
 
 

 

  

Abstract—Global warming causes increasing natural 
disasters and gradually threatens human life and property 
safety. Under such an uncertain environment, efficiency and 
effectiveness in the energy management are an important and a 
difficult question. This paper aims to provide an approach for 
energy management that optimizes the relationship between 
different variables such as time, areas, countries, users, seasons, 
evaluation methods, and various different energy productions 
such as nuclear, water, biomass, wind, solar, and thermal. To 
achieve this goal, this paper combines the technologies of 
ontology and fuzzy markup language (FML) with theories about 
uncertainty to evaluate the applicability of the energy 
production based on technological innovation, economic 
development, social safety, environmental protection, regional 
characteristics, and time series. The simulation results show 
that the proposed approach is feasible to provide an alternative 
for energy management through the viewpoints of people, 
governments, and enterprises. It is hoped to provide the 
optimized energy management decision model for different 
decision makers and users as a reference in the future. 

I. INTRODUCTION 
NALYZING and solving the problem of the climate 
change results in the gradual shortage of the 
non-renewable energy so enlarging the use of renewable 

energy has become an important topic of energy management 
in the world. Additionally, green technology has gradually 
become mature. If humans can further make full use of the 
natural resources to raise the efficiency of the renewable 
energy, it will be able to achieve the ideal goal of energy 
usage and management. Energy management varies in time, 
areas, countries, users, seasons, and evaluation method, and 
each energy has its specific features. Moreover, energy 
planning needs to take technological, economic, 
environmental, and social attributes into consideration. As a 
result, energy planning is a problem with a high uncertainty 
and has a strong relationship with time sequence and scale 
usage. When time changes, it is necessary to adjust energy 
demand and supply accordingly. 

Because of this, many researchers have published related 
researches in energy planning, forecast, and storage. For 
example, Kaya and Kahraman [1] proposed a modified fuzzy 
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technique for order preference by similarity to ideal solution 
(TOPSIS) methodology for the selection of the best energy 
technology alternative. Zafirakis et al. [2] developed a model 
to determine financial incentives for energy storage to 
promote the large-scale integration of wind energy. El-Karmi 
and Abu-Shikhah [3] studied the effect of introducing 
financial incentives to promote green electricity generation in 
Jordan and showed that wind energy is ranked first. Swift [4] 
made a comparison of the cost and financial returns for solar 
photovoltaic (PV) systems installed by businesses in different 
locations across the United States and showed that cost and 
financial returns vary dramatically depending on the location 
where they are installed. Ahmad and Tahar [5] developed an 
analytic hierarchy process (AHP)-based assessment model to 
prioritize renewable options, including hydropower, solar, 
wind, and biomass, by using a case of Malaysia. Zhang et al. 
[6] proposed three electricity supply scenarios for 2030 to 
demonstrate quantitatively the technological, economic, and 
environmental impacts of different supply policy selections 
and demand assumptions on future electricity systems. 

Some researches about fuzzy based energy management 
approach also have been published. For example, Dong et al. 
[7] developed a fuzzy radial interval linear programming 
(FRILP) model to support a robust planning of energy 
management with environmental and constraint-conservative 
considerations. Bas [8] proposed an integrated strength, 
weakness, opportunity, and threat (SWOT)-fuzzy TOPSIS 
methodology combined with AHP to analyze an electricity 
supply chain in Turkey. Kucukali and Baris [9] forecasted 
Turkey’s short-term gross annual electricity demand by 
applying fuzzy logic methodology based on general 
information on economic, political, and electricity market 
conditions of the country. Chakraborty et al. [10] presented an 
intelligent economic operation of smart grid environment to 
model the wind generation and PV generation as renewable 
power generation sources. Acampora et al. [11] exploited 
timed automata based fuzzy controllers for voltage regulation 
in smart grids to improve the grid voltage profile and reduce 
power losses. Chehri and Mouftah [12] proposed a 
fuzzy-based energy management controller to reduce the 
consumed energy of the building while respecting a fixed 
comfort. Xin et al. [13] proposed a genetic based fuzzy 
Q-learning consumer energy management controller to solve 
the energy management problems for demand response in 
electricity grid. 

