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Abstract—Electroencephalogram (EEG) signals are often 
contaminated with various artifacts, especially electrooculogram 
(EOG) or ocular artifacts that cannot be avoided consciously and 
largely degrade the clinical interpretation of the signals. This 
paper presents a study on adaptive noise cancellation (ANC) 
based on adaptive neuro-fuzzy inference system (ANFIS) for 
EOG artifacts removal, especially when time delay is significant 
and on real contaminated EEG signal. The performance is first 
evaluated using simulated EEG and EOG signals, further 
investigation on the effect of time delay and tests on real data are 
also performed. The results illustrate that ANFIS provides a 
promising approach to ocular artifact removal with the best 
performance in comparison with ANC using adaptive filtering 
and ADALINE. 
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I. INTRODUCTION 

Electroencephalogram (EEG) is a non-invasive 
measurement of the electrical activity of the brain obtained 
electrodes placed on the scalp over multiple areas of the 
brain. However, as an important clinical tool in the diagnosis 
and management of neurological disorders, EEG is often 
affected by a variety of signal contaminations or artifacts, 
which impairs its clinical usefulness or the diagnosis 
accuracy. Apart from external artifacts caused by electrodes 
and alternating current supply to the equipment, major 
biological artifacts may contain EOG (eye blinks and eyeball 
movements), ECG (cardiac rhythms) and EMG (face or head 
muscle artifacts) [1]. 

The influence of external artifacts can be reduced to a 
large degree by improving technology and paying extra 
attention to the attachment of electrodes to the scalp, and 
some of the biological artifacts may be avoided if the subject 
follows appropriate guidelines [2]. For the others, however, 
especially the ocular artifacts which are of elevated 
amplitudes and may overlap spectrally with EEG signals, 
automated artifact detection and removal techniques are the 
most practical solutions. For this purpose, different 
techniques have been introduced in the last two decades. 

To remove the artifacts from EEG, many regression-
based methods [3, 4], either in the time domain or in the 
frequency domain, have been proposed. Regression-based 
methods are able to reduce ocular artifacts with good 
performance. In all the regression-based approaches, 

calibration trials are first conducted to determine the transfer 
coefficients between the EOG channel and EEG channel, 
which are later used in the correction phase to estimate the 
artifacts component in the EEG recording for removal by 
subtraction [5]. That is to say, all these methods require off-
line analysis and thus are not suitable for real-time 
applications. 

Another class of EOG removal methods are component-
based, based on for instance principal component analysis 
(PCA) and independent component analysis (ICA). The 
limitation of PCA-based methods is the prior assumption that 
the decomposed components are algebraically orthogonal, 
which is generally difficult to fulfill [6]. It was also reported 
that PCA cannot completely separate ocular artifacts from 
EEG signals, especially when they have comparable 
amplitudes [7]. For the more recent ICA method, however, it 
requires visual inspection of ICA components and manual 
classification of the interference components, which is time-
consuming and thus also not desirable for real-time artifacts 
cancellation [8]. 

Ocular artifacts removal methods based on wavelets have 
been proposed in [9, 10].The idea of these denoising 
methods relies on the assumption that the magnitude of the 
signals dominates that of the artifacts in wavelet 
representation. Basically, filtering is performed by 
comparing each wavelet coefficient to a predetermined 
threshold and setting it to zero if its magnitude is less than 
the threshold. The main difficulty in artifacts removal 
problem is to select a proper threshold level so that it exactly 
removes the artifacts while keeping the original EEG signals 
intact. 

This study investigate adaptive noise cancellation (ANC) 
[11] using adaptive neuro-fuzzy inference system (ANFIS) 
[12] for ocular artifacts removal from EEG. Simulated 
signals are used to test and evaluate its performance and 
ANC using adaptive filtering [13] and adaptive linear neuron 
(ADALINE) [14] is also tested as comparison. Most 
importantly, further analysis and real data tests about the 
influence of time delay contained in the signal are performed. 

