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Abstract— Fuzzy c-Means (FCM) clustering by entropy-
based regularization concept is a fuzzy variant of Gaussian
mixtures density estimation. FCM was also extended to a full-
parameter model by introducing Mahalanobis distance and
the K-L information-based fuzzification scheme, in which the
degree of fuzziness of partition is evaluated comparing with
Gaussian mixtures. In this paper, a new fuzzy co-clustering
model is proposed, which is a fuzzy variant of multinomial
mixture density estimation. Multinomial mixtures is a proba-
bilistic model for co-clustering of cooccurrence matrices and
the proposed method extends multinomial mixtures so that
the degree of fuzziness can be tuned in a similar manner
to K-L information-based FCM. Several experimental results
demonstrate the effects of tuning the degree of fuzziness
comparing with its corresponding probabilistic model.

I. INTRODUCTION

FUZZY c-Means (FCM) [1] is the fuzzy extension of
the k-Means algorithm [2], where the k-Means objec-

tive function is non-linearized by introducing the weighting
exponent on fuzzy memberships, because the linear objective
function of k-Means can give only crisp membership assign-
ments. A larger weighting exponent gives a fuzzier partition
while the model is reduced to crisp k-Means when it equals
to one. Although the fuzzy partition can often contribute to
effectively revealing intrinsic cluster structures of multivari-
ate observations, the degree of fuzziness is evaluated only
from the empirical view points because the standard FCM
has no comparative model. (In the following, the standard
FCM is represented as sFCM for convenience.)

Non-linear objective function of FCM can also be pro-
posed based on regularization concepts. The entropy-based
regularization approach (eFCM) [3], [4] modified the k-
Means objective function into non-linear one by adding an
entropy-like term with a regularization weight. The weight
parameter plays a similar role to the weighting exponent
in sFCM. Although the entropy-based objective function
was constructed based on fuzzification of k-Means objective
function, it can be identified with the negative log-likelihood
function of a constrained Gaussian mixture models (GMMs)
with spherical covariances. FCM by Kullback-Leibler (K-L)
information-based regularization (KLFCM) [5], [6] is a fuzzy
variant of the full-parameter GMMs, where model parameters
include fuzzy memberships, cluster centers, cluster volumes
and full covariance matrices. In the entropy-based and K-
L information-based methods, the degree of fuzziness can
be evaluated comparing with its probabilistic counterpart
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of GMMs. Additionally, the regularization concept is also
useful for implementing deterministic annealing process of
soft clustering [7].

In this paper, a new fuzzy co-clustering algorithm is pro-
posed by modifying a probabilistic mixture models concept.
The goal of co-clustering is to extract object-item pair-
wise structures from cooccurrence matrices. Fuzzy clustering
for categorical multivariate data (FCCM) [8] is an FCM-
type fuzzy co-clustering algorithm, in which the clustering
criterion was defined by the degree of co-cluster aggregations
of objects and items. In FCCM, co-cluster structures are
represented by using two types of fuzzy memberships of
object memberships and item memberships, and they were
fuzzified by the entropy-based regularization concept. Al-
though the FCCM objective function is based on a similar
concept to FCM by entropy-based regularization, there is
no comparative probabilistic model. Then, in this paper, the
proposed algorithm is constructed as a fuzzy counterpart of
a probabilistic model.

Multinomial mixture models (MMMs) [9] is a statistical
mixture models for discrete distributions, in which com-
ponent distributions are given by multinomial distributions.
The multinomial distribution gives the probability of any
particular combination of numbers of successes for the
various categories. MMMs has been applied to such a
problem as document analysis, where many documents are
partitioned into several themes (clusters) and each theme
is characterized by the keyword typicalities (category his-
togram). The document assignment and keyword typicalities
are iteratively estimated based on the EM algorithm [10]. The
proposed objective function is defined by the MMMs-based
log-likelihood function, which includes a K-L information-
like regularization term.

The remaining parts of this paper are organized as follows:
Section II gives a brief review on the FCM algorithms based
on regularization concepts. A new fuzzy co-clustering algo-
rithm is proposed following a brief introduction of MMMs
in Section III. The characteristics of the proposed algorithm
are demonstrated in Section IV and the summary conclusions
are given in Section V.

