage-2  fuzzy i€, Rsqge-2:45>B; ,
Rstage—2: A3 = B3 and Rgqg0 51 A5 > Bs.  Using an SR
scheme, B;,B;, and B are approximated. Fuzzy
membership functions of 4; is denoted as I ). A

three rules,

zero-order Sugeno FIS model is used. The evidential function
[13] for this example can be obtained as follows.

iy () + sty () + g ()

Evi(x) =1-— (1)

2120 1y @)
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B3

B,

A Ay Ay Ay A A

5

Fig. 2. An example of stage-1 fuzzy rules and stage-2 fuzzy rules
II. USE OF NSGA-II FOR FUzZY RULE SELECTION

A. The Proposed Formulation

In this section, the focus is on Step (B) of the two-stage
framework shown in Figure 1 and explained in Section II(A).
The NSGA-II is adopted. An FIS model, i.e.,y = f(x; 6),is
considered, in which 8 contains the parameters of the model,
and X = [x4, X3, ..., Xp] € X; X X, X ... XX,,. Each input,
denoted as x;,, where x;, € [x1, X3, ..., X,], kK = 1,2,3,...,n,1is
defined with a range of [x, %] and with m, partitions. Each
partition is represented by a fuzzy membership function,
denoted as ,u:k (xx), and is associated with a linguistic term,
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ie., Azk , where n, =1,2,3,...,m, . Each fuzzy rule is
associated with a binary chromosome, S; = 0,1, where 0
represents the stage-2 fuzzy rule and 1 represents the stage-1
Sfuzzy rule, i = 1,2,3, ..., [Tr=1 Mx.

Nstage-1 ,
stage—1 "

where nggge-1 =1, ..., Myrqge-1, and the stage-2 fuzzy
i.e., Rnstage—z_ATlstage—z - lestage—Z s Whel‘e nstuge—z —

stage—-2"""stage—2 stage—2
1, ., Mytage—2 - Moage-1 + Myrage—z = [lizymy . Note that

begese! is obtained from users, while b2 > is unknown, and
needs to be deduced by an SR scheme. NSGA-II is used to
select a set of stage-1 fuzzy rules with the following two

objectives:

: : Nstage-1
Consider the stage-1 fuzzy rules, i.e., R stagoo1
bnstage—l

stage—1

rules,

Minimize
1 _ _ [ Mstage-2 Nstage-2 Mstage-1 Nstage—1

Ob]l - nnstage,zzl ( stage—2"’ Unstage,l =1 Astage—l (2)
in _ IEMyXMyX.. XMy

obj2 =%,_/ Si 3)

The NSGA-II procedure for fuzzy rule selection is
summarized in Figure 3. It comprises several user-defined
parameters, i.e., the number of generations (t,q,), number of
population (nyaiiguar)s CrOSSOVET Tate (Poossover), and mutation
rate (Pnuarion). Lhe output is a set of Pareto optimal solutions,
i.e., Ppest-

NSGA'H,ﬁJZZy,rule,seleCtion (tmaxl Nindividual> Pcrassovers Pmutation)
l.t=1
2. Initiate population P (t) with N 4piquq individual
3. Whilet < t,,4,
4. Sort each individual P(t) based on its non-dominant fronts
5. Perform Fitness (Crowding distance) and Ranking
6. Select parents with the binary tournament selection
7. Perform Crossover and Mutation
8. Create new generation, P(t + 1)
9.t=t+1
10.End While
11.Compute objective values for each individual P(t)
12. Identify the Pareto optimal solutions, i.e., Pgeg;
Return (Ppest)

Fig.3. The NSGA-II procedure for fuzzy rule selection

B. A simulated example

A two-input FIS, i.e., y = f(x, ,x, ). is considered. Each
input has five fuzzy membership functions.  Fuzzy
membership functions for x; and x, are shown in Figures 4
and 5, respectively.

