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Abstract— Handling very large data is an important issue in
FCM-type clustering and several incremental algorithms have
been proved to be useful in FCM clustering. In this paper,
the incremental algorithms are extended to fuzzy co-clustering
of cooccurrence matrices, whose goal is to simultaneously
partition objects and items considering their cooccurrence
information. Single pass and online approaches are applied
to fuzzy clustering for categorical multivariate data (FCCM)
and fuzzy CoDoK, which try to maximize the aggregation
degrees of co-clusters adopting entropy-based and quadratic-
based membership fuzzifications. Several experimental results
demonstrate the applicability of the incremental approaches to
fuzzy co-clustering algorithms.

I. INTRODUCTION

HANDLING very large data is an important issue in
various real world data analysis and many extended

algorithms for applying fuzzy c-means (FCM) clustering [1]
to large data have been proposed. Havens et al. [2] in-
troduced a random sampling approach of random sam-
pling plus extension FCM (rseFCM) and two incremental
approaches of single-pass FCM (spFCM) [3] and online
FCM (oFCM) [4], and extended the approaches to kernel
fuzzy c-means (KFCM) [5]. rseFCM is a simple process of
reducing the number of objects through random sampling
but clustering quality might be significantly degraded. In the
incremental approaches, the whole data set was randomly
partitioned into data chunks and FCM clustering was per-
formed with a chunk composed of a small subset at a time.
The cluster structures extracted with each chunk were inher-
ited in single-pass processes or merged in online (parallel)
processes. In FCM clustering, each cluster is represented
by its prototypical cluster center and the cluster centers are
identified with additional objects in later operations.

In this paper, the sampling and incremental approaches
are extended to fuzzy co-clustering models. Co-clustering
achieves the task of simultaneous partitioning of objects and
items considering their cooccurrence information. The data
to be clustered is given by a cooccurrence matrix, whose
elements represent the degree of coocurrence of object-
item pairs, e.g., the number of appearance of keywords in
documents and the frequencies of purchase of items by
customers. Fuzzy clustering for categorical multivariate data
(FCCM) [6] is an FCM-type fuzzy co-clustering algorithm,
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which simultaneously estimates two types of fuzzy member-
ships so that the degree of co-cluster aggregations of objects
and items is maximized. The fuzzy memberships of objects
are designed in a similar concept to FCM, in which they
represent exclusive assignment of objects to clusters such that
the sum of memberships w.r.t. clusters are constrained to be
one. On the other hand, the fuzzy memberships of items are
mostly responsible for representing the mutual typicalities in
each cluster such that the sum of memberships w.r.t. items
are constrained to be one in each cluster. In FCCM, the
fuzzification of memberships is achieved by the entropy-
based method [7], [8]. Fuzzy CoDoK [9] is another fuzzy
co-clustering model, in which the fuzzification of member-
ships is achieved by the quadratic-based method [10]. The
quadratic-based fuzzification method is useful for handling
large data sets avoiding overflow in membership calculation
while it needs a trick for deriving non-negative memberships.

Because FCCM and fuzzy CoDoK are prototype-less
co-clustering algorithms, the conventional incremental ap-
proaches for FCM, in which prototypes are used as the
messengers of cluster structures, cannot be directly applied to
them. In this paper, item memberships are adopted for taking
over the cluster characteristics in the incremental processes.
Although item memberships cannot be identified with virtual
objects unlike prototypical cluster centers in FCM, they have
structural information of co-clusters. Then, they are utilized
as additional virtual objects after normalization.

The remaining parts of this paper are organized as follows:
Section II gives a brief review on the background of this
research. The incremental procedures for fuzzy co-clustering
of very large cooccurrence matrices are proposed in Section
III. The applicability of the proposed procedures is demon-
strated in Section IV and the summary conclusions are given
in Section V.

