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Abstract—This paper introduces a new multi-output interval 

type-2 fuzzy logic system (MOIT2FLS) that is automatically 
constructed from unsupervised data clustering method and 
trained using heuristic genetic algorithm for a protein 
secondary structure classification. Three structure classes are 
distinguished including helix, strand (sheet) and coil which 
correspond to three outputs of the MOIT2FLS. Quantitative 
properties of amino acids are used to characterize the twenty 
amino acids rather than the widely used computationally 
expensive binary encoding scheme. Amino acid sequences are 
parsed into learnable patterns using a local moving window 
strategy. Three clustering tasks are performed using the 
adaptive vector quantization method to derive an equal 
number of initial rules for each type of secondary structure. 
Genetic algorithm is applied to optimally adjust parameters of 
the MOIT2FLS with the purpose of maximizing the Q3 
measure. Comprehensive experimental results demonstrate the 
strong superiority of the proposed approach over the 
traditional methods including Chou-Fasman method, Garnier-
Osguthorpe-Robson method, and artificial neural network 
models.  
 

I. INTRODUCTION 
Proteins are large biological molecules comprising one or 

more chains of amino acids. Proteins serve a variety of 
functions within living organisms, including catalysing 
metabolic reactions, replicating DNA, providing structural 
support for living cells, responding to stimuli, protecting the 
body from the effect of invading species or substances, and 
transporting molecules from one location to another. 
Proteins are distinguished primarily based on their sequence 
of amino acids. Protein structure is the biomolecular 
structure of protein molecule, which consists of four distinct 
levels: primary, secondary, tertiary and quaternary structure. 
Protein secondary structures, which refer to highly regular 
local sub-structures, are primarily formed by short and long 
ranging interactions throughout the protein’s folding 
process. There are two main types of secondary structure, 
the α helix and the β strand and coil. Other category system 
can also classify secondary structures into eight classes: α-
helix (H), 310 helix (G), π-helix (I), β-strand (E), bridge (B), 
β-turn (T), bend (S) and coil (C).  

Protein secondary structure prediction (PSSP) is important 
because knowing protein secondary structure can help to 
comprehend and understand functions of proteins. 
Secondary structure knowledge may also aid to predict 

protein’s three-dimensional structure. Furthermore, PSSP 
can be included in threading methods to help the detection of 
distantly related proteins. Most prediction methods rely upon 
the local information and the correlation between primary 
and secondary structure. Early methods applied for PSSP 
include those of Chou-Fasman (CF) [2], Garnier-
Osguthorpe-Robson (GOR) [3] and artificial neural network 
(NN) models [4, 5]. Since then there has been a vast number 
of studies concerning PSSP including those of recent works, 
i.e. [6-11].  

However, those methods are not able to capture and 
handle the imprecision and vagueness inherent in the protein 
structure data, the more so as the length of amino acid 
sequences augments and especially the number of proteins 
available is increasingly advanced. Moreover, the practice of 
secondary structure assignment of proteins is not always 
precise due to the limit of chemical technology. Neural 
networks applied for PSSP usually employ the binary amino 
acid encoding, which faces a big challenge of computation 
costs because each amino acid is characterized by an array 
of size 20. In order to eradicate this burden, this paper 
introduces a method to characterize amino acids using 
quantitative properties consisting of solvent exposed area, 
hydrophobicity, pKa values of ionizing groups COOH and 
NH3 and weights or volumes of amino acid residues. These 
properties of amino acids are not always precisely 
determined but may vary depending on the environment they 
are assessed. In other words, they are vague and uncertain 
therefore we ought to propose a tool to handle them. Fuzzy 
logic [12] has been introduced and renowned as a powerful 
mechanism for uncertainty modelling. Mocz [13], Boberg et 
al. [14] and Hering et al. [15] have already applied type-1 
fuzzy logic for PSSP. Though original fuzzy logic, type-1 
fuzzy logic (FL), has been introduced almost half a century 
back, but it has been argued that it is unable to properly 
handle uncertainties [16]. The type-2 FL [17], which is the 
extension of the type-1 FL, is able to more efficiently and 
effectively handle uncertainties mainly due to its three 
dimensional membership functions [18].  