A} Al A3 A} A3

Xy

Fig. 4 Fuzzy membership functions for x;

X2
Fig. 5 Fuzzy membership functions for x,

The parameter settings used in this study are:n;,qiviquar =
2000, t,ae = 1000, P.rossover = 0.9 and Pytation = 0.1
The Pareto optimal solutions are depicted in Figure 6. The
Pareto optimal solutions suggest that for 13 stage-1 fuzzy
rules, the first objective score (Eq. (2)) for the best solution is
-0.4578. Besides that, for 6 stage-1 fuzzy rules, the first
objective score (Eq. (2)) for the best solution is -0.1007.

0 T T T

01 + s
02f " 1
03}k o
04+ 1
g-0‘5- 1
06F 8
07}k o
-08} b
-0.9+ 1

R | | L 1
0 5 10 156 20 25

Obj2

Fig. 6. Pareto optimal fuzzy rules selection

Figures 7 and 8 depict the best solutions for 13 and 6
stage-1 fuzzy rules, respectively. The Stage-2 fuzzy rules are
shaded.

X1
AS
1 bS,l bS,Z b5,3 b5,4 b5,5
stage—1 stage—1 stage—2 stage—1 stage—2
A4
1 il b2 b3 it b4,5
stage—2 stage—2 stage—2 stage—1 stage—2
A3
1 b3,1 b3,2 b3,3 b3,4 b3,5
stage—1 stage—1 stage—2 stage—1 stage—2
AZ
1 b2,1 b2,2 b2,3 b2,4 bZ,S
stage—1 stage—1 stage—2 stage—1 stage—2
Al
1 bl,l bl,Z b1,3 b1,4 bl,S
stage—1 stage—1 stage—2 stage—1 stage—2
1 2 3 4 5
A; A; A; A; A; X2

Fig.7. A rule matrix with the simulated example for the best /3 stage-1 fuzzy
rules. The Stage-2 fuzzy rules are shaded.
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AS
1 bS,l b5,2 b5,3 b5,4 b5,5
stage—2 stage—1 stage-2 stage-2 stage-2
A4
1 b4,1 b4,2 b4,3 b4,4 b4,5
stage—2 stage—2 stage—2 stage—1 stage-2
A3
1 b3,1 b3,2 b3,3 b3,4 b3,5
stage—1 stage—2 stage—2 stage—1 stage-2
AZ
1 bZ.l bZ,Z b2,3 b2,4 bZ,S
stage—2 stage—2 stage—2 stage—2 stage-2
Al
1 bl,l b1,2 b1,3 b1,4 b1,5
stage—2 stage—1 stage-2 stage—1 stage-2
1 2 3 4 5
A; A; A; A; A3 X2

Fig.8. A rule matrix with the simulated example, for the best 6 stage-1 fiizzy
rules. The Stage-2 fuzzy rules are shaded.

C. Simulation with benchmark data/information [18]

A benchmark example from [18] is considered. A fuzzy
model is developed to predict soil erosion. The FIS model
[18] considers two input parameters, i.e., land use ratio and
slope angle, denoted as x; and x, in this section,
respectively. Membership functions for these two parameters
are depicted in Figure 9. There are two and five fuzzy
membership functions, for slope angle and land use ratio,
respectively. The two membership functions for the land use
ratio are low and high. The five fuzzy membership functions
for slope angle are very small (VSM), small (SM), moderate
(MOD,), high (H), and very high (VH). Fuzzy membership
functions for the two inputs is explained as a fuzzy partition.
The complete fuzzy model consists of ten fuzzy rules.

Low High

mf

78 9 10 11 12 13 14 15

*1
H VH
9 0

7 8 ] 112 13 1415
Xz

1 2 3 4 5 6

LANDUSE AND LANDCOVER RATIO

VSM MOD

M
) Xﬁ X
0
1 2 3 4 5 6

SLOPE IN DEGREES: VSM:Very Small; SM:Small; MOD:Moderate; H: High; VH: Very High

Fig. 9. Fuzzy sets used in [18]

In this section, the fuzzy partition [18] is considered. The
proposed approach in Section III (A) is implemented in order
to select the stage-1 fuzzy rules. The parameter settings are:
Nindividual = 250 . tmax = 50, Perossover = 0.9 and
Prutation = 0.1. The Pareto optimal solutions are depicted in
Figure 10. The Pareto optimal solutions suggest that for 3
stage-1 fuzzy rules, the first objective value (Eq. (2)) for the
best solution is -0.5. Besides that, for 2 stage-1 fuzzy rules,
the first objective score (Eq. (2)) for the best solution is -0.25.