II. METHODOLOGY 

A. Adaptive Noise Cancellation (ANC) 

The objective of ANC is to filter out interference 
components by identifying a model between a measurable 
noise source and the corresponding immeasurable This work was supported in part by the Macau Science and
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interference contained in the measured signal [14]. The 
scheme has a corrupted signal as the primary input and a 
reference input that consists of noise correlated in some 
unknown way with the primary noise. It is assumed that the 
desired clean signal is uncorrelated with the noise source and 
interference signals. By adaptively filtering and subtracting 
the reference input from the primary input, the denoised 
signal will be an estimate of the clean signal. Fig. 1 [15] 
shows the adaptive noise cancellation (ANC) scheme. 

The reference input to the canceller, which is the input to 
the adaptive filter, is the noise source signal, n(k), measured 
directly from the artifact generating origin. It goes through 
the unknown nonlinear dynamics f(.) (i.e. the route in human 
body from the artifact generating source to each EEG 
electrode on the scalp) and generates a distorted noise d(k), 
which is then added to the clean EEG signal x(k) to form y(k) 
= x(k)+d(k), the measured signal at the EEG electrodes. In 
another path, the noise n(k) is filtered to produce d̂ (k) as 
close a replica as possible of the interference signal, d(k), 
which is the distorted and delayed version of n(k). The aim is 
to retrieve clean EEG, x(k), from the measured EEG signal, 
y(k), by estimating d̂ (k) using the adaptive filter, which is 
then subtracted from the measured signal y(k) to produce the 
output of the system, x̂ (k), which would be close to the 
desired signal x(k). 

In the noise removal applications, the objective is to 
produce an “error” signal x̂ (k) (system output) that is a best 
fit in the least squares sense to the signal x(k). This is 
accomplished by feeding back the system output to the 
adaptive filter to minimize the “error” signal until it reaches 
the value, i.e. x̂ (k) = x(k). As a result, the output of the noise 
canceller x̂ (k) is the estimation of the clean EEG: 

                                
ˆˆ( ) ( ) ( ) - ( )x k x k d k d k= +        (1) 

Squaring both sides leads to 

       
2 2 2ˆ ˆˆ( ) ( ) [ ( ) ( )] 2 ( )[ ( ) ( )]x k x k d k d k x k d k d k= + − + −   (2) 

Taking the expected value for both sides, and assuming that 
x(k) is uncorrelated with n(k) and d(k) and thus with d̂ (k): 

2 2 2ˆˆ[ ( ) ] [ ( ) ] [[ ( ) ( )] ]E x k E x k E d k d k= + −  
     ˆ2 [ ( )[ ( ) ( )]]E x k d k d k+ −  

                                  
2 2ˆ[ ( ) ] [[ ( ) ( )] ]E x k E d k d k= + −          (3) 

Since the signal power 2( )x k  is a specific value, the 
minimum output power will be given by 

 
Fig. 1. Block diagram of ANC 

    
2 2 2ˆˆmin [ ( ) ] [ ( ) ] min [[ ( ) ( )] ]E x k E x k E d k d k= + −    (4) 

Therefore, when the filter is adjusted so that 2ˆ[ ( ) ]E x k  is 

minimized, 2ˆ[[ ( ) ( )] ]E d k d k−  is also minimized. The filter 

output d̂ (k) is then the best least squares estimate of the 
interference signal d(k). With considering 

           
2 2ˆˆ[[ ( ) ( )] ] [[ ( ) ( )] ]E x k x k E d k d k− = −              (5) 

the output signal x̂ (k) will also be the best least squares 
estimate of the clean EEG signal x(k) 

                                ˆ( ) ( )x k x k≈                                   (6) 

It should be noted that it may take some time for artifact 
signal to reach the EEG electrodes on the scalp from its 
origin, which results in a delay between the artifact 
generation time and the time it contaminates the EEG 
signal. Therefore, to consider this delay possibility, a tapped 
delay line (TDL) can be used for the noise source signal [2]. 
Fig. 2 shows the structure that the noise source signal passes 
through the TDL before going into the adaptive filter. The 
noise source signal passes through r-1 delays. The output of 
the TDL, which is the input of the adaptive filter, is an r-
dimensional vector, 1 2( ) [ ( ) ( ) ( )]T

rX k x k x k x k=  , 
made up of the noise source signal at the current time and 
the previous ones. 