II. FCM ALGORITHMS BASED ON REGULARIZATION

CONCEPTS

A. Fuzzification Mechanisms in FCM

The goal of sFCM [1] is to partition n samples having
m-dimensional observation xi, i = 1, . . . , n into C fuzzy
clusters, whose prototypes are their prototypical centroids
bc, c = 1, . . . , C. The clustering criteria are given by the
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within-cluster errors as:

Lsfcm =
C∑
c=1

n∑
i=1

uθci||xi − bc||2, (1)

where uci is the membership of sample i to cluster c, and is
normalized as

∑C
c=1 uci = 1. Lsfcm is a fuzzified version

of k-Means objective function [2], where the linear k-Means
function is non-linearized by introducing the exponential
weight θ (θ > 1).

eFCM [3], [4] adopted another fuzzification mechanism,
in which k-Means function is non-linearized by adding non-
linear regularization terms.

Lefcm =
C∑
c=1

n∑
i=1

uci||xi−bc||2+λ
C∑
c=1

n∑
i=1

uci log uci. (2)

The additional negative entropy term, which is a downward-
convex function, forces uci to have fuzzy memberships while
the crisp k-Means function is minimized in uci = {0, 1}. λ
tunes the degree of fuzziness of partition, and the larger λ
is, the fuzzier the partition is.

Although the fuzzy clustering model is constructed as a
fuzzy version of k-Means, the objective function has a close
connection with the negative log-likelihood function of a
constrained GMMs with spherical covariances [11]. Assume
that component densities of GMMs, which is composed of
C components, are given as:

gc(xi|bc) = 1√
2πσ

exp

(
−||xi − bc||

2

2σ2

)
, (3)

and they are combined into a mixture density as:

P (xi) =
1

C

C∑
c=1

gc(xi|bc). (4)

This is a spherical Gaussian model, where the component
covariance is σI with a fixed σ and is common for all
components. The a priori probabilities of components are
also fixed and common as 1/C. Then, the lower-bound
of the negative log-likelihood function to be minimized is
reduced to Eq.(2), where uci is the posteriori probability of
component c given by sample i. λ corresponds to 2σ2, i.e.,
the component covariance is pre-fixed and is not updated.

KLFCM [5], [6] is a fuzzy variant of the full-parameter
GMMs, in which full-elements of covariance matrices and
the cluster volumes (a priori probability of components) are
also updated. In this paper, for simplicity, a spherical Gaus-
sian model is considered. KLFCM introduced an additional
cluster volume parameter αc, which can be identified with
the mixing coefficient of each component density in GMMs,
and used the following objective function supported by K-L
information-based fuzzification mechanism:

Lklfcm =

C∑
c=1

n∑
i=1

uci||xi − bc||2 − λ
C∑
c=1

n∑
i=1

uci log
αc
uci

.

(5)

The optimal αc with fixed uci is derived as

αc =
1

n

n∑
i=1

uci, (6)

and the K-L information term, whose maximum is 0 for
uci = αc, is larger as uci become more similar to αc and
more homogeneous in each cluster. In this sense, member-
ships are fuzzified reflecting the cluster volumes in each
cluster.

KLFCM is also reduced to GMMs in the case where λ
is equivalent to a double within-cluster variance, but has no
identical statistical models in other cases.

B. Fuzzy Co-clustering Models

In fuzzy co-clustering contexts, a different type of clus-
tering criteria was adopted, in which mutually familiar ob-
jects and items are merged into co-clusters considering the
aggregation degree of each co-cluster. Assume that we have
n×m cooccurrence information R = {rij} among n objects
and m items, and the goal is to simultaneously estimate
fuzzy memberships of objects uci and items wcj . The sum
of aggregation degrees to be maximized is defined as:

L =
C∑
c=1

n∑
i=1

m∑
j=1

uciwcjrij . (7)

In order to avoid trivial solutions, wcj are forced to be
exclusive in each cluster such that