This paper presents a systematic way for PSSP using 
interval type-2 fuzzy logic system (IT2FLS). This is the first 
exploration of type-2 FL in protein structure prediction to 
our best knowledge. Throughout this study, we 
quantitatively demonstrate the efficiency of this classifier for 
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properly addressing the challenging problem of PSSP. Three 
classes of structures are distinguished based on the three 
outputs of the fuzzy system. Data patterns are extracted from 
local information of amino acids and transformed into 
numerical representation through a mapping procedure, 
which utilizes the quantitative attributes of amino acid 
residues. Before proceeding to the detailed methodology of 
the study in Section IV, we review some previous 
fundamental methods used widely in the literature for PSSP 
including CF, GOR and NN in the next section. Section III 
proposes a new amino acid encoding scheme. Section V is 
devoted for experimental results followed by discussions. 
Concluding remarks are presented in Section VI.  
 

II. BRIEF REVIEW OF PSSP TECHNIQUES 
A. Traditional methods: Chou-Fasman & GOR methods 

Secondary structure prediction proposed by Chou and 
Fasman [2] is one of the simplest statistical approaches, 
which is based on observed frequency of each type of amino 
acid residues in ߙ helix, ߚ strand and turns of the known 
protein structures.  

Secondary structure prediction method by GOR [3] is 
another popular method utilizing information theory, which 
is more complicated compared to the Chou-Fasman method.  

The Chou-Fasman method assumes that each amino acid 
independently influences secondary structure within a 
window of sequence whereas in the GOR method amino 
acid flanking the central amino acid residue is supposed to 
impact the likely secondary structure of the central residue.  

 
B. Neural network model 

The principle of NN application in PSSP is based on the 
amino acid binary encoding scheme (e.g. see [4, 5]). Each 
amino acid residue is characterized by a binary array of size 
20. The element corresponding to the amino acid type in the 
given position is set to 1, whilst all other positions are set to 
0. A sliding window is employed in input amino acid 
sequence to encode the input layer, and the secondary 
structure of the central residue in the window will be 
predicted. The structural state of a given residue and the 
eight residues on either side of the prediction point is found 
to be statistically correlated. Therefore, a window of size 17 
is deployed. Accordingly, the input layer of the NN 
comprises ܴ =  input nodes, i.e. 17 groups of 20 20ݔ17
inputs each. 

The output layer of the NN consists of three nodes 
corresponding to three secondary structural states (or 
classes), which are also encoded using a binary scheme: [1 0 
0] for coil, [0 1 0] for sheet, and [0 0 1] for helix.  
 

III. PROTEIN ENCODING STRATEGY 
A. Amino acid encoding 

As the relationships between amino acid sequence and 
secondary structure of proteins need to be explored, the 20 
amino acids must be numerically encoded before processing. 
The traditional binary mapping where each amino acid is 
represented by an array of 20 digits 0 and 1 has been widely 
used in the literature. This orthogonal encoding uses a lot of 
inputs and is computationally demanding (memory and 

convergence time issues). For example, for a short sequence 
of 5 residues, the processing systems must adopt 100 inputs. 
We therefore initiate a new effective encoding scheme for 
the 20 amino acids. A range of properties/attributes deemed 
affecting the secondary structure of proteins is utilized to 
characterize the 20 amino acids. The attributes include: 
hydrophobicity, volume, solvent exposed area, and ܭ 
values of the ionizing groups of amino acids. Note that all 
these attributes are normalized into the interval [0-1] to 
avoid the influence of one attribute to another due to the 
difference in scales of attributes.  

 
1) Amino acid hydrophobicity  

Hydrophobicity relatively measures how soluble an amino 
acid is in water. These values may vary depending on the pH 
level of the solution. Hydrophobic amino acids are often 
found in the interior whereas hydrophilic amino acids are 
usually in contact with the aqueous environment. There are 
various scales proposed so far including Kyte and Doolittle 
[19], and Wimley and White [20]. Palliser and Parry [21] 
investigated 100 hydrophobicity scales and claimed that 
locating β-strands on the surface of proteins can be helped 
by using these scales. As patterns of hydrophobic amino 
acids may aid structure prediction [22], the utilization of this 
amino acid attribute could help improve the PSSP. This 
paper employs the most recent hydrophobicity scale of 
Hessa et al. [23]. Unlike the others, more negative values are 
corresponding to greater hydrophobicity in the Hessa et al. 
scale.  
2) pKa values of the ionizing groups of amino acids  

