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Abstract—In our previous investigations, two Similarity 
Reasoning (SR)-based frameworks for tackling real-world 
problems have been proposed.  In both frameworks, SR is used 
to deduce unknown fuzzy rules based on similarity of the given 
and unknown fuzzy rules for building a Fuzzy Inference System 
(FIS).  In this paper, we further extend our previous findings by 
developing (1) a multi-objective evolutionary model for fuzzy 
rule selection; and (2) an evidential function to facilitate the use 
of both frameworks.  The Non-Dominated Sorting Genetic 
Algorithms-II (NSGA-II) is adopted for fuzzy rule selection, in 
accordance with the Pareto optimal criterion.  Besides that, two 
new evidential functions are developed, whereby given fuzzy 
rules are considered as evidence.  Simulated and benchmark 
examples are included to demonstrate the applicability of these 
suggestions.  Positive results were obtained. 

Keywords-Fuzzy Inference System, Non-Dominated Sorting 
Genetic Algorithms-II, Similarity Reasoning, evidential functions, 
fuzzy rule selection 

I. INTRODUCTION 

Two interesting research areas in fuzzy modeling are 
considered, i.e., fuzzy rule selection and Similarity Reasoning 
(SR).  On one hand, fuzzy rule section is a solution to the 
design of a fuzzy inference system (FIS) for pattern 
recognition, usually from numerical data, e.g. see [1-4].  
Besides that, methods for fuzzy rule selection with the use of 
multi-objective evolutionary algorithms are available [1,4].  
On the other hand, a variety of SR schemes, e.g., 
Approximate Analogical Reasoning Schema (AARS) [5], 
Fuzzy Rule Interpolation (FRI) [6], and qualitative reasoning 
[7], have been developed.  These schemes are useful to 
deduce unknown fuzzy rules based on similarity of the given 
and unknown fuzzy rules.  An example from Zadeh [7] is as 
follows: 

R1: If pressure is high, Then volume is small  
R2: If pressure is low, Then volume is large 

Therefore, If pressure is medium, Then volume is  ሺ1ݓ ݈݈ܽ݉ݏת ൅ 2ݓ ת 1ݓ ሻ, where݁݃ݎ݈ܽ ൌ ሺ݄݄݅݃ ݌ݑݏ ת  ,ሻ݉ݑ݅݀݁݉
and 2ݓ ൌ ݓ݋ሺ݈ ݌ݑݏ ת  .ሻ݉ݑ݅݀݁݉

It is worth noting that traditional SR schemes usually 
focus on reasoning and/or interpolation of two neighboring 
fuzzy rules within a relatively small local region [8].  In our 
 
 

previous investigation [8], we have argued that SR may not be 
efficient for the whole domain, or even a relatively large 
region, in real-world applications.  Furthermore, an 
optimization-based SR scheme for the 
monotonicity-preserving FIS was proposed, with a number of 
real world applications demonstrated [8-11].  The importance 
of the monotonicity property as an additional piece of 
qualitative information for modeling the FIS has been pointed 
out [12].  Our proposed optimization-based SR scheme [8-11] 
attempts to exploit the monotonicity property as additional 
qualitative information to increase reasoning accuracy for a 
relatively large range of operating region. 

We have previously proposed two application 
frameworks that comprise SR-based schemes for tackling 
real-world problems, i.e., a two-stage framework [8] and an 
online updating framework [13].  The main aim of the 
two-stage framework [8] is to search for a set of stage-1 fuzzy 
rules in the whole domain such that reasoning and/or 
interpolation for a relatively large region can be avoided or 
minimized.  Stage-1 fuzzy rules are solicited from experts.  
An SR scheme is then used to deduce the remaining fuzzy 
rules, which are denoted as stage-2 fuzzy rules.  Applications 
of the two-stage framework [8] to two real-world problems, 
i.e., education assessment [10] and failure mode and effect 
analysis [8], have also been demonstrated. 