The adaptive noise cancellation (ANC) scheme is flexible, 
since the adaptive filter within the scheme can be 
implemented using different methods (e.g. adaptive filtering, 
ADALINE and ANFIS in this study). 

B. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANC using linear filters (i.e. adaptive filtering) has been 
used widely and successfully in real world applications such 
as noise cancellation for EEG and ECG signals, echo 
elimination on long distance telephone transmission lines 
and antenna side lobe interference removal [16]. Moreover, 
when facing increasingly complex systems, the concept of 
linear adaptive noise cancellation can be extended to 
nonlinear realms by using nonlinear adaptive filters, one of 
which is the adaptive neuro-fuzzy inference system (ANFIS) 
introduced by Roger Jang in 1993.  

The ANFIS is a combination of fuzzy inference system 
and artificial neural networks, taking advantages of both 

 
Fig. 2. Applying TDL to the input of the adaptive filter 
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powerful techniques. More specifically, neural networks 
recognize patterns by its outstanding learning capability and 
facilitate adaptation to the changing environments. Fuzzy 
inference systems incorporate human knowledge and 
perform interfacing and decision-making. The basic idea of 
ANFIS is to design an architecture that uses a fuzzy system 
to represent knowledge in an interpretable manner, while 
possessing the learning capability of neural networks to 
optimize its parameters [12]. Therefore, this hybrid 
architecture is able to overcome some of the individual 
weaknesses and offer appealing nonlinear problem-solving 
capability. 

The basic structure of a fuzzy inference system consists of 
three conceptual components: a rule base consisting of a 
selection of fuzzy rules; a database describing the 
membership functions used in the fuzzy rules; and a 
reasoning mechanism that derives a reasonable output or 
conclusion by performing the inference procedure upon the 
rules and the given facts [12]. The fuzzy reasoning 
mechanism to derive an output f from the given input vector 
[x, y] and consequent parameters [p, q, r] is graphically 
illustrated in Fig. 3 [17]. The product of membership grades 
in the premise part is usually used to obtain the firing 
strengths w1 and w2, and weighted average of each rule’s 
consequence is the output f. Due to the high interpretability, 
computational efficiency, built-in optimal and adaptive 
nature, the Sugeno fuzzy model is the most extensively used 
one among various FIS models [17]. 

The learning algorithm tunes the membership functions 
of a Sugeno fuzzy inference system by using training input-
output data. Two inputs x, y and one output f are considered 
for simplicity. A common rule set with two fuzzy if-then 
rules for a first order Sugeno fuzzy system can be 
represented as: 

If x is A1 and y is B1, then f1 = p1x + q1y + r1         (7) 

If x is A2 and y is B2, then f2 = p2x + q2y + r2         (8) 

Apart from the input and output, ANFIS has five layers. 
ANFIS architecture is shown in Fig. 4 [17], where a circle 
represents a fixed node and a square represents an adaptive 
node (parameters are adjusted during training). Functions of 
node in each layer of ANFIS are explained as below: 

Layer 1: Calculate membership value for premise 
parameters. Membership grades of a linguistic value are 
generated by each node of this layer. For instance, a 
generalized bell membership function can be the node  

 
Fig. 3. Two input first order Sugeno fuzzy model 

 

Fig. 4. ANFIS architecture 

function of the ith node. 

1
2

1
( )

1 ( - ) /i ii A b

i i

O x
x c a

μ= =
+

                 (9) 

where x is the input to node i; Ai is the linguistic value of the 
ith node; and [ai, bi, ci] is the parameter set that alters the 
shapes of the membership function. Parameters of this layer 
are called premise parameters. 

Layer 2: Generate firing strength of rules. Every node in 
this layer is a fixed node labeled π. The firing strength of a 
rule is calculated by each node of this layer through simple 
multiplication: 

                       
2 ( ) ( ),  1,2

i ii i A BO w x y iμ μ= = =                 (10) 

Layer 3: Normalize firing strengths. Nodes in this layer 
are also fixed nodes labeled N. The ratio of the firing 
strength of the ith rule to the total firing strength is 
calculated by the ith node of this layer: 

3

1 2

,  1,2i
i i

w
O w i

w w
= = =

+
                   (11) 

Layer 4: Generate consequent parameters. The 
contribution of ith rule towards the overall output is 
calculated by the ith node of this layer. Each node in this 
layer is an adaptive node with node function: 

4 ( ),  1, 2i i i i i i iO w f w p x q y r i= = + + =          (12) 

where iw and [pi, qi, ri] are the output of layer 3 and the 

parameter set respectively. Parameters of this layer are 
called consequent parameters. 