∑m
j=1 wcj = 1 while uci

are estimated under the same condition with FCM such that∑C
c=1 uci = 1. Then, wcj represent the relative typicalities

of items in each cluster.
Considering the maximization nature, the two types of

memberships are fuzzified based on regularization concepts
instead of the standard exponential-type weighting, which is
designed for minimization principles. FCCM [8] used the
entropy-based fuzzification [3], [4]:

Lfccm =
C∑
c=1

n∑
i=1

m∑
j=1

uciwcjrij

−λu
C∑
c=1

n∑
i=1

uci log uci

−λw
C∑
c=1

m∑
j=1

wcj logwcj , (8)

where λu and λw are the fuzzification weights for object and
item memberships, respectively. The entropy terms, which
are convex functions, work for fuzzifying memberships.
Kummamuru et al. [12] extended FCCM by introducing the
quadric term-based fuzzification mechanism [13].

Although uci and wcj have a similar partition concept with
probabilistic mixture models, there is no counterparts of these
fuzzy co-clustering models, i.e., we have no measure for eval-
uating the degree of fuzziness comparing with probabilistic
models.
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The remaining part of this paper discusses the connection
with fuzzy co-clustering and probabilistic mixture models,
and proposes a novel fuzzy co-clustering algorithm.

III. FUZZY CO-CLUSTERING WITH K-L INFORMATION

REGULARIZATION BASED ON MULTINOMIAL MIXTURE

CONCEPTS

A. Co-clustering by Multinomial Mixture Models

Assume that n × m cooccurrence matrix R = {rij} is
composed of frequency rij of item j in object i, where item
j is observed rij times with object i. Multinomial distribution
is a multi-category extension of binomial distribution. When
all objects were drawn from a single distribution, the prob-
ability of observation j drawn from all m items is defined
as wj . The joint distribution of cooccurrence feature vector
ri = (ri1, . . . , rim)� on object i is given as:

p(ri) =
Ti!

ri1! . . . rim!

m∏
j=1

(wj)
rij , (9)

where Ti is the total observation of Ti =
∑m
j=1 rij . Then,

the log-likelihood function on all n objects is

Lmm =

n∑
i=1

log(p(ri))

=
n∑
i=1

log

⎛
⎝ Ti!

ri1! . . . rim!

m∏
j=1

(wj)
rij

⎞
⎠ . (10)

The maximum likelihood solution for wj is derived as wj =
tj/T , where tj is the sum of frequency of item j such that
tj =

∑n
i=1 rij and T is the total observation such that T =∑n

i=1 Ti.
MMMs [9] is a statistical model for co-clustering, in which

probabilistic mixture models is constructed with multinomial
component densities. When objects are assume to be drawn
from C different distributions, in which the probability of
item observation j from component c is defined as wcj , the
mixture distribution is given as:

P (ri) =

C∑
c=1

πcpc(ri)

=

C∑
c=1

πc
Ti!

ri1! . . . rim!

m∏
j=1

(wcj)
rij . (11)

Then, the log-likelihood function on all n objects is

Lmmms =
n∑
i=1

log(P (ri))

=
n∑
i=1

log

(
C∑
c=1

πcpc(ri)

)

=

n∑
i=1

log

(
C∑
c=1

uci
πcpc(ri)

uci

)
, (12)

where uci is the posterior probability of component c given
object i.

It has been shown that the maximum likelihood solution
for Eq.(12) is derived by maximizing the following pseudo-
log-likelihood function:

L′
mmms =

C∑
c=1

n∑
i=1

m∑
j=1

ucirij logwcj

+

C∑
c=1

n∑
i=1

uci log
πc
uci

. (13)

B. Fuzzy Co-clustering Based on K-L Information Regular-
ization

Considering the similarity between the FCCM objective
function of Eq.(8) and the pseudo-log-likelihood function of
Eq.(13), a novel fuzzy co-clustering algorithm is proposed
in this paper. The novel algorithm is an extension of FCCM,
which has the following three modifications:

1) The cluster aggregation is calculated using logwcj
instead of wcj . Comparing with FCCM, the objective
function is expected to be quite sensitive for small wcj
using log function.

2) The fuzzification term (entropy term) on wcj is re-
moved. The fuzzy nature of wcj is supported by
the non-linearity of log function, and the degree of
fuzziness on item memberships is fixed.