In [8, 10], a genetic algorithm (GA) has been used to 
identify the stage-1 fuzzy rules.  The GA objective is to 
minimize the number of stage-1 fuzzy rules, subject to a 
constraint.  The constraint is a pre-defined minimal similarity 
measure between a set of stage-1 fuzzy rules and its stage-2 
fuzzy rules.  It is worth noting that various multi-objective 
evolutionary algorithms [14-17] have been widely used 
recently, owing to their ability to obtain pareto-optimal 
solutions.  As a result, the main motivation of this paper is on 
the use of multi-objective evolutionary algorithm for 
selecting the stage-1 fuzzy rules.  Specifically, the 
Non-Dominated Sorting in Genetic Algorithm II (NSGA-II) 
[14, 17] is used in this study to select the stage-1 fuzzy rules.  
Two objectives are considered: (1) minimize the number of 
stage-1 fuzzy rules; and (2) maximize the similarity measure 
between a set of stage-1 fuzzy rules and its stage-2 fuzzy rules.  
With the use of NSGA-II, a Pareto optimal selection of 
stage-1 fuzzy rules is obtained.  The Pareto optimal selection 
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provides a set of solutions that contain trade-offs between 
the number of stage-1 fuzzy rules required and the similarity 
measure between stage-1 fuzzy rules and its stage-2 fuzzy 
rules. 

Besides that, the use of evidential measures to facilitate 
the modeling process of the FIS has been suggested in [13].  
Three measures inspired from the Dempster-Shafer Theory 
(DST) of evidence, i.e., belief, plausibility, and evidential 
measures, have been introduced for modeling a monotone 
Sugeno FIS model [13].  These measures are based on the 
fuzzy membership values.  In this paper, we further introduce 
two generalized evidential functions that are based on fuzzy 
membership values and distance. 

This paper is organized as follows.  In Section II, our 
previous findings are explained.  In Section III, the use of 
NSGA-II to select the stage-1 fuzzy rules is presented.  
Simulated and benchmark [18] examples are included too.  In 
Section IV, the idea of distance-based evidential measure is 
presented.  Finally, concluding remarks are presented in 
Section V. 

II. BACKGROUND 

A. A two-stage framework 
A two-stage framework for constructing an FIS model 

proposed in [8] is outlined in Figure 1.  It consists of five steps 
(i.e., A to E).  Each step is explained, as follows. 

Using the GA for
fuzzy rule search

Approximating stage-2
fuzzy rules

Designing fuzzy
membership

functions

Obtaining stage-1
fuzzy rules from

users

A B
C

Constructing the
FIS model

DE

Fig.1.  The two-stage framework 

Step (A): Designing fuzzy membership functions 

 The fuzzy membership functions are designed. 

Step (B): Using the GA for fuzzy rule search 

The GA is adopted to search for an optimal set of stage-1 
fuzzy rules (denoted as ܴ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ : ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ ՜ܣ ܾ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ , ݊௦௧௔௚௘ିଵ ൌ 1,2, 3, … ) with a predefined constraint.  The 
similarity measure between stage-1 fuzzy rules and its stage-2 
fuzzy rules (denoted as ܴ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమ: ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమܣ ՜ ܾ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమ, ݊௦௧௔௚௘ିଶ ൌ1,2, 3, … ) is ځ ቀܣ௦௧௔௚௘ିଶ ௡ೞ೟ೌ೒೐షమ , ڂ ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ ௠ೞ೟ೌ೒೐షభ ௡ೞ೟ೌ೒೐షభ ୀଵܣ ቁ௠ೞ೟ೌ೒೐షమ ௡ೞ೟ೌ೒೐షమୀଵ .  The 
constraint is  ځ ቀܣ௦௧௔௚௘ିଶ ௡ೞ೟ೌ೒೐షమ , ڂ ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ ௠ೞ೟ೌ೒೐షభ ௡ೞ೟ೌ೒೐షభ ୀଵܣ ቁ௠ೞ೟ೌ೒೐షమ ௡ೞ೟ೌ೒೐షమୀଵ ൒ ߬, where ߬ is predefined threshold. 

Step (C): Obtaining stage-1 fuzzy rules from users 

 The stage-1 fuzzy rules are solicited from human. 