II. BACKGROUND

A. FCM and weighted FCM

FCM [1] is a basic method of fuzzy clustering, in which
each cluster is represented by its prototypical cluster center.
Assume that we have n objects, which are characterized by
p attributes: xi = (xi1, . . . , xip)

�, i = 1, . . . , n, and the
goal is to partition the objects into C fuzzy clusters, whose
cluster centers are bc, c = 1, . . . , C. Cluster assignments of
object i are given by fuzzy memberships uci ∈ [0, 1], c =
1, . . . , C such that

∑C
c=1 uci = 1. The objective function to
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be minimized is defined as the sum of within-cluster errors:

Lfcm =
C∑

c=1

n∑

i=1

umci ||xi − bc||2. (1)

m (m > 1) is an exponential weight for membership fuzzi-
fication and the model is reduced to the crisp k-Means [11]
if m = 1. The clustering algorithm is an iterative process of
membership estimation and cluster center updating.

Although the conventional FCM considers that each object
is equally important in the clustering solution, it is also
the case that objects have different relative importance. In
such cases, FCM clustering should be performed considering
the relative importance, which is given by αi for object i.
Introducing the weight αi, the objective function of weighted
FCM (wFCM) is defined as:

Lwfcm =
C∑

c=1

n∑

i=1

αiu
m
ci ||xi − bc||2. (2)

In wFCM, the objects with larger αi have higher responsi-
bility in cluster center estimation while fuzzy memberships
are estimated in the same manner with FCM.

B. Sampling and Incremental approaches in FCM

In handling very large data sets composed of a huge
number of objects, it is difficult to process all objects in
the batch algorithm. In order to reduce the computational
overload, the FCM algorithm should be applied to a subset
randomly extracted from the whole data sets.

Random sampling plus extension FCM (rseFCM) is a
simple approach, in which the conventional FCM algorithm
is performed with only a subset randomly extracted objects,
and then, the derived cluster centers are extended for remain-
ing objects in membership estimation. Although rseFCM
has its computational efficiency, the cluster quality may be
significantly degraded because a large part of data objects
are removed from cluster structure estimation.

In order to utilize whole data objects with low compu-
tational efforts, several incremental algorithms have been
proposed, in which FCM algorithms are performed with a
chunk composed of a small subset at a time. The whole data
set is randomly partitioned into data chunks and the cluster
structures extracted with each chunk are inherited in single-
pass processes or merged in online (parallel) processes. In
FCM clustering, each cluster is represented by its prototyp-
ical cluster center and the cluster centers are identified with
additional objects in later operations.

In single-pass FCM (spFCM) [3], FCM or wFCM are
sequentially performed in a single pass, where the previous
cluster centers are added into the next chunk as virtual
objects considering their responsibility weights of how many
objects they are supported by. Then, the cluster centers
derived from the final chunk can be representative cluster
centers of whole data set while the fuzzy memberships
should be re-calculated for all objects using the final cluster
centers.

Online FCM (oFCM) [4] is a two stage algorithm. In the
first stage, FCM is separately performed with every data
chunk in parallel. Then, in the second stage, the cluster
centers estimated from each data chunk are gathered into a
new virtual data set, and wFCM is applied considering their
responsibility weights.

In these incremental algorithms, cluster centers play an
important role of the messengers of cluster structures and are
identified with virtual objects because they are also defined
in the same data space with vector observations.

In the remaining parts of this paper, the incremental
approaches are modified for performing prototype-less co-
clustering of very large data sets.

III. FUZZY CO-CLUSTERING AND INCREMENTAL

ALGORITHMS

Assume that we have a cooccurrence matrix R = {rij}
on objects i = 1, . . . , n and items j = 1, . . . , p, in which rij
represents the degree of cooccurrence of item j with object
i. The goal of co-clustering is to simultaneously partition
objects and items by estimating two types of fuzzy member-
ships. The fuzzy memberships of objects uci are designed in
a similar concept to FCM, in which they represent exclusive
assignment of objects to clusters such that

∑C
c=1 uci = 1.

On the other hand, in order to avoid trivial solutions, the
fuzzy memberships of items wcj are mostly responsible for
representing the mutual typicalities in each cluster such that∑p
j=1 wcj = 1.