An acid dissociation constant, ܭ, measures quantitatively 
the strength of an acid in solution, which is usually 
represented as a quotient of the equilibrium concentrations 
(in mol/L), denoted by [ܣܪ], [ିܣ] and [ܪା]: 
ܭ = [ష][ுశ]

[ு]
  (1) 

Because ܭ values span on many orders of magnitude, a 
logarithmic value of the acid dissociation constant, ܭ, is 
commonly used in practice.  
ܭ = − logଵ    (2)ܭ

pKୟ values can be represented in the other form, which is 
well known the Henderson-Hasselbalch equation: ܭ 	=
	ܪ	 + 	 logଵ[ܣܪ]	/	[ܣ−] [24].  

In this paper, in order to characterize the 20 amino acids, 
we employed pKୟ values of the ionizing groups of amino 
acids, pKୟଵ represents the carboxyl group (COOH) whilst 
pKୟଶ is of the ammonium ion (NH3).  

Forsyth et al. [25] investigated 24 proteins of known 
structure and found the empirical relationships between 
protein structure and carboxyl pKୟ values though these 
relationships are not very precise. There are a number of 
sources that cause the lack of precision. The uncertain 
findings from that research again advocate the use of fuzzy 
logic in modelling amino acids through their pKୟ values.  

 
3) Solvent exposed area (SEA) of amino acids (Å2)  

The SEA of an amino acid in a protein represents the 
extent the amino acid is accessible to the solvent 
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surrounding the protein. Regarding the SEA of amino acids, 
there are two categories are distinguished: hydrophobic and 
hydrophilic. Amino acids buried inside the structure of 
protein and thus shielded from the solvent are classified as 
hydrophobic, whilst amino acids close to the surface and 
thus exposed to the solvent are hydrophilic. However, this 
classification is not always precise due to the popularity of 
many biological rules exceptions. Hydrophilic residues are 
often found to be buried in the native structure and 
hydrophobic residues are often found close to the protein 
surface. The imprecision and uncertainty in measurement of 
the SEA of amino acid residues accordingly inspire the 
employment of fuzzy logic to characterize amino acids in 
PSSP. As numerous studies have found the significance of 
the amino acid SEA in understanding protein structures and 
functions [26-28], utilizing the SEA therefore would 
enhance the predictability of the protein secondary structure. 
In this paper, triples representing SEA of amino acids are 
employed as part of the amino acid representation.  

 
4) Volume or weight of amino acids  

The van der Waals volume of a protein molecule is the 
enclosed space composed of the van der Waals spheres of 
the constituent atoms. The van der Waals of small molecules 
can be computed by adding the values of constituent atoms 
or chemical groups if they are not structurally strained.  

Molecular weight of the protein composition is a sum of 
the molecular weights of the individual amino acid residues 
removing one H2O molecule per peptide pond (the water 
weight is 18.01, alpha-amino group is 8.56 and alpha-
carboxyl group is 3.56). This calculation is based on the 
assumption that no covalent modification has been applied 
to proteins.  

 
Fig. 1. Correlation between amino acids’ weight and volume 

As structural and biochemical characteristics of an amino 
acid in general or volume/mass in particular influence the 
local structural conformation of proteins [29], the inclusion 
of volume or weight in amino acid characterization would 
augment the PSSP performance. Moreover, because volume 
and weight of amino acids show a strong correlation as 
depicted in Fig. 1, we therefore just utilize only volume to 
characterize amino acids.  

 
B. Output mapping 

Generally, there are two possible ways for the amino acid 
and structure assignment: secondary structure must be given 
to amino acids based on the examination of the structure 

coordinates of the atoms in the PDB file or the three-
dimensional structure has been solved. Three popular 
algorithms used for protein secondary structure assignment 
are DSSP [30], STRIDE [31] and DEFINES [32]. The 
widely used algorithm is DSSP, which is the method of 
mapping between the atomic-resolution coordinates of the 
protein and the secondary structure. Eight categories of 
secondary structure are assigned as follows. Three types 
including 310 helix (G), α helix (H), π helix (I) are realized 
by having a repeated sequence of hydrogen bonds in which 
the residues are three, four or five residues separately 
respectively. The other types include beta bridge (B), which 
is a longer set of hydrogen bonds, beta bulges (E), turns (T), 
featuring hydrogen bonds typical of helices, loops (S), 
regions of high curvature, blank or (C), no other rules 
applies or loops. The three type category classifies the 
protein structure into α helix, β strand and coils.  