Step (D): Approximating stage-2 fuzzy rules 
 The stage-2 fuzzy rules are approximated using an SR 

scheme. 

Step (E) Constructing the FIS model 

 The FIS model is constructed using the stage-1 and 
stage-2 fuzzy rules. 

B. Evidential Measures 
Consider an FIS model in the form of ݕ ൌ ݂ሺݔ;  is ߠ ,(ߠ 

the parameters of the model, ݔ א ܺ , and ݕ א ܻ . The 
evidential measure gives an indication whether ݔ falls in the 
regions that are not supported by any evidence, i.e., fuzzy 
rules from domain experts.  An example as depicted in Figure 
2 is considered.  There are six fuzzy membership functions in 
domain ܺ , i.e., ܣଵ , כଶܣ , כଷܣ  , ସܣ  , כହܣ  ,  and ܣ଺ .  There are 
three stage-1 fuzzy rules, i.e., ܴ௦௧௔௚௘ିଵ : ܣଵ ՜ ଵܤ , ܴ௦௧௔௚௘ିଵ : ܣସ ՜ ସܤ  and ܴ௦௧௔௚௘ିଵ : ଺ܣ ՜ ଺ܤ .  There are 
three stage-2 fuzzy rules, i.e., ܴ௦௧௔௚௘ିଶ : ܣଶכ ՜ כଶܤ , ܴ௦௧௔௚௘ିଶ : ܣଷכ ՜ כଷܤ  and ܴ௦௧௔௚௘ିଶ : כହܣ ՜ כହܤ .  Using an SR 
scheme, ܤଶכ, כହܤ and ,כଷܤ  are approximated.  Fuzzy 
membership functions of ௝ܣ  is denoted as µ௝ ሺݔሻ .  A 
zero-order Sugeno FIS model is used.  The evidential function 
[13] for this example can be obtained as follows. 

ሻݔሺ݅ݒܧ ൌ 1 െ µଶ ሺݔሻ ൅ µଷ ሺݔሻ ൅ µହ ሺݔሻ∑ ൬µ௝ ሺݔሻ൰௝ୀ଺௝ୀଵ  

 
 
(1) 

 
Fig. 2. An example of stage-1 fuzzy rules and stage-2 fuzzy rules 

III. USE OF NSGA-II FOR FUZZY RULE SELECTION 

A. The Proposed Formulation 
In this section, the focus is on Step (B) of the two-stage 

framework shown in Figure 1 and explained in Section II(A).  
The NSGA-II is adopted.  An FIS model, i.e., ݕ ൌ ݂ሺݔҧ;  is,(ߠ 
considered, in which ߠ contains the parameters of the model, 
and ݔҧ ൌ ሾݔଵ, ,ଶݔ … , ௡ሿݔ א ଵܺ ൈ  ܺଶ ൈ … ൈ ܺ௡ .  Each input, 
denoted as ݔ௞, where ݔ௞ א ሾݔଵ, ,ଶݔ … , ,௡ሿݔ ݇ ൌ 1,2,3, … , ݊, is 
defined with a range of [ݔ௞,  ௞] and with ݉௞ partitions.  Eachݔ
partition is represented by a fuzzy membership function, 
denoted as ߤ௞௡ೖሺݔ௞ሻ, and is associated with a linguistic term, 
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i.e., ܣ௞௡ೖ , where ݊௞ ൌ 1,2,3, … , ݉௞ .  Eac
associated with a binary chromosome, ௜ܵ
represents the stage-2 fuzzy rule and 1 repre
fuzzy rule, ݅ ൌ 1,2,3, … , ∏ ݉௞௡௞ୀଵ . 