A. FCCM

Oh et al. [6] proposed the FCM-type co-clustering model,
which is called FCCM, by modifying the FCM algorithm
for handling cooccurrence information, where the cluster
aggregation degree of each cluster is maximized:

Lfccm =
C∑

c=1

n∑

i=1

p∑

j=1

uciwcjrij

−λu
C∑

c=1

n∑

i=1

uci log uci

−λw
C∑

c=1

p∑

j=1

wcj logwcj . (3)

In FCCM, the entropy-based fuzzification method [7], [8]
were adopted instead of the standard approach in FCM
because the exponential weight m in FCM can work only in
the minimization framework of positive objective functions.
λu and λw play a similar role to m, where larger λ brings
fuzzier partitions while small λ brings crisp partitions.

The clustering algorithm is an iterative process of updating
uci and wcj using the following rules:

uci =

exp

⎛

⎝λ−1
u

p∑

j=1

wcjrij

⎞

⎠

C∑

�=1

exp

⎛

⎝λ−1
u

p∑

j=1

w�jrij

⎞

⎠

, (4)

2495



and

wcj =

exp

(

λ−1
w

n∑

i=1

ucirij

)

p∑

�=1

exp

(

λ−1
w

n∑

i=1

uciri�

) . (5)

B. Fuzzy CoDoK

In the entropy-based FCCM algorithm using the
exponential-type component function, membership calcula-
tion may be suffered from overflow when the numbers
of objects and/or items are large. Fuzzy CoDoK [9] is a
modified algorithm of FCCM, in which the fuzzification of
memberships is achieved by the quadratic-based method [10].

Lcodok =
C∑

c=1

n∑

i=1

p∑

j=1

uciwcjrij

−Tu
C∑

c=1

n∑

i=1

u2ci

−Tw
C∑

c=1

p∑

j=1

w2
cj . (6)

Tu and Tw play a similar role to λu and λw of the entropy-
based method, and tune the degree of fuzziness, where a
larger T brings fuzzier partitions. Considering the optimality
condition ∂Lcodok/∂uci = 0 and ∂Lcodok/∂wcj = 0, the
updating rules for uci and wcj are derived as follows:

uci =
1

C
+

1

2Tu

⎛

⎝
p∑

j=1

wcjrij − 1

C

C∑

�=1

p∑

j=1

w�jrij

⎞

⎠ , (7)

wcj =
1

p
+

1

2Tw

(
n∑

i=1

ucirij − 1

p

p∑

�=1

n∑

i=1

uciri�

)

. (8)

Here, we must note that the updating rules of Eqs.(7)
and (8) can derive negative memberships while uci and
wcj must be non-negative. In a simple strategy, negative
memberships are replaced with zero-memberships and the
remaining positive memberships are renormalized so as to
sum to one.

C. Sampling and Incremental Algorithms for Fuzzy Co-
clustering

In this paper, rseFCM, spFCM and oFCM are modified
for applying to fuzzy co-clustering tasks.

1) Random Sample and Extend Approach: rseFCM is
extended to fuzzy co-clustering algorithms of rseFCCM (or
rseFuzzy CoDoK). In this approach, ns(ns < n) objects
are randomly selected from n objects and an ns × p matrix
Rs is constructed. Then, the conventional FCCM (or fuzzy
CoDoK) is performed with Rs. After convergence, the de-
rived item memberships wcj are extended to the remaining
objects for calculating their memberships uci.

2) Single-pass Approach: spFCM is extended to fuzzy co-
clustering algorithms of spFCCM (or spFuzzy CoDoK). In
this approach, n objects are first partitioned into s disjoint
subsets, each of which consists of ns objects, and ns × p
submatrices R1, . . . , Rs are constructed. In the single pass
process, FCCM (or fuzzy CoDoK) is sequentially applied to
R1, . . . , Rs inheriting the previous co-cluster structures.