Table. 1. Protein secondary structure reduction 
Structure Reduced structure 
H, G, I H (helix) 
E, B E (strand) 
All other C (coil) 

In this paper, the above three-type category of protein 
structure (Table 1) is employed to demonstrate the 
performance of MOIT2FLS in PSSP. The next section 
briefly summarizes IT2FLS and steps to design a 
MOIT2FLS for protein structure prediction.  
 

IV. TYPE-2 FUZZY LOGIC SYSTEMS FOR PSSP 
A. Fuzzy Background  

A fuzzy logic system (FLS) is called a type-1 FLS (T1 
FLS) if it is described completely using type-1 fuzzy sets 
(T1 FSs) whilst a FLS that uses at least one type-2 fuzzy set 
(T2 FS) is called a type-2 FLS (T2 FLS) [33, 34]. A T2 FLS 
has more degrees of freedom than does a T1 FLS because it 
comprises more parameters. It therefore suggests that T2 
FLS has the potential to outperform a T1 FLS because of its 
larger number of design degrees of freedom. If uncertainties 
vanish, a type-2 FLS diminishes to a type-1 FLS.  

Basically the T2 FLS structure is similar to that of the T1 
FLS. The major differences are in using the T2 FSs (rather 
than T1 FSs) in antecedent parts of fuzzy rules and the 
output processor. The output processor of a T1 FLS 
transforms a T1 FS to a crisp number whilst a T2 FLS has 
two components in the output processor. The first is a type 
reduction that transforms a T2 FS into a T1 FS and the 
second is the defuzzifier that transforms a T1 FS into a crisp 
number. A general T2 FLS requires extensive computational 
cost and complicated implementation compared to a T1 FLS. 
A special case of T2 FLS, interval type-2 FLS (IT2 FLS) has 
been widely used for reduced computational burden [35]. In 
this paper, we proposed a new IT2FLS with 3 outputs 
corresponding with 3 classes of the protein secondary 
structure.  

 
B. Multi-Output Interval Type-2 Fuzzy Logic Systems  
 The T2 FLSs [36] deployed on the basis of T2 FSs. A 
general T2 FS is represented in three dimensions. The 
membership degree is not a crisp number but it is a FS. 
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Third dimension is the degree of the membership function 
(MF) at each point on footprint of uncertainty (FOU), which 
is the two-dimensional domain.  
 Since computation of the general T2 FSs is extensively 
complicated, ones tend to use interval type-2 FSs (IT2 FSs) 
because of its simplicity. IT2 FSs represent the membership 
degree by an interval rather than a FS. The third dimension 
value in the IT2 FS is the same everywhere so that it is 
ignored and only the FOU is used to describe the IT2 FS.  
 Similar to T1 FLSs and based on different fuzzy rule 
types, e.g. Mamdani, Takagi-Sugeno-Kang (TSK) or 
Tsukamoto, there are corresponding different IT2 FLSs can 
be implemented. In this paper, the special case of TSK fuzzy 
rule is employed to develop an IT2 FLS [37] for the protein 
secondary structure prediction. The IT2 FLS has 
demonstrated its effectiveness in a number of applications in 
the literature, e.g. see [38-41] for recent studies.  
 Some variants of IT2 FLS are recognized depending on 
the MFs used in the antecedent and consequent parts are IT2 
FSs and/or T1 FSs. We deploy herein the MOIT2FLS where 
antecedents are IT2 FSs and consequents are interval T1 
FSs. Assume the IT2 FLS consists of ܭ rules and  
antecedents in each rule, denote the ݈th rule by ܴ as 
follows:  

ܴ: IF ݔଵ is ܨ෨ଵ and ... and ݔ is ܨ෨, THEN ଵܻ
 =  ଵ andܥ

ଶܻ
 = ଶ and ଷܻܥ

 =  ଷܥ
where ݈ = 1, . . .  ෨ is the ݅th IT2 FS defined by a lowerܨ .ܭ,
and upper bound MF:  

(ݔ)ி෨ߤ = ቂߤி෨(ݔ),ߤி෨(ݔ)ቃ 
and ܥ is an interval T1 FS characterized by its centre and 
spread ܿ and ݏ respectively:  