Consider the stage-1 fuzzy rules, i.e., ܴܾ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ , where ݊௦௧௔௚௘ିଵ ൌ 1, … , ݉௦௧௔௚௘ିଵ , and 
rules, i.e., ܴ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమ: ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమܣ ՜ ܾ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమ , w1, … , ݉௦௧௔௚௘ିଶ .  ݉௦௧௔௚௘ିଵ ൅ ݉௦௧௔௚௘ିଶ ൌ ∏௡௞ୀଵܾ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ  is obtained from users, while ܾ௦௧௔௚௘ିଶ௡ೞ೟ೌ೒೐షమ
needs to be deduced by an SR scheme.  NS
select a set of stage-1 fuzzy rules with th
objectives: ݁ݖ݅݉݅݊݅ܯ    
1݆ܾ݋ ൌ  െ ځ ቀܣ௦௧௔௚௘ିଶ ௡ೞ೟ೌ೒೐షమ , ڂ 2݆ܾ݋௦௡௠ೞ೟ೌ೒೐షభ ௡ೞ೟ೌ೒೐షభ ୀଵ௠ೞ೟ೌ೒೐షమ ௡ೞ೟ೌ೒೐షమୀଵܣ ൌ ∑ ܵ௜௜ୀெభൈெమൈ…ൈெ೙௜ୀଵ  

The NSGA-II procedure for fuzzy r
summarized in Figure 3.  It comprises sev
parameters, i.e., the number of generations 
population (݊௜௡ௗ௜௩௜ௗ௨௔௟ሻ, crossover rate ( ௖ܲ௥௢௦௦௢௩
rate ( ௠ܲ௨௧௔௧௜௢௡ሻ.  The output is a set of Pareto o
i.e., ஻ܲ௘௦௧. 

NSGA-II_fuzzy_rule_selection (ݐ௠௔௫, ݊௜௡ௗ௜௩௜ௗ௨௔௟, ௖ܲ௥௢௦
ݐ .1 ൌ 1 
2. Initiate population ܲሺݐሻ with ݊௜௡ௗ௜௩௜ௗ௨௔௟ individual 
3. Whileݐ ൑  ௠௔௫ݐ

4. Sort each individual ܲሺݐሻ based on its non-domin
5. Perform Fitness (Crowding distance) and Ranking
6. Select ݏݐ݊݁ݎܽ݌ with the  binary tournament selec
7. Perform Crossover and Mutation  
8. Create new generation, ܲሺݐ ൅ 1ሻ 
ݐ .9 ൌ ݐ ൅ 1 

10. End While 
11. Compute objective values for each individual ܲሺݐሻ 
12. Identify the Pareto optimal solutions, i.e., ஻ܲ௘௦௧ 
Return ( ஻ܲ௘௦௧) 

Fig.3. The NSGA-II procedure for fuzzy rul

B. A simulated example 
A two-input FIS, i.e., ݕ ൌ ݂൫ݔଵ , ଶݔ ൯, is c

input has five fuzzy membership fun
membership functions for ݔଵ  and ݔଶ  are sh
and 5, respectively. 

Fig. 4 Fuzzy membership functions

 

ch fuzzy rule is ൌ 0,1 , where 0 
esents the stage-1 

ܴ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ : ௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ ՜ܣ
the stage-2 fuzzy 

where ݊௦௧௔௚௘ିଶ ൌ݉௞ .  Note that 
ଶమ is unknown, and 
SGA-II is used to 
he following two 

௦௧௔௚௘ିଵ ௡ೞ೟ೌ೒೐షభ ቁ (2) 

(3) 

rule selection is 
veral user-defined 

 ௠௔௫ሻ, number of ௩௘௥ሻ, and mutationݐ)
optimal solutions, 

௦௦௢௩௘௥, ܲ௠௨௧௔௧௜௢௡) 

nant fronts 
g 

ction 

le selection 

considered.  Each 
nctions.  Fuzzy 
hown in Figures 4 

 
 for ݔଵ  

Fig. 5 Fuzzy membership fu

The parameter settings used in th2000 ௠௔௫ݐ , ൌ 1000, ௖ܲ௥௢௦௦௢௩௘௥ ൌ 0
The Pareto optimal solutions are de
Pareto optimal solutions suggest th
rules, the first objective score (Eq. (2
-0.4578.  Besides that, for 6 stage
objective score (Eq. (2)) for the best