In spFCM, previous cluster centers were added to next
chunks as the messengers of the previous cluster structures.
However, in fuzzy co-clustering, we do not have such pro-
totypes, which are estimated in the same data space with
object observations. In this paper, the applicability of item
memberships wcj is considered because they play a role for
characterizing each co-cluster. Introducing the virtual objects,
a submatrix Rk is modified to an (ns + C) × p matrix
R∗
k = {r∗ij}, whose (ns + c)th row is given by the item

memberships of cluster c. Then, FCCM (or fuzzy CoDoK) is
sequentially applied considering their responsibility weights.

When each object is associated with its responsibility
weight αi, weighted FCCM is implemented by modifying
the updating rule for item memberships of Eq. (5) as follows:

wcj =

exp

(

λ−1
w

n∑

i=1

αiucirij

)

p∑

�=1

exp

(

λ−1
w

n∑

i=1

αiuciri�

) . (9)

In a same manner, weighted fuzzy CoDoK modifies Eq. (8)
as follows:

wcj =
1

p
+

1

2Tw

(
n∑

i=1

αiucirij − 1

p

p∑

�=1

n∑

i=1

αiuciri�

)

.

(10)
It can be regarded in these formula as if we have αi object
i. On the other hand, object memberships are still updated
by Eqs. (4) and (7).

In the submatrix R∗
k, objects i = 1, . . . , ns are weighted

as αi = 1 while the additional virtual objects i = ns +
1, . . . , ns + C are weighted considering the number of
objects, which support the item memberships in the previous
subprocess, as follows:

αns+c =

ns+C∑

i=1

ũci × α̃i, (11)

where ũci and α̃i are the parameters of the previous subpro-
cess.

Here, in contrast to FCM, we should note that item
memberships wc = (wc1, . . . , wcp)

�, c = 1, . . . , C are not
directly comparative with a row element of the cooccurrence
matrix r· = (r·1, . . . , r·p) because wc are normalized so
that they do not represent cooccurrence degree of object-item
pairs but represent relative typicalities among items, i.e., wcj
often have much smaller values than rij because of the sum-
to-one condition. In the proposed algorithm of spFCCM (or
spFuzzy CoDoK), before introducing wc into Rk (k > 1),
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the elements of wc are normalized so as to have same range
with original cooccurrence information rij as follows:

w∗
cj = rmin

ij +
wcj − wmin

cj

wmax
cj − wmin

cj

(rmax
ij − rmin

ij ) (12)

Additionally, it is obvious that
∑n
i=1 αiucirij and∑n

i=1 αiucirij − 1
p

∑p
�=1

∑n
i=1 αiuciri� are proportional to

the number of objects and the effects of λw and Tw are
decreased as we use more virtual objects [12]. Then, the
fuzzy degrees of λw and Tw should also be proportionally
increased corresponding to the sum of objects weights as
follows:

λ∗w(T
∗
w) = λw(Tw)×

∑ns+C
i=1 αi
ns

. (13)

After the sth subprocess with Rs, the final item mem-
berships wc, c = 1, . . . , C are then extended to the objects
included in R1, . . . , Rs−1 for calculating their final object
memberships.

By the way, in the experiments shown in the next section,
the initial item memberships wcj in each subprocess were
given by the resulted memberships of the previous subprocess
for computational efficiencies.

3) On-line Approach: oFCM is extended to fuzzy co-
clustering algorithms of oFCCM (or oFuzzy CoDoK). In
this approach, n objects are also partitioned into s disjoint
subsets, each of which consists of ns objects, and ns × p
submatrices R1, . . . , Rs are constructed. In the on-line pro-
cess, FCCM (or fuzzy CoDoK) is first separately applied
to R1, . . . , Rs in parallel. Then, the item memberships are
merged into a new virtual (s × C) × p matrix R̃, which is
available in the second stage for applying weighted FCCM
(or weighted fuzzy CoDoK). The final item memberships are
extended to the whole original objects and the final object
memberships are calculated.