I S N S
obj2
Fig.10. Pareto optimal fuzzy rules selection for benchmark data [18]

B 7 8 9 10

Figures 11 and 12 depict the best solutions for 3 stage-1
fuzzy rules and 2 stage-1 fuzzy rules, respectively. The
Stage-2 fuzzy rules are shaded. A} and A% represent low and
high in land use ratio, respectively. A3, A3, A3, A%, and A3
represent VSM, SM, MOD, H and VH in slope angle,
respectively.

X1
AZ
1 b2,1 b2,2 b2,3 b2,4 b2,5
stage-2 stage-2 stage—1 stage—2 stage—2
Al
1 pit pl2 pL3 pl4 pLs
stage—1 stage—2 stage—2 stage—2 stage—1
1 2 3 4 5
Al A2 A3 A% AS X

Fig.11. A rule matrix with benchmark data [18] for the best 3 stage-1 fuzzy
rules. The Stage-2 fuzzy rules are shaded.

X1
AZ
1 bZ.l bZ,Z b2,3 b2,4 b2,5
stage—2 stage—2 stage—2 stage—1 stage—2
Al
1 bl,l b1,2 b1,3 b1,4 b1,5
stage—1 stage—2 stage—2 stage—2 stage—2
A3 A A3 A3 A3 X2

Fig.12. A rule matrix with benchmark data [18] for the best 2 stage-1 fuzzy
rules. The Stage-2 fuzzy rules are shaded

Figure 11 suggests that the 3 stage-1 fuzzy rules are as
follows:

i. Ifland use ratio is Low and slope angle is V'SM
ii. Ifland use ratio is Low and slope angle is VH
iii. If land use ratio is High and slope angle is MOD

Figure 12 suggests that the 2 stage-1 fuzzy rules are as
follows:

i. Ifland use ratio is Low and slope angle is VSM
ii. Ifland use ratio is High and slope angle is H

It is worth noting that the two sets of optimal stage-1 fuzzy
rules selected are different. The stage-1 fuzzy rules are
selected in a way such that reasoning of the stage-2 fuzzy
rules, for a relatively large region can be avoided or
minimized.
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D. Remarks

In this section, NSGA-II is used for fuzzy rule section.
Rather than considering Eq (2) as a constraint (as in [8]), Eq
(2) is considered as an objective to be optimized. In addition,
NSGA-II offers a set of Pareto optimal solutions, which
contains trade-offs between the number of stage-1 fuzzy rules
selected and the similarity measure between the stage-1 fuzzy
rules and its stage-2 fuzzy rules.

IV. EVIDENTIAL FUNCTIONS

A. The Proposed Formulation

The definition of the input space of a target function, i.e.,
g: X — Y is presented as Definition 1, as follows.

Definition 1: Consider an input space, X. Variables x
and Ag(x) are the precise and imprecise elements of X,
respectively, ie., x €X , and Ap(x) €EX , where k=
1,2,3,...,n,. Rep(A) is the representative value of A;. In
this paper, Rep(4,) is the point in the X domain, in which the
membership value of 4, is 1.

Suppose a set of fuzzy rules is given, as in Definition 2.

Definition 2: A set of original sparse fuzzy rules, i.c.,
Ry: Ay = By, is provided. Note that B, is a fuzzy set of the
output space, i.e., Y.