Layer 5: Produce overall output. The overall output is 
calculated as the summation of contribution from this rule 
by the single node of this layer: 

                                 

5
i i i

i

O w f=                                 (13) 

In this study, we have taken reference noise signal and 
delayed ones as inputs and the measured corrupted EEG 
signal as target output for training the ANFIS, which is the 
same as what we have done for adaptive filtering and 
ADALINE. ANFIS minimizes the sum of squared error 
(SSE) by using a hybrid learning algorithm, which combines 
least squares and back propagation gradient descent 
methods together. In the forward path, the node outputs go 
forward until layer 4 and the least squares method is used to 
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identify the consequent parameters by keeping the premise 
parameters fixed. In the backward path, the error signals 
propagate backward and the premise parameters are updated 
by gradient descent method while keeping consequent 
parameters fixed. 

In this work, all the ANC based methods are used to 
identify the unknown nonlinear passage dynamics that 
transforms a noise source into an interference component in 
the measured EEG signal. Once the adaptive filter yields an 
estimate of the interference, it is subtracted from the 
measured signal to retrieve the desired clean EEG signal. 
All these denoising algorithms were implemented in 
MATLAB. 

III. RESULTS 

A. Simulated Signals 

To evaluate the performance of each ANC based method 
while avoiding the effect of other noises besides EOG 
artifacts, simulated clean EEG, EOG artifacts and corrupted 
EEG by fusing the above signals were used for the 
simulation study. For the comparative analysis, signal to 
noise ratio (SNR), mean square error (MSE) and power 
spectrum density (PSD) plot were used as performance 
indexes. 

In order to get more information with fewer samples (i.e. 
1000 samples), we have made a modification to the 
proposed signal simulation method [18]. The new 
autoregressive process for generating EEG signals is given 
as 

( ) 1.0084 ( 1) 0.1887 ( 2) 0.3109 ( 3)s t s t s t s t= − − − − −  
0.0510 ( 4) ( )s t w t− − +                                  (14) 

where w(t) is a white noise sequence with Gaussian 
distribution.  

The artifacts are simulated by an exponentially damped 
sinusoid with randomly varied amplitudes and shapes 
satisfying a uniform distribution. The jth artifact is thus 
simulated as 

- /( ) sin(2 / )jk

j jn k Ka e k Nτ π= , for k = 0, 1,…, N-1    (15) 
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Fig. 5. Simulated signals with a length of 1000 samples 

where N is the length of the artifact waveform and is set to 
100 samples. The parameter aj is the amplitude of the jth 
artifact, τj is a parameter determining the shape, and K is an 
amplitude scaling constant. To simulate the variations in 
amplitude and shape of the artifacts, both parameters were 
set to new random values at the onset of each artifact. The 
new values of aj and τj were randomly chosen from a 
Gaussian distribution with (μ = 1, σ2 = 0.1) and (μ = 250, σ2 
= 50), respectively. The artifacts were generated 
exponentially distributed over time, with the occurrence rate 
of 0.5 per unit time. One unit time corresponds to 200 
samples of discrete time series. The generated artifacts were 
scaled and added to the simulated clean EEG to provide the 
primary signal (measured corrupted signal). 

In terms of the unknown passage dynamics, we used a 
nonlinear function to simulate it as the general case. The 
simulated artifacts were added to the simulated EEG in a 
nonlinear way to provide the simulated primary signal as 

                    ( ) ( ) ( ( ))x t EEG t EOG tαξ= +                        (16) 

where α is a scaling factor, and ξ is the nonlinear transfer, 
which was chosen to be of the form [19] 

      
2 3( ( )) ( ) ( ) ( )EOG t EOG t EOG t EOG tξ = + +          (17) 

The simulated signals used in this simulation study are 
shown in Fig. 5, in which the scaling factor α is selected as 
0.5. 