ܥ = ൣܿ − ,ݏ ܿ +  ൧ݏ
where ݅ = 0,1, … ݔ Assume the input vector ., =
,ଶݔ,ଵݔ) … ,  ), an IT2 FLS inference ought to go throughݔ
the following steps:  
- Compute the lower and upper membership degree of ݔ 

on the corresponding antecedent part: ߤி෨(ݔ) and 
  .(ݔ)ி෨ߤ

- Compute the firing strength interval of the ݈th rule: 
ܨ  = [݂ ,݂


] where:  
݂ = (ݔ)ி෨ߤ ∗ (ݔ)ி෨ߤ ∗… ∗  (ݔ)ி෨ߤ

݂


= (ݔ)ி෨ߤ 	 ∗ 	(ݔ)ி෨ߤ ∗ … ∗  (ݔ)ி෨ߤ
- Compute the output interval of the ݈th fuzzy rule for each 

of the three outputs, ݕ, which is an interval T1 FS: 
ܻ
 = ݕ] ݆ ത] whereݕ, = 1,2,3.  

ݕ = ܿ
 −  ݏ

തݕ = ܿ +  ݏ
- The final crisp value of each output of the IT2 FLS 

model is calculated by combining the corresponding 
outputs of ܭ rules: 

ܻ = ൣ ܻ , ܻ൧

= න …
௬ೕ
భ∈[௬ೕ

భ ,௬ೕ
భ]

න න …
భ∈[భ,

భ
]௬ೕ

಼∈[௬ೕ
಼,௬ೕ

಼]
න 1

∑ ݂ ݕ
ୀଵ

∑ ݂
ୀଵ

ൗ
಼∈[಼,

಼
]

 

 In order to obtain a crisp output for the IT2 TSK FLS, a 
type-reduction and a defuzzifier are needed. The most 
popular type reduction is that of the iterative Karnik-Mendel 
procedure [42, 43]. This method however was found 
deficient and thus several other methods have been proposed 
in [44, 45]. Recently, Wu and Nie [46] introduced an 
enhancement on the iterative algorithm with stop condition 
(IASC) proposed in [47] for type-reduction. The method 
presented in [46], also the so-called EIASC algorithm, 
demonstrated more efficiency in type-reduction compared to 
previous methods. This paper accordingly employs the 
EIASC algorithm to calculate the values of ܻ and ܻ. The 
brief presentation of the EIASC is as follows.  
a) Calculating ࢅ:  
1) Sort ݕ (݈ = 1,2, . . .  in increasing order and assign the (ܭ,
sorted ݕ by the same name, but now ݕଵ < ଶݕ … <  . Linkݕ
݂  with their corresponding ݕ and renumber them so that 
their index matches to the renumbered ݕ. 
2) Initialize  

ܽ = ∑ ݂ݕ
ୀଵ , ܾ = ∑ ݂

ୀଵ , ܻ = ܮ  andݕ = 0 
3) Compute 

ܮ = ܮ + 1, ܽ = ܽ + ݂)ݕ

− ݂),  

ܾ = ܾ + ݂

− ݂, ܻ = ܽ/ܾ 

4) If ܻ ≤  .ାଵ, stop; otherwise, go to Step (3)ݕ
b) Calculating ࢅ:  
1) Sort ݕത (݈ = 1,2, . . .  in increasing order and assign the (ܭ,
sorted ݕത by the same name, but now ݕതଵ < തଶݕ … <  .തݕ
Relate ݂ with their corresponding ݕത  and renumber them so 
that their index links to the renumbered ݕത . 
2) Initialize  

ܽ = ∑ തݕ ݂̅
ୀଵ , ܾ = ∑ ݂̅

ୀଵ , തܻ = ܴ തଵ andݕ = 0 
3) Compute 

ܽ = ܽ − ݂)തோݕ
ோ
− ݂ோ), ܾ = ܾ − ݂

ோ
+ ݂ோ,  

തܻ = ܽ/ܾ, ܴ = ܴ − 1 
4) If തܻ ≥  .തோ, stop; otherwise, go to Step (3)ݕ
 Finally, the crisp output of the IT2 FLS is derived as a 
mean of ܻ and ܻ: ݕ = ൫ܻ + ܻ൯ 2⁄ . The above procedure is 
computed for each of the three outputs. The “winner-take-
all” rule is used to infer the final output of the protein 
secondary structure as detailed below:   

function Y = winner-take-all(ࢅ, ࢅ, ࢅ) 
     if( ଵܻ >= max( ଶܻ, ଷܻ) 
         Y = “H”; 
     elseif( ଶܻ > max( ଵܻ, ଷܻ) 
         Y = “E”; 
     else 
         Y = “C”; 
     end     
end 