3) An additional parameter πc of cluster volume is intro-
duced and uci is fuzzified with K-L information-based
regularization approach by optimizing cluster volumes.

The novel objective function is defined as follows:

Lklfccm =
C∑
c=1

n∑
i=1

m∑
j=1

ucirij logwcj

+λu

C∑
c=1

n∑
i=1

uci log
πc
uci

. (14)

In this formulation, uci and wcj are estimated under the same
constraints with FCCM, i.e.,

∑C
c=1 uci = 1 and

∑m
j=1 wcj =

1. λu is the fuzzification weight on uci and the fuzzy partition
becomes more fuzzy as λu is larger.

Based on the Lagrangean multiplier method, the updating
rules for the model parameters are derived as follows:

uci =
πc
∏m
j=1(wcj)

rij/λu

∑C
�=1 π�

∏m
j=1(w�j)

rij/λu

, (15)

πc =
1

n

n∑
i=1

uci, (16)

wcj =

∑n
i=1 rijuci∑m

�=1

∑n
i=1 ri�uci

. (17)

The clustering algorithm is the 3-step iterative process and
a sample procedure is given as:
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Fig. 1. Artificial data for comparison with MMMs: black and white cells
implies rij = 1 and rij = 0, respectively

[Fuzzy Clustering for Categorical Multivariate Data by
K-L Information Regularization (KLFCCM)]

1) Let C be the number of clusters. Choose the fuzzifi-
cation weights λu.

2) [Initialization] Randomly initialize object member-
ships uci and normalize them so that

∑C
c=1 uci = 1.

3) [Iterative process] Iterate the following process until
convergence of all uci.

a) Update cluster volumes πc using Eq.(16).
b) Update item memberships wcj using Eq.(17).
c) Update object memberships uci using Eq.(15).

This algorithm is reduced to the conventional MMMs if
the fuzzification weight is λu = 1. There is, however, no
probabilistic counterpart when λu �= 1, i.e., the proposed
algorithm has an advantage of tuning the fuzzy degree of
object partition.

IV. NUMERICAL EXPERIMENTS

In this section, two experimental results are shown for
demonstrating the characteristic features of the proposed
method.

A. Comparison with MMMs

First, the characteristics of the proposed method are com-
pared with MMMs. The proposed KLFCCM model can
tune the degree of fuzziness of object memberships while
λu = 1 reduces it to the conventional MMMs. In this
experiment, the effect of the additional fuzzification weight
is investigated. A comparative experiment was performed
with an artificial data set composed of 100 objects and
60 items. The 100 × 60 cooccurrence matrix is shown in
Fig. 1 by gray-scale (black and white are for rij = 1
and rij = 0, respectively), which includes roughly 4 co-
clusters in diagonal blocks while some items are shared by
multiple clusters. The ideal object and item memberships of
4 co-clusters are depicted as Figs. 2-(a) and (b), in which
each row shows the 100-dimensional object membership

(a) Ideal object membership vectors uc

(b) Ideal item membership vectors wc

(c) Derived object membership vectors uc (λu = 1.0)

(d) Derived object membership vectors wc (λu = 1.5)

Fig. 2. Comparison of memberships (KLFCCM v.s. MMMs)

XBco

λ u1 2 3 4

-2

-1.5

Fig. 3. Comparison of XBco validity measures (KLFCCM v.s. MMMs)

vector uc = (uc1, . . . , uc,100)
� or the 60-dimensional item

membership vector wc = (wc1, . . . , wc,60)
� by gray-scale

(black and white are for wmax and 0, respectively), and the
goal is to extract a similar structure from the noisy data set.

Figures 2-(c) and (d) compare the object memberships
derived by MMMs (λu = 1) and the proposed method with
λu = 1.5. Because a fuzzier partition is often robust against
noise, a slightly fuzzier model of λu = 1.5 could derive a
better result.

In order to validate the intuitive recognition of Fig. 2,
the quality of co-cluster partitions are evaluated by using a
quantitative measure. XBco [14] is a Xie-Beni-type validity
measure [15] for fuzzy co-cluster partitions, which tries to
select the best compact-separate clusters. A larger XBco
implies a better co-cluster partition.