FML was first proposed and developed by G. Acampora 
and V. Loia [14]. Currently, an IEEE CIS sponsored 
standardization process is started in order to make FML the 
first standard technology in the area of computational 
intelligence. FML is with the following features: 
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understandability, extendibility, and compatibility of 
implemented programs as well as efficiency of programming 
[14, 15]. Therefore, many researchers used FML to describe 
the knowledge base and the rule base of the developed fuzzy 
inference mechanism. For example, Acampora et al. [16] 
proposed the timed automata based fuzzy controllers to make 
game bots with human-like capabilities and used FML to 
design and implement the bots behavior. Lee et al. [17] used 
FML to construct the knowledge base and the rule base to 
infer degrees of pleasure and arousal based on the Go game 
situation. 

Energy planning using multi-criteria analysis has attracted 
the attention of decision-makers for a long time [1]. However, 
in the 1980s, owing to the climate change and the increase in 
environmental awareness, the related environmental and 
social issues must be incorporated into energy planning [1]. 
Moreover, multi-criteria decision-making (MCDM) often 
contains the vague information because domain experts’ 
responses to their preference degree to an object usually exist 
an uncertainty about the degree. That is, their responses are 
usually expressed in linguistic terms [1, 18]. Incorporated 
with fuzzy sets, there has been considerable research on 
MCDM: Wu and Liu [19] proposed an interval-valued 
intuitionistic trapezoidal fuzzy numbers (IVITFNs) to resolve 
multiple attribute group decision making (MAGDM) 
problem. Tapia-Rosero et al. [20] proposed a 
shape-similarity-based method to detect similar opinions in 
group decision-making.  

Combined fuzzy TOPSIS, this paper proposes a fuzzy 
markup language (FML)-based decision support system on 
energy management to recommend the suitable type of 
energy at the right time to further raise the efficiency of 
energy management. The remainder of this paper is organized 
as follows: Section II introduces the proposed FML-based 
decision support system. The optimization model for energy 
management is described in Section III. The simulation 
results are shown in Section IV. Finally, conclusion and 
future work are given in Section V. 

II. FML-BASED DECISION SUPPORT SYSTEM 

A. Energy Management Diagram 
The objective of energy management is resource 

conservation, climate protection, and cost savings while the 
users have the permanent access to the energy they need [21]. 
Fig. 1 shows the energy management diagram. 
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Fig. 1. Energy management diagram. 
 

It indicates that energy management needs to consider the 
issues on technological innovation, economic development, 
social safety, environmental protection, regional 
characteristics, and time series from the viewpoints of three 

different kinds of users, including people, governments, and 
enterprises. Fig. 2 shows the energy species distribution in 
Taiwan and Penghu islands, located in western coast of 
Taiwan, and some descriptions are as follows: 
 Wind farm is mainly located at the area along the western 

coastline of Taiwan. 
 Hydroelectric power station is constructed near the 

Central Mountain of Taiwan to transfer the energy. July 
and August are Taiwan’s typhoon season when is 
companied by a strong wind and a heavy rain. However, 
they are helpful for electricity generation if they are 
utilized at the right time. 

 One of the necessities to construct a solar power plant is to 
have a rich sunshine during the daytime. With a 
subtropical climate, Taiwan has Asia’s biggest 
high-concentration photovoltaic (HCPV) solar power 
plant [22]. 

SunshinePenghu

Taiwan

Rainfall

Water 
Energy

Solar 
Energy

Thermal 
Energy

Biomass 
Energy

Wind 
Energy

Nuclear 
Energy

Graphic Illustration:

 
Fig. 2. Energy species distribution in Taiwan and Penghu. 

B. Energy Decision Support System Ontology 
Fig. 3 shows the constructed energy decision support 

(EDSS) ontology, including a domain layer, a concept layer, 
and an instance layer. The concept layer describes the EDSS 
by using who, where, when, what, and how concepts, and they 
are described as follows: 
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Fig. 3. Energy decision support system ontology. 