In the same manner with spFCCM (or spFuzzy CoDoK),
the item memberships derived from the kth submatrix wk

c =
(wkc1, . . . , w

k
cp) should be normalized so as to have same

range with rij before the second stage. The responsibility
weight on item membership vector wk

c is also given by

αkc =

ns∑

i=1

ukci, (14)

where ukci are the object memberships derived from subma-
trix Rk. Considering the responsibility weights, weighted
FCCM (or weighted fuzzy CoDoK) should also tune the
fuzzification degree.

D. Complexity

Next, the time and space complexities are theoretically es-
timated. The updating rules for object memberships (Eqs.(4)
and (7)) implies that the time complexity on a single uci is
summarized as O(tCm), where t is the number of iteration.
On the other hand, from Eqs.(5) and (8), the time complexity
on a single wcj is O(tmn). Then, the total time complexities
are given as Table I, which indicates that the theoretical time
complexities of spFCCM (spFuzzy CoDoK) and oFCCM

(a) noiseless (R0) (b) noisy (R1)

Fig. 1. Artificial cooccurrence matrices

(oFuzzy CoDoK) are equivalent to that of FCCM while
rseFCCM (rseFuzzy CoDoK) can reduce the time complexity
using a fewer number of objects only. However, as is
also noted in [2], the incremental approaches needs much
smaller number of iterations than the conventional whole data
approaches in practice.

In a same manner, the space complexities can also be
estimated as shown in Table I. The space complexity of both
the sampling and incremental approaches are smaller than the
whole data cases, and is proportional to the number of objects
in each chunk (n/s) because we need keep parameters only
on the current objects in each subprocess.

Then, the proposed sampling and incremental approaches
can reduce computational time and memory requirement.

IV. EXPERIMENTAL RESULTS

Comparative experiments were performed with an artifi-
cially generated cooccurrence matrix. Figure 1-(a) shows the
ideal (noiseless) data matrix R0 composed of 100 objects and
60 items, which includes four co-clusters. Black and white
cells indicate rij = 1 and rij = 0, respectively. 10 noisy
subsets, each of which is composed of 100 objects and 60
items, were generated by replacing randomly selected ele-
ment with its counterpart. Then, the 10 subsets R1, . . . , R10

were gathered into a 1000× 60 cooccurrence matrix R. For
example, the first subset R1 is shown in Fig. 1-(b). In this
experiment, FCCM (fuzzy CoDoK) algorithms were applied
with C = 4 and λu = 0.001 (Tu = 0.001). λw (Tw) was set
as λw = 100.0 (Tw = 2000.0) for 100 objects (single subset)
cases, and was increased in proportion to the number of
objects because the degree of fuzziness of item memberships
is dependent on the number of objects. Each algorithm
was performed 50 times with different initialization and the
average of 50 trials is evaluated.

A. Comparison of Partition Quality

Tables II and III compares the quality of item memberships
derived by sampling approaches, where the partition quality
is evaluated by the similarity with the ideal (noiseless) result.
The tables present the correlation coefficients between the
ideal item memberships given from R0 and those given

2497



TABLE I

COMPARISON OF TIME AND SPACE COMPLEXITY

Algorithm Time Space

FCCM(Fuzzy CoDoK) O(tCmn(C +m)) O((C +m)n)
rseFCCM(rseFuzzy CoDoK) O(tCmn(C +m)/s) O((C +m)(n/s))
spFCCM(spFuzzy CoDoK) O(tCmn(C +m)) O((C +m)(n/s))
oFCCM(oFuzzy CoDoK) O(tCmn(C +m)) O((C +m)(n/s) + Cs)

TABLE II

COMPARISON OF ITEM MEMBERSHIP QUALITIES WITH FCCM

(CORRELATION COEFFICIENT WITH NOISELESS RESULT: MEAN VALUES

AND VARIANCES)

correlation coefficient:
mean value (variance)

FCCM(whole data) 0.914 (0.0136)
rseFCCM 0.794 (0.0167)
spFCCM 0.882 (0.0076)
oFCCM 0.831 (0.0285)