Fig. 6.  Pareto optimal fuzzy 

Figures 7 and 8 depict the best
stage-1 fuzzy rules, respectively.  Th
shaded. ݔଵ  

ଵହ ܾ௦௧௔௚௘ିଵହ,ଵܣ     ܾ௦௧௔௚௘ିଵହ,ଶ  ܾ௦௧௔௚௘ିଶ ହ,ଷ ଵସ ܾ௦௧௔௚௘ିଶସ,ଵܣ   ܾ௦௧௔௚௘ିଶସ,ଶ  ܾ௦௧௔௚௘ିଶସ,ଷ ଵଷ ܾ௦௧௔௚௘ିଵଷ,ଵܣ   ܾ௦௧௔௚௘ିଵଷ,ଶ  ܾ௦௧௔௚௘ିଶ ଷ,ଷ ଵଶ ܾ௦௧௔௚௘ିଵଶ,ଵܣ   ܾ௦௧௔௚௘ିଵଶ,ଶ  ܾ௦௧௔௚௘ିଶ ଶ,ଷ ଵଵ ܾ௦௧௔௚௘ିଵଵ,ଵܣ   ܾ௦௧௔௚௘ିଵଵ,ଶ  ܾ௦௧௔௚௘ିଶ ଵ,ଷ  ଶଷܣ ଶଶܣ ଶଵܣ 

Fig.7.  A rule matrix with the simulated exam
rules. The Stage-2 fuzzy rul

 
  

 

 
unctions for xଶ  

his study are:݊௜௡ௗ௜௩௜ௗ௨௔௟ ൌ0.9  and ௠ܲ௨௧௔௧௜௢௡ ൌ 0.1.  
epicted in Figure 6.  The 
hat for 13 stage-1 fuzzy 
2)) for the best solution is 
e-1 fuzzy rules, the first 
t solution is -0.1007. 

 
rules selection 

t solutions for 13 and 6 
he Stage-2 fuzzy rules are 

  ܾ௦௧௔௚௘ିଵ ହ,ସ  ܾ௦௧௔௚௘ିଶହ,ହ  

ܾ௦௧௔௚௘ିଵ ସ,ସ  ܾ௦௧௔௚௘ିଶସ,ହ  

ܾ௦௧௔௚௘ିଵ ଷ,ସ  ܾ௦௧௔௚௘ିଶଷ,ହ  

ܾ௦௧௔௚௘ିଵ ଶ,ସ  ܾ௦௧௔௚௘ିଶଶ,ହ  

ܾ௦௧௔௚௘ିଵ ଵ,ସ  ܾ௦௧௔௚௘ିଶଵ,ହ ଶݔ ଶହܣ ଶସܣ   

mple for the best 13 stage-1 fuzzy 
les are shaded. 
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ଵݔ   

ଵହ ܾ௦௧௔௚௘ିଶ ହ,ଵܣ      ܾ௦௧௔௚௘ିଵ ହ,ଶ  ܾ௦௧௔௚௘ିଶ ହ,ଷ  ܾ௦௧௔௚௘ିଶ ହ,ସܣଵସ ܾ௦௧௔௚௘ିଶ ସ,ଵ  ܾ௦௧௔௚௘ିଶ ସ,ଶ  ܾ௦௧௔௚௘ିଶସ,ଷ  ܾ௦௧௔௚௘ିଵ ସ,ସܣଵଷ ܾ௦௧௔௚௘ିଵ ଷ,ଵ  ܾ௦௧௔௚௘ିଶ ଷ,ଶ  ܾ௦௧௔௚௘ିଶ ଷ,ଷ  ܾ௦௧௔௚௘ିଵ ଷ,ସܣଵଶ ܾ௦௧௔௚௘ିଶ ଶ,ଵ  ܾ௦௧௔௚௘ିଶ ଶ,ଶ  ܾ௦௧௔௚௘ିଶ ଶ,ଷ  ܾ௦௧௔௚௘ିଶ ଶ,ସܣଵଵ ܾ௦௧௔௚௘ିଶ ଵ,ଵ  ܾ௦௧௔௚௘ିଵ ଵ,ଶ  ܾ௦௧௔௚௘ିଶ ଵ,ଷ  ܾ௦௧௔௚௘ିଵ ଵ,ସܣଶଵ ܣଶଶ ܣଶଷ ܣଶସ 