 
 Who describes the land-use pattern, like for an industrial, 

a residential, or a commercial land use. 
 Where describes the region and country for executing 

energy management.  
 When is an important issue for energy management 

because each region or each country has its own time zone 
and the characteristics of its climate. Additionally, the 
scale of energy usage may change over time. For example, 
currently, the electricity generated by renewable energy 
still occupies a small part of total generated electricity 
from thermal energy. However, technical maturity to 
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construct the renewable energy will be advanced over 
time. Therefore, the occupancy of renewable energy will 
be raised in the future. 

 What defines the evaluated items, such as risk, technology, 
energy, environment, industry, and so on. 

 How defines the input, output, and the referred indexes for 
the adopted evaluated methods. For example, carbon 
emission, rainfall, population density, and land value are 
part of the referred indexes to create variables 
environmental awareness, electricity demand, economic 
development, electricity stability, and so on. 

C. FML-based Energy Decision Support Expert System 
In this subsection, one FML-based energy decision support 

system (EDSS) model is constructed, where we use four 
criteria as the input fuzzy variables to infer the assessment 
status for a certain kind of energy from the regional and 
season characteristics [23]. Fig. 4 shows its construction and 
each input varies in a specific region, for example, region A, 
region B, or region C. Based on pre-constructed knowledge 
base, rule base, and ontology, FML-based energy assessment 
status mechanism infers the energy assessment status for a 
certain kind of energy (Energy Category, EC) according to 
the inputs, including seasonal characteristics (SC), 
environmental awareness (EA), electricity demand (ED), and 
electricity stability (ES). 

FML-based
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Fig. 4. FML-based energy decision support expert system. 

 
The adopted fuzzy variables contain: (1) Seasonal 

Characteristics (SC): SC varies from different regions of the 
world and also changes over time. Countries with a long 
daylight in summer can consider raising the quantity of solar 
power plant. The heavy rainfall brought by weather events 
like typhoon can consider to promote the efficiency of the 
hydroelectricity power. (2) Environmental Awareness (EA): 
EA changes over time. Public concerns for natural 
environments increase while the concepts of low-carbon 
economy, green city, and zero pollution are gradually 
emphasized in the world. For example, currently, some 
developing countries do not much focus on environmental 
protection, but maybe their people’s interest in environmental 
protection will slowly grow year by year. (3) Electricity 
Demand (ED): This feature is related to the characteristics of 
the region. When this region is well developed or has a high 
standard of living, the electricity demand for the residents 
becomes high. (4) Electricity Stability (ES): Land-use 
planning is done by the government to decide this region is 
for a commercial, a residential, an industrial, or a mixed area. 
The more diverse this region’s land usage, the higher ES. (5) 

Energy Category (EC): It denotes a certain kind of energy, 
such as water, thermal, wind, solar, or nuclear. Based on the 
inputs of SC, EA, ED, and ES, the system can infer this 
energy’s assessment status. (6) Best Energy 
Recommendation (BER): According to SC, EA, ED, and ES, 
the proposed expert system infers the recommended level for 
EC, including Conflicted, Unfit, Moderate, Fit, and 
Recommended. Table I lists the adopted partial FML codes. 

TABLE I. PARTIAL FML CODES. 
<?xml version="1.0"?> 
<FuzzyController ip="localhost" name=""> 
  <KnowledgeBase> 
    <FuzzyVariable domainleft="0" domainright="12" name="SC" 
scale="" type="input"> 
      <FuzzyTerm name="Winter" hedge="Normal"> 
        <TrapezoidShape Param1="0" Param2="0" Param3="2" 
Param4="3" /> 
      </FuzzyTerm> 
      <FuzzyTerm name="Spring" hedge="Normal"> 
        <TrapezoidShape Param1="2" Param2="3" Param3="5" 
Param4="6" /> 
      </FuzzyTerm> 
      <FuzzyTerm name="Summer" hedge="Normal"> 
        <TrapezoidShape Param1="5" Param2="6" Param3="9" 
Param4="10" /> 
      </FuzzyTerm> 
      <FuzzyTerm name="Autumn" hedge="Normal"> 
        <TrapezoidShape Param1="9" Param2="10" Param3="12" 
Param4="12" /> 
      </FuzzyTerm> 
    </FuzzyVariable> 
… 
</KnowledgeBase> 
  <RuleBase activationMethod="MIN" andMethod="MIN" 
orMethod="MAX" name="RuleBase1" type="mamdani"> 
    <Rule name="Rule1" 
connector="and" weight="1" 
operator="MIN"> 
      <Antecedent> 
        <Clause> 
          <Variable>SC</Variable> 
          <Term>Autumn</Term> 
        </Clause> 
        <Clause> 
          <Variable>EA</Variable> 
          <Term>Medium</Term> 
        </Clause> 
        <Clause> 
          <Variable>ES</Variable> 
          <Term>Business</Term> 
        </Clause> 