Various IT2 MFs can be used in the IT2 FLS such as IT2 
triangular, trapezoidal, Gaussian, Cauchy, Laplace, or 
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general bell-shaped MFs. In this paper, the IT2 Gaussian MF 
is employed as a demonstration:  

ݔ)ி෨ߤ ,݇) = ݔ݁ − ଵ
ଶ
൬௫,ೖି



ఙ
 ൰൨ = ܰ൫݉

 , ,ଵߪൣ ,ଶߪ, ൧൯  (3) 

 Once the type of MFs, the number of inputs and the 
number of fuzzy rules are determined, an IT2 FLS can be 
constructed. The determination of parameters of a FLS is 
extremely important because its performance depends 
mainly on this process. Theoretically, parameters of a FLS 
are commonly obtained by experts. The experts’ knowledge 
however is limited. The more so if the number of rules 
increases and various proteins need to be investigated. 
Genetic algorithm (GA) is a popular tool to train FLSs to 
optimally tune their parameters. The following subsection 
presents the GA method and its application to train the 
MOIT2FLS.  
 
C. Training MOIT2FLS by GA 
 A GA [48-50] is an unorthodox search or optimization 
technique operated on a population of ݊ artificial 
individuals. Individuals are characterized by chromosomes 
(or genomes) ܵ, ݇ = {1, … ,݊}. The chromosome is a string 
of symbols, which are called genes, ܵ = (ܵଵ, … , ܵெ), and 
 is a string length. Individuals are evaluated via calculation ܯ
of a fitness function. To evolve through successive 
generations, GA performs three basic genetic operators: 
selection, crossover and mutation. Through chromosomes’ 
evolution, GA searches for the best solution(s) in the sense 
of the given fitness function. We employ GA to train the 
complicated FLSs comprising many parameters. The fitness 
function is the success rate ܳଷ of the training fuzzy models, 
computed using the formula: 
ܳଷ =

ഀ ାഁା
ே

  (4) 
where ܰ is the number of residues being predicted and ఈܲ  is 
the number of secondary structure of type ߙ, which is 
correctly predicted. Parameters of fuzzy models are coded 
into genes of the GA chromosomes/individuals. With a 
population of individuals, GA can simultaneously explore 
different parts of the training model’s parameter space and 
thus it is able to find the global solution to maximize the ܳଷ 
function aiming at obtaining optimal parameters for the 
MOIT2FLS.  

The GA training usually starts from a randomly initialized 
population and ends when it meets the determined stopping 
criteria. Since training process costs much time and is often 
trapped in local minima, the initialization of parameters is a 
nontrivial issue. In this paper, we utilize the Adaptive Vector 
Quantization (AVQ) clustering method [51] to identify the 
centres of IT2 Gaussian MFs in the antecedent part and the 
centres of interval T1 FSs in the consequent part. The well-
separated distribution of the resulting clusters from the AVQ 
method is useful in identifying the allocation of fuzzy rules 
in the IT2 FLS.  

We organize the corresponding input and output data into 
a unique observation of  + 3 dimensions where p is the 
number of inputs and three outputs corresponding to the 
three protein secondary structures. Denote ݔ is the ݅th 

organized observation (݅ = 1, …   is presented asݔ ,(ܰ,
follows: 
ݔ
= ,ଵݐݑ݊݅] ଶݐݑ݊݅ , … , ݐݑ݊݅

, ,ଵݐݑݐݑ ଶݐݑݐݑ  [ଷݐݑݐݑ,
where ݅݊ݐݑ

 is the ݆th input of the ݅th observation and 
ݐݑݐݑ

 is the output ݆th of the ݅th observation (݆ = 1,2,3). 
By clustering the sample of ܰ observations having the above 
format, we are able to derive the ܭ resulting clusters 
corresponding with ܭ fuzzy rules of the MOIT2FLS. Since 
the AVQ clustering is completed, centres of the resulting 
clusters are assigned to centres of the IT2 Gaussian MFs, 
which are employed in the antecedents of the fuzzy rules.  

