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Abstract— This paper considers fuzzy co-clustering of dis-
tributed cooccurrence data, where vertically partitioned cooc-
currence information among objects and items are stored in
several sites. In order to utilize such distributed data sets with-
out fear of information leaks, a privacy preserving procedure
is introduced to fuzzy clustering for categorical multivariate
data (FCCM). Withholding each element of cooccurrence ma-
trices, only object memberships are shared by multiple sites
and their (implicit) joint co-cluster structures are revealed
through an iterative clustering process. Several experimental
results demonstrate the ability of improving the individual co-
clustering results of each site by combining the distributed data
sets.

I. INTRODUCTION

IN these days, innumerable databases are constructed
with various purposes and big data analysis is regarded

as a promising technique for providing business benefits.
Privacy preserving data mining (PPDM) [1] is a fundamental
approach for utilizing multiple databases including personal
information without fear of information leaks. In this paper,
the problem of extracting cluster structures from distributed
databases, which are independently stored in multiple sites,
is considered. For applying k-means-type clustering algo-
rithms to distributed databases, several procedures have been
proposed. Assume that we have n objects in conjunction
with their m-dimensional observations and the goal is to
partition the objects into C clusters, which are represented by
prototypical centroids. In horizontally partitioned databases,
each site stores m-dimensional observations only on a part of
n objects and C cluster centroids are estimated cooperating
with each other [2], [3], [4]. Weighted sum of each attributes
can be shared for estimating centroids. On the other hand, in
vertically partitioned databases, each site stores all n record
with different attributes, which are a part of m-dimensional
observations. Because each site can have prototypical infor-
mation of clusters only on their observable attributes, only
clustering criterion on each object can be shared by multiple
sites [5], [6].

The goal of co-clustering is to simultaneously partition ob-
jects and items considering their cooccurrence information.
In co-clustering tasks, an n×m cooccurrence matrix is given,
whose elements are cooccurrence degree among n objects
and m items, e.g., the number of appearance of keywords
in documents and the frequencies of purchase of items by
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customers. Fuzzy clustering for categorical multivariate data
(FCCM) [7] is an FCM-type fuzzy co-clustering algorithm,
which simultaneously estimates two types of fuzzy mem-
berships so that the degree of co-cluster aggregations of
objects and items is maximized. In this paper, an extended
algorithm for FCCM is considered with the goal of applying
to vertically distributed cooccurrence matrices. Assume that
several companies share their common customers but have
the purchase history only on their own products. In the
conventional business model, each company can utilize their
own purchase history data only and supply such services as
collaborative filtering [8], [9], [10] only on their products.
If they can jointly utilize such distributed databases, it is
expected that they will supply much greater services with
high reliability.

In order to extract intrinsic co-cluster structures from
vertically distributed cooccurrence matrices, an alternately
iterative procedure is proposed, in which personal privacy is
preserved by withholding individual cooccurrence informa-
tion each other. Fuzzy memberships are shared by multiple
sites while item memberships are estimated and kept within
each site. Several experimental results demonstrate the ability
of improving the individual co-clustering results of each site
by combining the distributed data sets.

The remaining parts of this paper are organized as follows:
Section II gives a brief review on fuzzy clustering and fuzzy
co-clustering. An extended procedure for applying FCCM
clustering to vertically distributed databases is proposed in
Section III. The applicability of the proposed procedures is
demonstrated in Section IV and the summary conclusions are
given in Section V.

II. FCM-TYPE CLUSTERING MODELS

A. k-Means and Fuzzy c-Means

Let xi, i = 1, . . . , n be a set of n data objects. k-
Means [11] is the most well-known non-hierarchical clus-
tering algorithm that assigns data object xi composed of
m-dimensional observation to the nearest cluster center bc,
which is the mean vector in the cth cluster. The objective
function to be minimized is the sum of the squared errors in
clusters Gc, c = 1, . . . , C:

min Lkm =
C∑

c=1

uci||xi − bc||2. (1)

uci represents its assignment such that uci = 1 for i ∈ Gc
and uci = 0 for otherwise. The k-Means algorithm is an
iterative procedure composed of two steps: nearest prototype
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assignment and prototype estimation, and converges to a
local optimal solution.