        <Clause> 
          <Variable>EC</Variable> 
          <Term>Thermal</Term> 
        </Clause> 
        <Clause> 
          <Variable>ED</Variable> 
          <Term>Medium</Term> 
        </Clause> 
      </Antecedent> 
      <Consequent> 
        <Clause> 
          <Variable>BER</Variable> 
          <Term>Unwell</Term> 
        </Clause> 
      </Consequent> 
    </Rule> 

… 
  </RuleBase> 
</FuzzyController> 

III. OPTIMIZATION MODEL FOR ENERGY MANAGEMENT 

A. Introduction to Fuzzy TOPSIS 
TOPSIS is one of the known classical MCDM methods 

based on the concept that the chosen alternative should have 
the shortest distance from the positive ideal solution (PIS) and 
the farthest from the negative ideal solution (NIS) [24]. Chen 
[25] further extended TOPSIS to fuzzy environment where 
the rating of each alternative and the weight of each criterion 
are described by linguistic terms instead of numerical values. 
Recently, Dymova et al. [26] proposed an approach to 
generalization of fuzzy TOPSIS method and Wang et al. [27] 
investigated the multi-attribute group decision making 
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models under interval type-2 fuzzy environment. In this 
paper, a trapezoidal membership function for fuzzy set FS 
specified by four parameters ),,,:( dcbaxFS  is given in Eq. 
(1). Table II shows fuzzy TOPSIS algorithm. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
≤<−−
≤≤
<≤−−

<

=

dx
dxccdxd
cxb
bxaabax

ax

dcbaxFS

                            0
      )/()(

                            1
       )/()(
                            0

), , ,:(                  (1) 

TABLE II. FUZZY TOPSIS ALGORITHM. 
Input: 
1. Criteria (C) = {C1, C2, C3, …, CN} /*N denotes the number of 

criteria*/ 
2. Alternatives (A) = {A1, A2, A3, …, AM} /*M denotes the number of 

alternatives*/ 
3. Domain experts (DE) = {DE1, DE2, …, DEK}  /*K denotes the number 

of domain experts*/ 
4. Linguistic variables for importance weight of each criterion (LVW) = 

{LVW1, LVW2, …, LVWP} /*P denotes the number of linguistic 
variables for the weight of each criterion*/ 

5. Linguistic variables for ratings (LVR) = {LVR1, LVR2, …, LVRQ} /*Q 
denotes the number of linguistic variables for the rating of each 
alternative with respect to each criterion*/ 

6. Weights for all criteria defined by K domain experts = {{w1
1, w2

1, …, 
wN

1 }, {w1
2, w2

2, …, wN
2 }, …, {w1

K, w2
K, …, wN

K}}, where wj
k denotes the 

linguistic variable for importance weight, where wj
k  = 

(awj
k, bwj

k, cwj
k, dwj

k) denotes the weight’s linguistic variable given by 
the kth domain expert with respect to the jth criterion 

7. Ratings for all alternatives with respect to each criterion defined by K 
domain experts = {{x11

1 , x12
1 , …, xMN

1 }, {x11
2 , x12

2 , …, xMN
2 }, …, {x11

K , 
x12

K , …, xMN
K }}, where xij

k  = (axij
k , bxij

k , cxij
k , dxij

k ) denotes the rating’s 
linguistic variable given by the kth domain expert for the ith alternative 
with respect to the jth criterion 