The centres of the output interval of each rule will be 
assigned equal to the output value of the corresponding 
cluster. The widths of the IT2 Gaussian MFs and the spreads 
of the output interval of each rule are initialized randomly 
but they are checked to ensure satisfying their corresponding 
constraints. Running the AVQ clustering a number of times 
equal to the GA population size, we are able to obtain the 
initial population for GA.  

 
D. MOIT2FLS for PSSP 

After assigning secondary structures to amino acid 
sequence, the amino acid sequence is parsed into learnable 
reasoning patterns using the local window moving strategy. 
An odd integer ݊ = 2݉ + 1 where ݉ > 0 is an integer is 
determined for the input window size. In this study, the 
window size is assigned to 17, which was found to be 
optimal in [3-5]. The output is represented by the triple 
where the helix, strand and coil structures are [1 0 0], [0 1 0] 
and [0 0 1] respectively.  

After clustering by the AVQ algorithm, the multi-output 
fuzzy rules can be constructed to build the MOIT2FLS, 
which then is trained using the GA with 20 evolving 
generations (termination condition). Once the MOIT2FLS 
has been trained, a new amino acid pattern can be put into 
the system to obtain values of three outputs. Values of three 
outputs are compared and applied the principle “winner-
take-all” to determine the secondary structure of the central 
residue of the pattern.  
 

V. EXPERIMENTAL RESULTS 
A. Datasets 

The dataset in this study consists of 62 proteins which 
have been previously used in [5, 52]. Proteins with a number 
of residues greater than 200 are chosen for testing process 
(22 proteins presented in Table 2). The length of proteins are 
varied and summed up to more than 6300 residues in total. 
Three classes of secondary structures are distinguished 
including helices, sheets and coil. Helix and sheet types 
occupy 25% and 23% of the dataset respectively whilst the 
popular type is coil with 52%.  

Fig. 2 shows the molecular view of the Acprotease protein 
and its secondary structure. Whilst the coil (in white) 
occupies the most proportion of the whole protein, the helix 
and strand are much less in pink and yellow.  
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Fig. 2. The molecule view of the Acprotease protein (A) and 
its secondary structure (B). 

 
B. Results and Discussions 

In order to have an unbiased comparison between NN and 
FS models, both are developed and trained 20 times. Then, 
the average Q3 values are calculated and reported in Table 2 
along with results of the CF and GOR methods.  

Fig. 3 shows the analogous variation of the CF, GOR, NN 
and FS performance in PSSP across 22 proteins. In more 
details, for a specific protein, if a method gains high 
prediction accuracy, the other methods almost do the same 
and vice versa. Take an example, in case of the 
Carboxypeptidase A (1cpa) protein, the FS attained the 
worst performance at 55.9% accuracy so do the other 
methods when NN, GOR and CF models also obtained the 
worst performance at 44.8%, 39.7% and 32.8% respectively. 
On the other hand, in case of the Hemoglobin (2mhb) 
protein, the FS reached the highest accuracy at 87% whilst 

NN, GOR and CF models also achieved relatively high 
accuracy, at 81.5%, 59.3% and 50% respectively.  

 
Table 2. Q3 accuracy for testing dataset 

No. Proteins iden CF 
(%) 

GOR 
(%) 

NN 
(%) 

FS 
(%) 

1 Acprotease 1apr 40.32 51.61 72.58 79.03 
2 Aproteinase 1app 45.90 67.21 60.66 67.30 
3 Actinidin 2act 42.50 60.00 70.00 67.75 

4 Arabinose 
binding 1abp 39.53 46.51 65.12 72.09 

5 Beta trypsin 1ptn 56.10 65.85 65.08 75.26 

6 Carbonic 
anhydrase C 1cac 60.42 54.17 70.83 67.48 

7 Carboxypeptidase 
A 1cpa 32.76 39.66 44.83 55.94 

8 Concanavalin A 3cna 52.27 61.36 70.45 72.55 
9 Gamma trypsin A 2gch 47.73 59.09 75.00 68.27 
10 Hemoglobin 2mhb 50.00 59.26 81.48 87.04 