Fig.8.  A rule matrix with the simulated example, for th
rules. The Stage-2 fuzzy rules are sha

C. Simulation with benchmark data/inform
A benchmark example from [18] is con

model is developed to predict soil erosion.
[18] considers two input parameters, i.e., la
slope angle, denoted as ݔଵ  and ݔଶ
respectively.  Membership functions for thes
are depicted in Figure 9.  There are two
membership functions, for slope angle an
respectively.  The two membership function
ratio are low and high.  The five fuzzy mem
for slope angle are very small (VSM), smal
(MOD), high (H), and very high (VH).    Fu
functions for the two inputs is explained as 
The complete fuzzy model consists of ten fu

Fig. 9.  Fuzzy sets used in [18] 

In this section, the fuzzy partition [18] is
proposed approach in Section III (A) is impl
to select the stage-1 fuzzy rules.  The param݊௜௡ௗ௜௩௜ௗ௨௔௟ ൌ 250 ௠௔௫ݐ , ൌ 50, ௖ܲ௥௢௦௦௢௠ܲ௨௧௔௧௜௢௡ ൌ 0.1.  The Pareto optimal solutio
Figure 10.  The Pareto optimal solutions s
stage-1 fuzzy rules, the first objective value
best solution is -0.5.  Besides that, for 2 sta
the first objective score (Eq. (2)) for the best

 

 

 ܾ௦௧௔௚௘ିଶହ,ହ  

 ܾ௦௧௔௚௘ିଶସ,ହ  

 ܾ௦௧௔௚௘ିଶଷ,ହ  

 ܾ௦௧௔௚௘ିଶଶ,ହ  

 ܾ௦௧௔௚௘ିଶଵ,ହ ଶݔ ଶହܣ   

he best 6 stage-1 fuzzy 
aded. 

mation [18] 
nsidered.  A fuzzy 
.  The FIS model 
and use ratio and 
in this section, 
se two parameters 
o and five fuzzy 
nd land use ratio, 
ns for the land use 

mbership functions 
ll (SM), moderate 
uzzy membership 
a fuzzy partition.  

uzzy rules. 

 

s considered.  The 
lemented in order 

meter settings are: ௢௩௘௥ ൌ 0.9  and 
ons are depicted in 
suggest that for 3 
e (Eq. (2)) for the 
age-1 fuzzy rules, 
t solution is -0.25. 

Fig.10.  Pareto optimal fuzzy rules selecti
 

 
Figures 11 and 12 depict the be

fuzzy rules and 2 stage-1 fuzzy r
Stage-2 fuzzy rules are shaded.  ܣଵଵ a
high in land use ratio, respectively
represent VSM,  SM, MOD, H a
respectively. ݔଵ ଵଶ ܾ௦௧௔௚௘ିଶଶ,ଵܣ   ܾ௦௧௔௚௘ିଶଶ,ଶ  ܾ௦௧௔௚௘ିଵ ଶ,ଷ ଵଵ ܾ௦௧௔௚௘ିଵଵ,ଵܣ  ܾ௦௧௔௚௘ିଶଵ,ଶ ܾ௦௧௔௚௘ିଶ ଵ,ଷ  

 ଶଷܣ ଶଶܣ ଶଵܣ 

Fig.11.  A rule matrix with benchmark data [
rules.  The Stage-2 fuzzy rulݔଵ ଵଶ ܾ௦௧௔௚௘ିଶଶ,ଵܣ   ܾ௦௧௔௚௘ିଶଶ,ଶ  ܾ௦௧௔௚௘ିଶ ଶ,ଷ ଵଵ ܾ௦௧௔௚௘ିଵଵ,ଵܣ  ܾ௦௧௔௚௘ିଶଵ,ଶ ܾ௦௧௔௚௘ିଶ ଵ,ଷ  

 ଶଷܣ ଶଶܣ ଶଵܣ 

Fig.12.  A rule matrix with benchmark data [
rules.  The Stage-2 fuzzy ru

Figure 11 suggests that the 3 st
follows: 

i. If land use ratio is Low and slo
ii. If land use ratio is Low and slo
iii. If land use ratio is High and sl

Figure 12 suggests that the 2 st
follows: 

i. If land use ratio is Low and slo
ii. If land use ratio is High and slo

It is worth noting that the two set
rules selected are different.  The 
selected in a way such that reason
rules, for a relatively large regi
minimized. 