Fuzzy c-Means [12] is a fuzzified version of k-Means, in
which membership indicators are drawn from the interval of
[0,1] instead of the alternative assignment of {0,1} used in
k-Means:

min Lfcm =
C∑

c=1

n∑

i=1

uθci||xi − bc||2 (2)

s.t. uci ∈ [0, 1], i = 1, · · · , n : c = 1, · · · , C (3)
C∑

c=1

uci = 1, i = 1, · · · , n (4)

where uci denotes the membership degree of ith object to
the cth cluster. In order to fuzzify memberships uci, the
weighting exponent θ (θ > 1) was introduced into the k-
Means objective function, which is a linear function with
respect to uci. The larger the θ is, the fuzzier the partition
is.

The k-Means objective function can also be non-linearized
by other approaches for fuzzifying memberships uci. In
FCM by regularization with entropy (eFCM) [13], [14], an
entropy-based non-linear term is introduced into the k-Means
objective function as:

min Lefcm =
C∑

c=1

n∑

i=1

uci||xi − bc||2

+λ

C∑

c=1

n∑

i=1

uci log uci (5)

s.t. uci ∈ [0, 1], i = 1, · · · , n : c = 1, · · · , C (6)
C∑

c=1

uci = 1, i = 1, · · · , n (7)

where the entropy term works like the weighting exponent in
the standard FCM algorithm. The larger the λ is, the fuzzier
the partition is.

B. Fuzzy Co-clustering

Assume that we have a cooccurrence matrix R = {rij} on
objects i = 1, . . . , n and items j = 1, . . . ,m, in which rij
represent the degree of cooccurrence of item j with object
i. The goal of co-clustering is to simultaneously partition
objects and items by estimating two types of fuzzy member-
ships. The fuzzy memberships of objects uci are designed in
a similar concept to FCM, in which they represent exclusive
assignment of objects to clusters such that

∑C
c=1 uci = 1.

On the other hand, in order to avoid trivial solutions, the
fuzzy memberships of items wcj are mostly responsible for
representing the mutual typicalities in each cluster such that∑m
j=1 wcj = 1.
Oh et al. [7] proposed the FCM-type co-clustering model,

which is called FCCM, by modifying the FCM algorithm
for handling cooccurrence information, where the cluster

aggregation degree of each cluster is maximized:

max Lfccm =

C∑

c=1

n∑

i=1

m∑

j=1

uciwcjrij

−λu
C∑

c=1

n∑

i=1

uci log uci

−λw
C∑

c=1

m∑

j=1

wcj logwcj (8)

In FCCM, the entropy-based fuzzification method [13], [14]
was adopted instead of the standard approach in FCM
because the exponential weight θ in FCM can work only in
the minimization framework of positive objective functions.
λu and λw play a similar role to θ, where larger λ brings
fuzzier partitions while small λ brings crisp partitions.

The clustering algorithm is an iterative process of updating
uci and wcj using the following rules:

uci =

exp

⎛

⎝λ−1
u

m∑

j=1

wcjrij

⎞

⎠

C∑

�=1

exp

⎛

⎝λ−1
u

m∑

j=1

w�jrij

⎞

⎠

, (9)

and

wcj =

exp

(

λ−1
w

n∑

i=1

ucirij

)

m∑

�=1

exp

(

λ−1
w

n∑

i=1

uciri�

) . (10)

III. APPLICATION TO VERTICALLY DISTRIBUTED

DATABASES WITH PRIVACY CONSIDERATION

A. Privacy Preserving k-Means Clustering

Assume that T sites (t = 1, . . . , T ) has mt-dimensional
observations xti = (xti1, . . . , x

t
imt

)� on common n objects
(i = 1, . . . , n) and

∑T
t=1mt = m. If we can gather the data

pieces into a whole data set xi, the nearest centroid in k-
Means process is searched for by calculating the distances
between objects xi and centroids bc as:

||xi − bc||2 =

T∑

t=1

||xti − btc||2, (11)

where dtci = ||xti−btc||2 is the within-cluster square distance
in site t. This implies that we can find the nearest centroid
only with dtci without broadcasting each element xtij . Then,
in privacy preserving k-Means clustering, dtci instead of xtij
are utilized for performing k-Means clustering in a secure
manner.