11 Lactate 
dehydrydrogenase 4lhd 46.03 58.73 55.56 61.56 

12 Lambda Fab 1fab 37.80 52.44 63.41 68.29 
13 Papain 8pap 38.46 71.79 74.36 69.67 

14 Phophoglycerate 
mutase 3pgm 46.51 46.51 79.07 72.00 

15 Subtilisin BPN 1sbt 36.54 53.85 51.92 61.74 
16 Thermolysin 2tln 36.67 53.33 66.67 69.67 
17 Tosyl elastase 1est 66.67 66.67 60.00 66.67 

18 Triosephosphate 
isomerase 1tim 47.83 69.57 65.22 68.87 

19 Glyceraldehyde 
dehydrogenase 1gpd 39.68 52.38 58.73 60.83 

20 Alcohol 
dehydrogenase 4adh 47.22 55.56 56.94 60.08 

21 Gluthatione 
reductase 2grs 40.45 58.43 44.94 57.93 

22 Rhodanese 1rhd 63.64 70.91 66.86 69.27 
   46.14 57.95 64.53 68.15 

 

 
Fig. 3. Analogous variation of four PSSP models 

 
It is obvious that the CF method has the worst 

performance compared to the other three investigated 
methods. On average the CF method just acquired the Q3 
accuracy approximately 46.1%. This is understandable due 
to the limitation and simplicity of the CF method. The 
highest accuracy the CF method achieved occurs in the case 
of the Tosyl elastase (1est) protein with nearly 66.7% of the 
Q3 rate, which is the equivalent best compared to the GOR 
and MOIT2FLS method. 
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Notably the GOR method is much superior to the CF 
method because it utilizes the information theory in 
prediction calculation. The average Q3 accuracy of the GOR 
method is approximately 58%, which is 12% higher that of 
the CF method. In cases of the Papain (8pap), 
Triosephosphate isomerase (1tim), Gluthatione reductase 
(2grs) and Rhodanese (1rhd) proteins, the GOR method even 
works slightly better than the proposed MOIT2FLS. 
However, in the rest of the cases, it shows poorer 
performance compared to the MOIT2FLS.  

The NN model reached the second best among the 
examined PSSP models with around 64.5% accuracy. 
Although in some proteins the FS is worse than the NN, but 
in most of the cases, the FS is higher than NN. In some 
proteins, FS can dominate the NN model up to over 10% of 
accuracy. For example, in case of the Gluthatione reductase 
(2grs) protein, the FS achieved the accuracy at 57.9% whilst 
the NN model is 13% lower than that of the FS, at just 
44.9% accuracy. Alternatively, in case of the 
Carboxypeptidase A (1cpa) protein, the FS model 
outperforms the NN model up to 11%, 55.9% compared to 
44.8% respectively. Furthermore, the FS model is also 
significantly superior to the NN model in cases of the Beta 
trypsin (1ptn) and Subtilisin BPN (1sbt) proteins, where the 
FS model respectively obtained 10.2% and 9.8% higher than 
those of the NN model.  

 
VI. CONCLUSIONS 

Amino acids are encoded using a new paradigm based on 
their quantitative properties including solvent exposed area, 
hydrophobicity, pKୟ values of ionizing groups, and volume. 
This encoding scheme reduces the computational cost but on 
the other hand augments the uncertainty in the modelling. 
The fuzzy logic systems, type-2 in particular, are thus 
employed to handle the uncertainties. The MOIT2FLS is 
proposed herein for PSSP. Data patterns are organized to 
compose of 3 outputs, i.e. H, E or C corresponding to three 
structure classes. The AVQ clustering method is employed 
to derive multi-output fuzzy rules that are critical component 
of the MOIT2FLS. MOIT2FLS models are then trained 
through a deployment of GA. The MOIT2FLS aims to 
explore the relationships between sequence and structure due 
to the fact that the organization of amino acids relatively 
affects the secondary structure of residues. The dominance 
of the MOIT2FLS over the CF, GOR and NN models in 
PSSP resulted from two factors. First is the encoding scheme 
via amino acid properties rather than the traditional binary 
encoding, which is computationally costly. The proposed 
encoding scheme represents each amino acid by an array of 
size 7, which is much less than the traditional binary 
encoding with size of 20 for each amino acid. The second 
factor is the imprecise modelling capacity of type-2 fuzzy 
system, which has been introduced to overcome the 
limitation of type-1 fuzzy logic. The excellent capability of 
type-2 fuzzy logic in uncertainty handling, as widely 
adopted in the field of control system or engineering, has 
furthermore demonstrated in the field of computational 
biology as showcased in this paper.  
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