B. Simulation Results 

For adaptive filtering method, there are two parameters to 
be determined, namely the filter length M and the forgetting 
factor λ. Considering the performance, these two parameters 
were selected to be 3 and 0.9999 respectively, according to 
[13]. The noise cancellation result is shown in Fig. 6. The 
error is defined as the difference between the clean EEG and 
the estimated EEG, as is the same for other simulations. 

For ADALINE method, the total number of inputs to the 
network is chosen to be 4, including the current reference 
EOG artifact and the previous ones. Simulation tests 
conclude that more inputs do not improve the noise 
cancellation performance. The result for ADALINE is shown 
in Fig. 7. It can be clearly seen that the errors for both 
methods are still relatively remarkable, since the adaptive 
filtering method and the ADALINE network are theoretically 
good choices for only linear problems. 

For the ANFIS architecture as shown in Fig. 8, we select 
the number of inputs as 2 and for each input 3 membership 
functions, according to [17], which results in 9 fuzzy rules. 
The generalized bell membership function is used for 
training in this simulation. The result of noise removal using 
ANFIS is shown in Fig. 9. The denoising performance is 
clearly better than those given by the other two methods, 
since ANFIS is inherently a universal approximator and thus 
is suitable as a nonlinear filter. 

From visual inspection, we have been able to conclude 
that ANFIS wins over the other two methods (adaptive 
filtering and ADALINE) in terms of denoising performance. 
In order to conduct a comprehensive and quantitative 
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comparative analysis, SNR, MSE and PSD plot are used as 
performance indexes. SNR is defined as: 
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Fig. 6. Simulation result by adaptive filtering 
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Fig. 7. Simulation result by ADALINE 

 
Fig. 8. Structure of ANFIS used in the simulations 
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Fig. 9. Simulation result by ANFIS 
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10 2

( )
10log ( )

( )
eeg

eeg eeg

E
SNR

S E
=

−



                (18) 

where Eeeg is the estimated EEG signal and Seeg is the 
standard EEG signal. The MSE is calculated using the 
following formula: 

2( )

( )

error
MSE

length error
=                            (19) 

where  

                                  error = Seeg - Eeeg                        (20) 

Following the above two index definitions, the corrupted 
EEG signal has an SNR of 1.2425 and an MSE of 0.0294. 
The performance analysis for artifact removal using various 
methods is tabulated in Table 1. It is evident from the results 
that in this case ANFIS yields the best performance, while 
ADALINE has a slightly stronger denoising capability than 
adaptive filtering. 

Fig. 10 gives the power spectral density (PSD) plots of 
various techniques applied to remove EOG artifacts, which 
is used to show the information about frequency content of 
the signal and determine the nearness of the extracted signal 
towards the standard signal. It is clear that ANFIS extracts 
EEG signal from the primary signal better than adaptive 
filtering and ADALINE. To conclude, since the dynamics of 
the channel between EOG source and the primary signal is 
in fact nonlinear, ANFIS would be the most suitable for the 
ocular artifact removal application. 

TABLE I.  PERFORMANCE ANALYSIS FOR VARIOUS METHODS 

Methods SNR (dB) MSE 

Adaptive filtering 6.1543 0.0034 

ADALINE 7.2116 0.0025 

ANFIS 15.8067 2.6573×10-4 
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Fig. 10. PSD plots using various techniques 

C. Time Delay 

It should be noted that the unknown passage between the 
reference noise and the primary EEG signal is estimated by 
a nonlinear function without any time delay in our previous 
simulations, which thus makes ANFIS with only one input 
may produce the best performance with nearly no error. In 
practice, always it takes time for the artifact signal to reach 
the EEG electrodes on the scalp from its origin, leading to a 
delay between the artifact generation time and the time it 
contaminates the EEG signal. Therefore, ANFIS with 
multiple inputs that contain current and previous 
information achieved by using TDL may yield better results 
in this case. 