Considering Rj, as evidence. Two evidential functions
based on overlapping of fuzzy sets and a distance measure of
fuzzy sets are formulated, as in Eq (4) and (5), respectively.

evi_over(x) = V£ (Ax(x)) “

evi_dist(x) = e~ Nekalx-Repan)) )

B. A simulated example

An example with k = 1 is shown in Figure 13. With
k =1, there is only one fuzzy rule. A Gaussian fuzzy set in
the X domain is considered. Its evidential measure with Eqs
(4) and (5) are further shown in Figure 13. With Eq (4), its
evidential measure is the same as the fuzzy set in the X
domain. With Eq (5), the distance between x and Rep(4,,) is
considered. The evidential measure reduces exponentially
with the distance between x and Rep(4y).

1
e (x) i
08 [ 1

06 [ g

0 v L
0 5 10 x 15
1
evi_over(x) I
081 f | i
[
0.6} I g
[
04 ! | 4
I
L { N
02 | |
0 /J K L L
0 5 10 15
X
o ! T
evi_dist(x) I
08 /A
/o
06 P
.'/ \
4 \
0.4 / \
02 e .
0 . — N
[}] 5 10 x 15

Fig.13. An example with k = 1for a Gaussian fuzzy set in the X domain

An example with k = 2 is shown in Figure 14. With k =
2, there are two fuzzy rules. Two Gaussian fuzzy sets in the X
domain are considered. Its evidential measure with Eqs (4)
and (5) are further shown in Figure 14. With Eq (4), its
evidential measure in the X domain is obtained. The
evidential measure at some areas of X is close to zero. Again,
with Eq (5), the distance between x and Rep(A;) are
considered. The evidential measure reduces exponentially
with the distance between x and Rep(A;), where k = 1,2.

4
e ()
08} g

06} E
0.4f 4

021 B

0

0 5 10 X 15

evi_over(x)1
08F —
06} B
04l B

0.2 B

0
[4] 5 10 15

evi_dist(x) !
08}

061
04

021

0 . .
0 5 10 15
X

Fig.14. An example with k = 2 for two Gaussian fuzzy sets in the X domain

C. Remarks

The overlapping-based evidential function gives an
evidential measure of zero at a point in the X domain, i.c.,
x € X, if there is no fuzzy set coverage at x. The use of the
distance-based evidential function (i.e., Eq (5)) provides a
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non-zero evidential measure. Note that the use of the
distance-based evidential function may be possible if partial
ordering [19] among fuzzy variables in X exists.

A number of evidential functions have been proposed
[13], i.e., evidential mass, belief, and plausibility functions.
The evidential mass function provides an indication if x € X
is covered by fuzzy rules approximated by SR. The belief
function provides an indication if x € X of the resulting FIS
model is supported by fuzzy rules from experts. The
plausibility function gives an indication if x € X of the
resulting FIS model is against by fuzzy rules provided by
experts. The formulations in Section IV of this paper can be
used as the belief and plausibility measures, by considering
Ry as fuzzy rules from experts that support the resulting FIS,
and fuzzy rules from experts that against the resulting FIS,
respectively. The evidential mass measure can be obtained by
considering R, as the SR approximated fuzzy rules.

V. CONCLUSIONS

In this paper, we have extended our previous findings in
[8, 13]. Firstly, NSGA-II is used for fuzzy rule selection. As
a result, a set of Pareto optimal solutions that consider the
trade-offs between the number of selected stage-1 fuzzy rules
and the similarity measure between a set of stage-1 fuzzy
rules and its stage-2 fuzzy rules, is obtained. Besides that,
two evidential functions (i.e., based on overlapping of fuzzy
sets and distance of fuzzy sets) for supporting the practical
implementation of SR have been formulated.

For future work, other multi-objective meta-heuristic
techniques, e.g., particle swarm optimization, harmony
search, can be applied to generate the stage-1 fuzzy rules. The
effect of different parameter settings for NSGA-II can also be
studied. The use of (distance-based) evidential function as
part of fuzzy rule selection to reduce computation complexity
can be studied. Furthermore, evaluation of the proposed
framework can be studied by implementing to real world case
studies.
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