TABLE III

COMPARISON OF ITEM MEMBERSHIP QUALITIES WITH FUZZY CODOK

(CORRELATION COEFFICIENT WITH NOISELESS RESULT: MEAN VALUES

AND VARIANCES)

correlation coefficient:
mean value (variance)

Fuzzy CoDoK(whole data) 0.917 (0.0172)
rseFuzzy CoDoK 0.809 (0.0180)
spFuzzy CoDoK 0.881 (0.0152)
oFuzzy CoDoK 0.857 (0.0240)

from the noisy very large data R. Means and variances were
calculated from the results of 50 trials.

The tables indicate that both FCCM and fuzzy CoDoK
derived similar performances and the result of rseFCCM (rse-
Fuzzy CoDoK) is inferior to other ones, i.e., a single random
sampling process is not enough to reconstruct the intrinsic
cluster structure. The results of spFCCM (spFuzzy CoDoK)
and oFCCM (oFuzzy CoDoK) are almost comparative and
are superior to rseFCCM (rseFuzzyCoDoK) although they
are slightly inferior to the whole data case. The variance in
spFCCM (spFuzzy CoDoK) is smaller than that in oFCCM
(oFuzzy CoDoK), i.e., spFCCM (spFuzzy CoDoK) is more
stable than oFCCM (oFuzzy CoDoK). In spFCCM (spFuzzy
CoDoK), the varieties of initial partitions may be gradually
summarized in its sequential processes. On the other hand,
in the parallel first stage of oFCCM (oFuzzy CoDoK), some
subprocess can converge into local minima because they use
only small chunks, and then, the errors may be cumulated
in the second stage. This result implies that each data chunk
should include enough amount of cooccurrence information
for applying oFCCM (oFuzzy CoDoK).

TABLE IV

COMPARISON OF CONVERGENT SPEED WITH FCCM (AVERAGES OF

TOTAL TIME (SEC.) AND ITERATION PER CHUNK)

time (sec.) iteration

FCCM(whole data) 0.029 8.3
rseFCCM 0.004 9.1
spFCCM 0.011 2.7
oFCCM 0.017 4.3 (1st phase)

4.2 (2nd phase)

TABLE V

COMPARISON OF CONVERGENT SPEED WITH FUZZY CODOK

(AVERAGES OF TOTAL TIME (SEC.) AND ITERATION PER CHUNK)

time (sec.) iteration

Fuzzy CoDoK(whole data) 0.034 10.2
rseFuzzy CoDoK 0.004 10.8
spFuzzy CoDoK 0.013 2.9
oFuzzy CoDoK 0.021 5.1 (1st phase)

8.0 (2nd phase)

B. Comparison of Convergent Speed

Next, convergent speed of the algorithms are compared.
Tables IV and V compare the averages of the total operation
times (sec.) and the iteration needed for convergence in
each FCCM (fuzzy CoDoK) process per chunk. Although
the theoretical computational costs of spFCCM (spFuzzy
CoDoK) and oFCCM (oFuzzy CoDoK) are equivalent to
the conventional ones, the practical cost could be reduced
because of the support of fewer iterations. It may be because
each incremental process can achive a fast convergence
adopting the previous local optima as the current initial
partition. Then, it is expected that the proposed method
contribute to reduction of computational costs from the view
points of both speed and space.

V. CONCLUSIONS

In this paper, the applicability of sampling and incre-
mental approaches for handling very large data in FCM
to co-clustering was discussed. Although the fuzzy co-
clustering models of FCCM and fuzzy CoDoK are prototype-
less clustering algorithms, incremental algorithms could be
constructed by introducing item memberships as additional
virtual objects after normalization. Several experimental re-
sults demonstrated that the proposed incremental algorithms
contribute to extracting robust co-cluster structures without
significant computational costs.
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Possible future works include application to real world
cooccurrence data such as purchase history data and
document-keyword relational data. The automatic mecha-
nism for tuning the fuzzy degrees should also be developed
in future works.
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