 

 

 
ion for benchmark data [18] 

st solutions for 3 stage-1 
rules, respectively.  The 
and ܣଵଶ represent low and 
y.  ܣଶଵ, ,ଶଶܣ ,ଶଷܣ  ଶହܣ ଶସ, andܣ
and VH in slope angle, 

 
ܾ௦௧௔௚௘ିଶ ଶ,ସ ܾ௦௧௔௚௘ିଶଶ,ହ
ܾ௦௧௔௚௘ିଶ ଵ,ସ ܾ௦௧௔௚௘ିଵଵ,ହܣଶସ ܣଶହ ݔଶ  

[18] for the best 3 stage-1 fuzzy 
les are shaded. 

 ܾ௦௧௔௚௘ିଵ ଶ,ସ ܾ௦௧௔௚௘ିଶଶ,ହ
ܾ௦௧௔௚௘ିଶ ଵ,ସ ܾ௦௧௔௚௘ିଶଵ,ହܣଶସ ܣଶହ ݔଶ  

[18] for the best 2 stage-1 fuzzy 
les are shaded 

tage-1 fuzzy rules are as 

ope angle is VSM 
ope angle is VH 
ope angle is MOD 

tage-1 fuzzy rules are as 

ope angle is VSM 
ope angle is H 

ts of optimal stage-1 fuzzy 
stage-1 fuzzy rules are 

ning of the stage-2 fuzzy 
ion can be avoided or 
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D. Remarks 
In this section, NSGA-II is used for fu

Rather than considering Eq (2) as a constra
(2) is considered as an objective to be optim
NSGA-II offers a set of Pareto optimal 
contains trade-offs between the number of s
selected and the similarity measure between
rules and its stage-2 fuzzy rules. 

IV. EVIDENTIAL FUNCTION

A. The Proposed Formulation 
The definition of the input space of a tar݃: ܺ ՜ ܻ is presented as Definition 1, as fol

Definition 1: Consider an input space
and ܣ௞ሺݔሻ  are the precise and imprecise 
respectively, i.e., ݔ א ܺ , and ܣ௞ሺݔሻ ,1,2,3א … ,  ௞ሻ is the representativeܣሺ݌ܴ݁  .݇݊
this paper, ܴ݁݌ሺܣ௞ሻ is the point in the ܺ dom
membership value of ܣ௞ is 1. 

Suppose a set of fuzzy rules is given, as 

Definition 2: A set of original sparse ܴ௞: ௞ܣ ՜ ௞ܤ , is provided.  Note that ܤ௞ is a
output space, i.e., ܻ. 

Considering ܴ௞  as evidence.  Two evi
based on overlapping of fuzzy sets and a dis
fuzzy sets are formulated, as in Eq (4) and (݁ݎ݁ݒ݋_݅ݒሺݔሻ ൌ ڀ ሺܣ௞ሺݔሻሻ௡ೖ௞ୀଵ  

ሻݔሺݐݏ݅݀_݅ݒ݁ ൌ ݁ିቀٿ |௫ିோ௘௣ሺ஺ೖሻ|೙ೖೖసభ ቁ 

B. A simulated example 
An example with ݇ ൌ 1  is shown in F݇ ൌ 1, there is only one fuzzy rule.  A Gau

the ܺ domain is considered.  Its evidential m
(4) and (5) are further shown in Figure 13. 
evidential measure is the same as the fu
domain.  With Eq (5), the distance between ݔ
considered.  The evidential measure reduc
with the distance between ݔ and ܴ݁݌ሺܣ௞ሻ. 