Output: 
Assessment status of each alternative and its ranking order 
Method: 
Step 1: Aggregate the weights for all criteria defined by K domain 
experts by 

wj=(MIN(awj
k), 1

K
∑ bwj

k, 1
K

∑ cwj
k, MAX(dwj

k)) 
=(awj, bwj, cwj, dwj) 

W = [w1, w2, …, wN] 
where k = 1, 2, …, K, and j = 1, 2, ..., N 

Step 2: Aggregate the ratings for all alternatives with respect to each 
criterion defined by K domain experts by 

xij=(MIN(axij
k), 1

K
∑ bxij

k , 1
K

∑ cxij
k , MAX(dxij

k)) 
=(axij, bxij, cxij, dxij) 

X = ሾݔijሿMൈN 
where k = 1, 2, …, K, i = 1, 2, …, M, and j = 1, 2, ..., N 

Step 3: Construct the normalized fuzzy decision matrix R = ሾrijሿMൈN by 
rij=ሺaij

dj
* , bij

dj
* , cij

dj
* , dij

dj
*ሻ if the jth criterion is a benefit criterion 

rij=ሺaj
-

dij
, 

aj
-

cij
, 

aj
-

bij
, 

aj
-

aij
ሻ if the jth criterion is a cost criterion 

where i = 1, 2, …, M, j = 1, 2, ..., N, aj
-=MIN(axij), and dj

*=MAX(dxij) 
Step 4: Construct the weighted normalized fuzzy decision V = ሾvijሿMൈN 
by 

vij=rij ൈ wj=(avij, bvij, cvij, dvij) 
where i = 1, 2, …, M, j = 1, 2, ..., N 

Step 5: Define fuzzy positive-ideal solution (FPIS) A* = [v1
*, v2

*, …, vN
* ,], 

where vN
* =(MAX(dviN), MAX(dviN), MAX(dviN), MAX(dviN)) and i = 1, 

2, …, M 
Step 6: Define fuzzy negative-ideal solution (FNIS) A- = [v1

- , v2
- , …, vN

- ,], 
where vN

- =(MIN(aviN), MIN(aviN), MIN(aviN), MIN(aviN)) and i = 1, 
2, …, M 

Step 7: Calculate the distance of each alternative from A*  
di

*=∑ dሺvij,vj
*N

jୀଵ ), where i = 1, 2, …, M 
Step 8: Calculate the distance of each alternative from A- 

di
-=∑ dሺvij,vj

-N
jୀଵ ), where i = 1, 2, …, M 

Step 9: Calculate the closeness coefficient (CC) of each alternative 

CCi = di
-

di
*+di

-, where i = 1, 2, …, M 

CC = [CC1, CC2, …, CCM] 
Step 10: Sort CC in an ascending order and store the results into the 
ranking matrix RK =  [RK1, RK2, …, RKM] 
Step 11: End 

B. Fuzzy TOPSIS-Based Energy Decision Support Expert 
System 
FML-based energy decision support expert system only 

considers the energy management from the viewpoints of 
regional characteristics and time series. However, in this 
subsection, we further extend the considered variables 
because energy management is a complex task and involves 
in many issues. Fig. 5 shows the criteria that are related to the 
optimization of energy management for different types of 
energy according to six different viewpoints, including 
technological innovation, economic development, social 
safety, environmental protection, regional characteristics, and 
time series. Table III shows the brief descriptions of the 
adopted sub-criteria in this paper, where “*” denotes this 
criterion is a benefit criterion and “-” denotes this criterion is 
a cost criterion. The bigger the cost criterion value, the more 
disadvantaged for a certain kind of energy. On the contrary, 
the bigger the benefit criterion value, the more advantaged for 
a certain kind of energy. Table IV shows six energy 
alternatives discussed in this paper. 
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Fig. 5. Factors related to energy decision support optimization. 

 
TABLE III. DESCRIPTIONS OF THE ADOPTED SUB-CRITERIA. 