By the way, in fuzzy co-clustering context, we do not have
such representative prototypes as centroids. In this paper, it
is considered to directly utilize object memberships uci for
item membership estimation in each site.
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B. Fuzzy Co-clustering of Vertically Distributed Cooccur-
rence Matrices

In the following, the task of extracting co-cluster structures
from vertically distributed cooccurrence matrices is consid-
ered. Assume that T sites (t = 1, . . . , T ) share common
n objects (i = 1, . . . , n) and have different cooccurrence
information on different items, which are summarized into
n × mt matrices Rt = {rtij}, where mt is the number of
items in site t and

∑T
t=1mt = m.

If we do not care the privacy issues, the distributed
matrices should be gathered into a full n × m matrix to
be analyzed in a single process without information losses.
Taking the privacy preservation into account, however, each
matrix should be processed in each site without broadcasting
personal information although the reliability of each co-
cluster structure may not be enough satisfied because of
information losses.

The goal of the task in distributed database analysis is to
estimate object and item memberships as similar to the full-
data case as possible by sharing object partition information
without broadcasting cooccurrence information rtij . Object
memberships uci to be shared by sites are common and are
defined in the same manner with the conventional FCCM. On
the other hand, item memberships wcj are somewhat different
because they follow the within-cluster sum constraint. In
this subsection, it is assumed that item memberships are
independently estimated in each site following the site-wise
constraint

∑mt

j=1 w
t
cj = 1, where wtcj is the item membership

on item j in site t.
1) Two-site case (T = 2): First, a two-site case (T = 2)

is considered. In order to jointly perform co-clustering in two
sites t1 and t2, a strategy of sharing object memberships is
considered.

Eq.(9) implies that each object membership function is
dependent on

∑m
j=1 wcjrij , which is the sum of inde-

pendent information
∑mt

j=1 w
t
cjr

t
ij . Therefore, by sharing∑mt

j=1 w
t
cjr

t
ij instead of uci, each site can update uci by itself.

Once uci are updated in each site, the item memberships are
updated in each site and

∑mt

j=1 w
t
cjr

t
ij are also updated.

Following the above consideration, a secure process for
two-site case is described as follows:

[FCCM for Vertically Distributed Cooccurrence Matri-
ces: FCCM-VD (two-site case)]

1) Given n ×m1 matrix R1 and n ×m2 matrix R2, let
C be the number of clusters. Choose the fuzzification
weights λu and λw. (We can also use different λw in
different sites because item memberships are available
only in each site.)

2) [Initialization] Perform the conventional FCCM in site
t1 for estimating uci and w1

cj . Using uci, estimate w2
cj

in site t2.
3) [Iterative process] Iterate the following process until

convergence of all uci.

a) In site t1, calculate
∑m1

j=1 w
1
cjr

1
ij and send them

to site t2.

b) In site t2, update uci and w2
cj . Calculate∑m2

j=1 w
2
cjr

2
ij and send them to site t1.

c) In site t1, update uci and w1
cj .

Here, we should note that, in this two-site model, the
two sites can mutually know the co-cluster structures of the
other site from shared information although the cooccurrence
information components rij are concealed.

2) Multi-site case (T > 2): In the multi-site case of
T > 2, we can consider more secure process following
the encryption approach in [5]. In the same manner with
the two-site case, the object partition is shared referring to∑m
j=1 wcjrij while their actual values are concealed each

other. The secure process is implemented by at least three
sites. Here, two sites of t1 and tT are selected as repre-
sentative sites. Site t1 generates a length C random vector
vt = (vt1, . . . , vtC)

� for each site t, such that
∑T
t=1 vt = 0.