XBco =
compactness

separateness

=

(C − 1)

C∑
c=1

n∑
i=1

m∑
j=1

uciwcj(2rij − 1)

C∑
k=1

∑
� �=k

n∑
i=1

m∑
j=1

ukiw�jrij

.(18)

Figure 3 compares the XBco values for several different
co-cluster partitions derived by the proposed method with
different fuzzy weights λu. The figure implies that the
MMMs partition given by λu = 1 is inferior to the KLFCCM
partition given by λu = 1.5, which is slightly fuzzier.
However, much more or much less fuzzier models could
derive poor results only. By carefully tuning fuzzy degrees,
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Fig. 4. Artificial data for comparison with FCCM: black and white cells
implies rij = 1 and rij = 0, respectively

(a) Ideal object membership vectors: (uc1, . . . , uc,50)

(b) Ideal item membership vector: (wc1, . . . , wc,50)

Fig. 5. Ideal object and item membership vectors of Fig. 4

the proposed KLFCCM algorithm can reveal intrinsic co-
cluster structures.

B. Comparison with FCCM

Second, the proposed KLFCCM is compared with the
conventional FCCM, which is fuzzified by the entropy-
based regularization method. This experiment was performed
with the 50 × 50 cooccurrence matrix shown in Fig. 4,
which includes 2 rough co-clusters. The ideal object and
item membership vectors are depicted in Fig. 5 with gray-
scale. The cluster volumes (numbers of objects) are quite
unbalanced and many items are shared by the big and small
clusters, i.e., the cluster boundary is somewhat ambiguous.

FCCM was implemented with λw = 10.0 and various
λu, whose XBco validity measures are compared in Fig. 6.
The figure implies that λu = 0.01 seems to be plausible,
and the object membership vectors are shown in Fig. 7-(a).
Comparing with the ideal vectors of Fig. 5-(a), the small
cluster (2nd row) illegally exploited some objects from the
large cluster (1st row). Because FCCM does not consider the
optimization of cluster volumes, the cluster boundary tend
to located at the middle of two clusters so that the both
cluster volumes are to be homogeneous. Note that we could
find a similar phenomena also in the FCM case (FCM v.s.
KLFCM) [5].

Next, KLFCCM was performed with various λu, whose
XBco validity measures are compared in Fig. 8. The figure
also implies that a slightly fuzzier model of λu = 1.5
than MMMs (λu = 1.0) should be selected. The derived
object membership vectors are compared in Fig. 7 where
alternative candidates of λu = 1.0 and λu = 2.0 are also

XBco

λ u
0.01 0.02 0.03 0.04

-0.3

-0.2

-0.1

Fig. 6. Comparison of XBco validity measures (FCCM with unbalanced
data)

(a) FCCM

(b) KLFCCM (λ = 1.0)

(c) KLFCCM (λ = 1.5)

(d) KLFCCM (λ = 2.0)

Fig. 7. Comparison of object memberships (unbalanced data)

shown for references. The figure implies that, in the results
of KLFCCM, the cluster boundary was pushed toward the
small cluster and the large cluster tends to have much more
objects than FCCM. Because of cluster volume optimization,
the majority cluster is emphasized. Especially, the effect of
cluster volume parameter was remarkable in fuzzier cases but
the selected result of λu = 1.5 still seems to be plausible.
(Note that such cluster volume optimization could not be
found in FCCM even if the fuzzification weight λu was
moved.)

V. CONCLUSIONS

In this paper, a new algorithm for fuzzy co-clustering
was proposed considering the mutual connections between
FCCM and MMMs. Introducing the K-L information-based
fuzzification mechanism, a better clustering ability of the
fuzzy model was demonstrated. The connection with such
probabilistic model as MMMs makes it possible to discuss
the plausibility of fuzzy degrees comparing with probabilistic
counterparts. The advantage of cluster volume optimization
was also demonstrated for clarifying the comparison with the
conventional FCCM.

A possible future work is to adopt the deterministic anneal-
ing approach [7] by exploiting the controllable fuzzification
penalty. Introduction of the mechanism for tuning the fuzzy
degree of item memberships is also in future work.
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