No. Name Description 
Technological Innovation 

C12* Technical 
Maturity 

Technical development stage for a certain kind 
of energy 

C7* Conversion 
Efficiency 

Efficiency converting energy from one form to 
another one for a certain kind of energy 

C2- Lead Time Spent time from construction to operation for a 
certain kind of energy power plant 

Economic Development 

C3- Construction 
Cost 

Invested cost from construction to operation for 
a certain kind of energy power plant 

C9* Operational Life Total time from operation to phase out  for a 
certain kind of energy power plant 

C11* Resource 
Potential 

Potential storage capacity that has not yet used 
for a certain kind of energy 

C10* Feed-in-Tariff 
Rate 

Subsidized prices coming from the government 
for a certain kind of energy 

Social Safety 

C6* Public 
Acceptance 

Level for the public acceptance for a certain 
kind of energy 
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C8* Job Opportunity Creation in employment for constructing a 
certain kind of energy power plant 

Environmental Protection 

C1- Carbon Emission CO2 emission caused by a certain kind of 
energy 

C5- Environmental 
Impact 

Level of ecological damage caused by a certain 
kind of energy 

C4- Land-Use 
Requirement 

Land requirement for constructing a certain 
kind of energy power plant 

Regional Characteristics 

C13* Environmental 
Awareness 

Level of environmental awareness for residents 
in this region 

C14* Standard of 
Living 

Residents’ standard of living in this region 

C15* Land-Use 
Pattern 

Land-use pattern in this region 

Time Series 
C16* Seasonal Effect Seasonal effect on a certain kind of energy 
C17* Usage Scale Usage scale for a certain kind of energy 
 

TABLE IV. DESCRIPTIONS OF SIX ENERGY ALTERNATIVES. 
No. A1 A2 A3 A4 A5 A6 

Name Water Thermal Biomass Wind Solar Nuclear 

C. Optimization Model for Energy Management 
In this sub-section, we plan to propose an optimization 

model for energy management in the future. Fig. 6 shows the 
concepts of the optimization model for energy management. 
In Section II.C, the proposed expert system outputs a 
recommended “energy category (EC).” In order to use an 
optimizer like particle swarm optimization (PSO) model, the 
proposed expert system takes as input a probability 
distribution over the energy category vector like wind, solar, 
water, biomass, nuclear, and thermal. Then, the system 
returns a value such as unit commitment, reserve margin, or 
price/social cost for the given distribution. After that, PSO 
could look for the best distribution over the energy category 
vector. 

Country / Asia Country / Europe Country / Americas Region

Spring, Summer, Autumn, Winter Season

Optimization Mechanism

Price/Social CostReserve Margin

NuclearWind Solar

Unit Commitment

…

Water Thermal Biomass

……

…

Particle Swarm Optimization

…

…
Energy  

Fig. 6. Optimization model for energy management. 
 

In the future, we could plan do the following optimizations: 
(1) Optimize across several geographic locations, for instance, 
optimizing for the entire country located in different regions 
according to the features of the climate. Then, we could use 
PSO to optimize the distribution of power plant. (2) Optimize 
the weight given for each criterion and sub-criteria in 
Sections II.A and II.B through simulations. The different 
weights were taken from the literature. Moreover, if we have 
direct access to the value of these weights, then a simple 
gradient descent would give us the optimal solution. 

IV. SIMULATION RESULTS 
In this section, some simulation results are given to show 

the performance of the proposed system. There are two parts 
of the simulation results. One part is done by executing the 
proposed fuzzy TOPSIS-based energy decision support 
expert system and another part is provided by FML-based 
energy decision support system. After that, we make a 
comparison about these two-part simulation results. 

People, governments, and enterprises often have a different 
thought on energy management. Generally speaking, the 
main concern for people is about the impact on their 
surroundings when a power plant was scheduled to construct 
near their residence. But, enterprises much emphasize on the 
profits after investing an amount of money to construct a 
power plant or doing a business in energy management. 
Compared to people and enterprises, the governments require 
considering the policies that will benefit the society as a 
whole to meet the requirements of people and enterprises. 
Based on such an assumption, we simulate three domain 
experts (DE1, DE2, and DE3) to give the importance weight of 
the criteria and ratings of the six alternatives with respect to 
each criterion to represent Taiwanese people, governments, 
and enterprises, respectively. Table V shows the basic 
information of four simulations (Exps. 1, 2, 3, and 4) by 
executing the fuzzy TOPSIS-based energy decision support 
expert system. In our simulations, there are seventeen criteria 
(Table III) and six energy alternatives (Table IV) are 
considered. 