Then, sites t1 . . . tT−1 send vtc+
∑mt

j=1 w
t
cjr

t
ij to site tT and

their total amount
∑T
t=1(vtc +

∑mt

j=1 w
t
cjr

t
ij) is calculated

for estimating uci in site tT .
∑T
t=1 vt = 0 implies that the

total amount is equivalent to
∑T
t=1

∑mt

j=1 w
t
cjr

t
ij although

the individual value of each site is concealed by vtc. In this
scheme, no site can reveal the actual value of

∑mt

j=1 w
t
cjr

t
ij

on other sites.
Following the above consideration, a secure process for

multi-site case is described as follows:

[FCCM for Vertically Distributed Cooccurrence Matri-
ces: FCCM-VD (multi-site case)]

1) Given n×m1 matrix R1 . . . n×mT matrix RT , let
C be the number of clusters. Choose the fuzzification
weights λu and λw. (We can also use different λw in
different sites because item memberships are available
only in each site.)

2) [Initialization] Randomly initialize uci such that∑C
c=1 uci = 1 and broadcast them to all sites.

3) [Iterative process] Iterate the following process until
convergence of all uci.

a) For i = 1, . . . , n

i) In site t1, generate random vectors vt =
(vt1, . . . , vtC)

�, t = 1, . . . , T such that∑T
t=1 vt = 0, and send vt to site t.

ii) In sites t1, . . . , tT , update wtcj using the
current values of uci. Calculate vtc +∑mt

j=1 w
t
cjr

t
ij and send them to site tT .

iii) In site tT , update uci and broadcast them to
all sites.

b) Check the termination condition.

IV. EXPERIMENTAL RESULTS

Several results of comparative experiments are presented
for demonstrating the characteristic features of the proposed
method. The experiments were performed with artificially

2502



(a)noiseless (b)noise

Fig. 1. Artificial coocurrance matrices

TABLE I

COMPARISON OF PARTITION QUALITY MEASURED BY CORRELATION

COEFFICIENTS AMONG ITEM MEMBERSHIPS (TWO-SITES CASE)

site 1 site 2
Best (Max.) 0.990 0.989FCCM-VD

Mean 0.929 0.918
Best (Max.) 0.986 0.966Site-wise FCCM

Mean 0.868 0.756

generated cooccurrence matrices. A base (noise-less) cooc-
currence matrix composed of 100 objects and 90 items in-
cludes 4 co-cluster structures. Figure 1-(a) shows the 100×90
cooccurrence matrix R = {rij}, in which black and white
cells imply rij = 1 and rij = 0, respectively. The 100 objects
belong to a single co-cluster while some items are shared by
multiple clusters. A noisy cooccurrence matrix shown in Fig.
1-(b) was generated from the base matrix by replacing ‘1’
elements with ‘0’ at a rate of 50% and ‘0’ elements with ‘1’
at a rate of 10%. Disturbed by noise, the co-cluster structures
are only weakly recognized.

A. Matrices Arrangement and Full Matrix Case Results

Two types of vertically distributed cooccurrence sub-
matrices were generated by arranging the 100 × 90 noisy
matrix into two and four sites. Figure 2 shows the arranged
cooccurrence matrices, in which the order of items were
arranged from Fig. 1-(b). Figures 2-(a) and 2-(b) are for two-
sites case and four-sites case, respectively.

First, the conventional FCCM was applied to the two
full 100 × 90 cooccurrence matrices with λu = 0.001 and
λw = 100.0. The derived item memberships are shown in
Fig. 3, where each row represents the 90-dimentional item
membership vector of each cluster with gray-scale, i.e., black
and white are wcj = wmax and wcj = 0, respectively.

Second, the arranged cooccurrence matrices of Fig. 2
were vertically distributed. m = 90 items were di-
vided into (m1,m2) = (50, 40) in two-sites case and
(m1,m2,m3,m4) = (27, 24, 21, 18) in four-sites case,
where four co-cluster structures are very weakly implied in

(a) two-sites (b) four-sites

Fig. 2. Arranged matrices from Fig. 1

(a) two-sites

(b) four-sites

Fig. 3. Item memberships of each cluster in full matrices cases

each site. The goal of analyzing the vertically distributed
matrices is to derive a similar object and item memberships to
those of the full matrices cases. Then, in this experiment, the
clustering qualities are evaluated by measuring the correla-
tion coefficient between the derived item membership vectors
in each cluster and the full matrix case result of Fig. 3.