 
 

uzzy rule section.  
aint (as in [8]), Eq 

mized.  In addition, 
solutions, which 
tage-1 fuzzy rules 

n the stage-1 fuzzy 

NS 

rget function, i.e., 
llows. 

e, ܺ.  Variables ݔ 
elements of ܺ , ܺ , where ݇ ൌ
value of ܣ௞.  In 

main, in which the 

in Definition 2. 

fuzzy rules, i.e., 
a fuzzy set of the 

idential functions 
stance measure of 
(5), respectively. 

(4) 

(5) 

Figure 13.  With 
ussian fuzzy set in 
measure with Eqs 
  With Eq (4), its 

uzzy set in the ܺ ݔ and ܴ݁݌ሺܣ௞ሻ is 
ces exponentially 

Fig.13.  An example with ݇ ൌ 1for a Gauss

An example with ݇ ൌ 2 is shown2, there are two fuzzy rules.  Two Ga
domain are considered.  Its evident
and (5) are further shown in Figur
evidential measure in the ܺ  dom
evidential measure at some areas of ܺ
with Eq (5), the distance betwe
considered.  The evidential measur
with the distance between ݔ and ܴ݁݌

Fig.14.  An example with ݇ ൌ 2 for two Gaus
 

C. Remarks 
The overlapping-based eviden

evidential measure of zero at a poiݔ א ܺ, if there is no fuzzy set cover
distance-based evidential function 

 

 
sian fuzzy set in the ܺ domain 

n in Figure 14.  With ݇ ൌ
aussian fuzzy sets in the ܺ 
ial measure with Eqs (4) 
re 14.  With Eq (4), its 

main is obtained.  The ܺ is close to zero.  Again, 
een ݔ  and ܴ݁݌ሺܣ௞ሻ  are 
re reduces exponentially ݌ሺܣ௞ሻ, where ݇ ൌ 1,2. 

 
ssian fuzzy sets in the ܺ domain 

ntial function gives an 
int in the ܺ domain, i.e., 
rage at ݔ.  The use of the 
(i.e., Eq (5)) provides a 
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non-zero evidential measure.  Note that the use of the 
distance-based evidential function may be possible if partial 
ordering [19] among fuzzy variables in ܺ exists. 

A number of evidential functions have been proposed 
[13], i.e., evidential mass, belief, and plausibility functions.  
The evidential mass function provides an indication if ݔ א ܺ 
is covered by fuzzy rules approximated by SR.  The belief 
function provides an indication if ݔ א ܺ of the resulting FIS 
model is supported by fuzzy rules from experts.  The 
plausibility function gives an indication if ݔ א ܺ  of the 
resulting FIS model is against by fuzzy rules provided by 
experts.  The formulations in Section IV of this paper can be 
used as the belief and plausibility measures, by considering ܴ௞ as fuzzy rules from experts that support the resulting FIS, 
and fuzzy rules from experts that against the resulting FIS, 
respectively. The evidential mass measure can be obtained by 
considering ܴ௞ as the SR approximated fuzzy rules. 

V. CONCLUSIONS 
In this paper, we have extended our previous findings in 

[8, 13].  Firstly, NSGA-II is used for fuzzy rule selection.  As 
a result, a set of Pareto optimal solutions that consider the 
trade-offs between the number of selected stage-1 fuzzy rules 
and the similarity measure between a set of stage-1 fuzzy 
rules and its stage-2 fuzzy rules, is obtained.  Besides that, 
two evidential functions (i.e., based on overlapping of fuzzy 
sets and distance of fuzzy sets) for supporting the practical 
implementation of SR have been formulated. 

For future work, other multi-objective meta-heuristic 
techniques, e.g., particle swarm optimization, harmony 
search, can be applied to generate the stage-1 fuzzy rules.  The 
effect of different parameter settings for NSGA-II can also be 
studied.  The use of (distance-based) evidential function as 
part of fuzzy rule selection to reduce computation complexity 
can be studied.  Furthermore, evaluation of the proposed 
framework can be studied by implementing to real world case 
studies. 
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