TABLE V. DESCRIPTIONS OF FOUR SIMULATIONS. 
Exp. No. Description 

1 The opinions of DE1, DE2, and DE3 are aggregated together to 
show the ranking order of the alternatives. 

2 Only the opinions of DE1 are considered to show the ranking 
order of the alternatives. 

3 Only the opinions of DE2 are considered to show the ranking 
order of the alternatives. 

4 Only the opinions of DE3 are considered to show the ranking 
order of the alternatives. 

 
Fig. 7 shows the closeness coefficient (CC) for six energy 

alternatives with different experiments. Table VI shows the 
ranking order of six alternatives for Exps.1-4. Fig. 8 shows 
the radar chart for six energy alternatives’ ranking order. It 
indicates the following results: (1) Solar energy is the first 
recommended energy alternative for Exps. 1, 2, and 3. 
Additionally, the second alternative is wind energy for these 
three experiments. (2) From the viewpoint of enterprises (Exp. 
4), the first rank is biomass energy and the second one is 
thermal energy. (3) Nuclear energy is not welcome from the 
viewpoint of the people (Exp. 2). (4) For aggregating people, 
governments, and enterprises’ thoughts (Exp. 1) or only 
considering people’s thoughts, the first three energy 
alternatives are all renewable energy. 

Table VII shows the simulation results from the 
FML-based energy decision support system by considering 
the following situations: It is summer, people’s 
environmental awareness is medium, standard of living is 
high for this region, and the land use is a residential pattern 
[23]. Compared to Exp. 3, the ranking order roughly matches 
with each other. The best recommended energy alternative is 
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solar energy, next one is wind energy and nuclear energy. 
Currently, Taiwan’s government is promoting solar energy 
and encouraging Taiwanese people, especially those who live 
in southern Taiwan, to install solar Photovoltaic (PV) on the 
roof of their houses by providing some financial incentives 
like a feed-in tariff (FIT) [28]. Therefore, solar energy is 
welcome for Taiwanese people, which meets the simulation 
result. 
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Fig. 7. Closeness coefficient (CC) for six energy alternatives. 

 
TABLE VI. RANKING ORDER FOR SIX ENERGY ALTERNATIVES. 

Exp. 
No 

Energy Alternative 
A1 

Water 
A2 

Thermal 
A3 

Biomass 
A4 

Wind 
A5 

Solar 
A6 

Nuclear 
1 3 6 4 2 1 5 
2 3 5 4 2 1 6 
3 4 6 5 2 1 3 
4 6 2 1 5 4 3 
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Fig. 8. Radar char displaying the ranking of six energy alternatives. 

 
TABLE VII. SIMULATION RESULTS. 

FML-based energy decision support expert system 
Energy Alternative BER Assessment Status 

Water 1.27 Conflicted 
Thermal 1.27 Conflicted 

Wind 5.5 Moderate 
Solar 7.5 Fit 

Nuclear 5.5 Moderate 
Ranking Order: Solar > Wind, Nuclear > Water, Thermal 

Exp. 3: Fuzzy TOPSIS-based energy decision support expert system 
Ranking Order: Solar > Wind > Nuclear > Water > Biomass > Thermal 

V. CONCLUSION AND FUTURE WORK 
This paper aims to provide an approach for energy 

management that optimizes the relationship between different 
variables and various different energy productions. The 
simulation results show that the proposed approach is feasible 
to provide an alternative for energy management through the 
viewpoints of people, governments, and enterprises. 
However, the simulation results still have some space to 
further improve in the future. For example, (1) optimize 
across several geographic locations by using PSO, (2) 
optimize the weight given for each criterion and sub-criteria, 
and (3) incorporate the technologies of the artificial 
intelligence into the proposed system to improve the 
performance. Additionally, we will also try to set genetic 
algorithm (GA) or differential evolution (DE) to optimize the 
performance of the system and apply the proposed approach 
to some real-world experiments. 
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