B. Two-sites Case

In the two-sites case, the FCCM algorithms were applied
to the cooccurrence matrices of Fig. 2-(a), which is vertically
distributed with 100 × 50 (site 1) and 100 × 40 (site 2)
matrices. First, by applying the conventional FCCM algo-
rithm several times in each site without collaboration, it was
often difficult to reveal the four-cluster structures in both
sites because each site has only weak site-wise cooccurrence
information.

Second, by applying the proposed FCCM-VD algorithm
with λu = 0.005 and λw = 100.0, the item membership vec-
tors (the best one having the maximum correlation coefficient
with the base result) shown in Fig. 4 was derived, where 4
site-wise separate item membership vectors are merged into a
90-dimensional one in order to compare with the base results
of Fig. 3.

Table I compares the mean (best) correlation coefficients
between the base results and the site-wise memberships,
which were derived with the proposed FCCM-VD and the
conventional site-wise FCCM. The algorithms were imple-
mented in 50 trials with different initialization, and the best
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Fig. 4. Item memberships derived by proposed method (two-sites case)

TABLE II

COMPARISON OF PARTITION QUALITY MEASURED BY CORRELATION

COEFFICIENTS AMONG ITEM MEMBERSHIPS (FOUR-SITES CASE)

site 1 site 2 site 3 site 4
Best (Max.) 0.998 0.998 0.997 0.999FCCM-VD

Mean 0.945 0.949 0.943 0.947
Best (Max.) 0.913 0.889 0.935 0.946Site-wise FCCM

Mean 0.718 0.677 0.851 0.903

and mean values are compared. The table implies that the
proposed algorithm is useful for estimating the intrinsic co-
cluster structures through collaborative scheme among sites.

C. Four-sites Case

A similar experiment was performed in the four-sites
case, where the cooccurrence information of Fig. 2-(b) was
vertically distributed in four sites. Because the site-wise
information became poorer than the previous experiment, it
is much difficult to capture the intrinsic co-cluster structures
in all four sites without collaboration.

By applying the proposed FCCM-VD algorithm with λu =
0.005 and λw = 100.0, the item membership vectors (best
result) shown in Fig. 5 was estimated. The derived result is
quite similar to the base case of Fig. 3.

The partition quality is also compared in Table II, which
implies that the proposed FCCM-VD algorithm still work
well in multi-site cases.

Finally, computational costs are compared in Table III,
which compares the mean computational times (sec.) and
iterations needed for convergence in 50 trials. The ex-
periment was performed with an Intel Core i7 CPU
(2.80GHz) and 8.0GB memory, and the stopping condition
was max(|uNEWci − uOLDci |) < 1.0 × 10−8. The proposed
algorithm could achieve faster convergence than the whole
data FCCM, in which FCCM was applied to the whole data
set at a time. It may be because the site-wise constraint
contributed to fast convergent to (site-wise) local optima.
This result implies the stable feature of the proposed method.

V. CONCLUSIONS

In this paper, two frameworks for handling vertically
distributed cooccurrence information in fuzzy co-clustering
were proposed with the goal of estimating stable co-cluster
structures through secure collaboration among multiple sites.
In the two-sites case, the object memberships are shared by
two sites while the each element of cooccurrence information
is concealed only in each site. The sharing scheme was also
extended to multi-sites cases, where more secure utilization
of distributed information is achieved.

Fig. 5. Item memberships derived by proposed method (four-sites case)

TABLE III

COMPARISON OF COMPUTATIONAL TIME AND CONVERGENCE SPEED

(FOUR-SITES CASE)

time (s) iteration
FCCM-VD 0.01270 35.98

whole data FCCM 0.01318 44.20

In future work, the applicability of the proposed algo-
rithm to such application as co-cluster-based collaborative
filtering [9], [10] and document analysis [15] can be studied.
Another possible future work is to evaluate the responsibility
(utility) degree of each site.
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