However, the effect of time delay has not been mentioned 
in most related research works. In order to show the effect 
of time delay, a delay of 10 samples was intentionally added 
to the nonlinear function that we have used and we used 
ANFIS with only one input to denoise the signal with time 
delay. The simulated signal with time delay is shown in Fig. 
11 and the result is shown in Fig. 12. When we used ANFIS 
with two inputs (no other modification), the performance 
was improved, as shown in Fig. 13. Besides, more inputs  
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Fig. 11. Simulated signals with a time delay of 10 samples 
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Fig. 12. Result by ANFIS with 1 input for signals with time delay 
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Fig. 13. Result by ANFIS with 2 inputs for signals with time delay 

will also result in slight improvement in this simulation at 
the cost of a longer convergence time. 

D. Real Signal Tests 

In this section, real signals are used to replace the 
simulated signals that were used in previous simulation 
studies. The data with 600 Hz sampling frequency were 
measured during the SSVEP experiment of one subject in 
our laboratory. The EEG signal and the EOG signal were 
measured simultaneously. The real data tests actually 
contain two parts. 

For the first part, we select a length of the standard EEG 
signal (without ocular artifacts) and EOG signal, both of 
which has 1800 samples corresponding to 3s in time length. 
The signals are first normalized and then combined together 
to obtain the corrupted EEG signal via the nonlinear function 
(both with and without time delay) that we have mentioned 
before. The real signals are shown in Fig. 14 and Fig. 15. 
Two performance indexes (SNR/MSE) of the corrupted EEG 
signals in two cases are 1.1304/0.0170 and 1.2257/0.0170,  
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Fig. 14. Real signals without time delay 
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Fig. 15. Real signals with time delay 
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Fig. 16. Result by ANFIS for real signals without time delay 

 

TABLE II.  PERFORMANCE ANALYSIS OF ANFIS FOR NON-DELAY CASE 

ANFIS Setup Denoising Performance 

Input 
number 

MF SNR (dB) MSE 

1 2 gbellmfs 10.6009 3.0767×10-4 
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Fig. 17. Result by ANFIS for real signals with time delay 

TABLE III.  PERFORMANCE ANALYSIS OF ANFIS FOR DELAY CASE 

ANFIS Setup Denoising Performance 

Input 
number 

MF SNR (dB) MSE 

2 2 gaussmfs 7.6201 5.4642×10-4 
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Fig. 18. Result by ANFIS for real field measured signals 

respectively. For the case without time delay, ANFIS with 
one input described by two generalized bell membership 
functions yields the best performance and the results are 
shown in Fig. 16. The quantitative result is listed in Table 2. 
For the case with time, the results by ANFIS with two 
inputs described by two Gaussian membership functions are 
shown in Fig. 17. The quantitative result is listed in Table 3. 
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In both cases, EOG artifacts cannot be entirely removed as 
was achieved in the cases where simulated signals were 
used, since real signals are always interfered by the 
environment and the electrodes and cannot be completely 
uncorrelated (EOG signals are also contaminated by EEG 
signals to some extent). 

For the second part, we use a length of synchronously 
field measured EEG signal (inherently with artifacts) and 
EOG signal, both of which has 9000 samples corresponding 
to 15s in time length. The signals are first downsampled to 
1000 samples to lessen the computational burden. Here the 
unknown dynamics between the EOG noise source and the 
measured EEG signal is naturally included in the signals, so 
we do not need to use a certain function to approximate it as 
what we have done before. Besides, we also do not have 
such a standard (clean) EEG as a reference to evaluate the 
denoising performance by ANFIS that we can only conduct 
visual inspection, which is the most practical situation. The 
real signals and the results are shown in Fig. 18. 

IV. CONCLUSION 

EEG signals are usually contaminated by various 
artifacts, especially the ocular (EOG) artifacts, which cannot 
be filtered out effectively by conventional filtering methods 
due to the spectrum overlap with the desired signal. This 
research investigates how adaptive noise cancellation 
(ANC) based on ANFIS works, for EOG artifacts removal 
from the EEG signal. 

The signals used in our first simulation are simulated by a 
modified autoregressive process and the unknown channel 
between the reference noise signal (ocular artifact source) 
and the primary (measured) EEG signal is approximated by 
a nonlinear function. The simulation result indicates that 
ANC using ANFIS yields the best performance while 
adaptive filtering and ADALINE are found to be not that 
suitable for the nonlinear task. When time delay exists, it is 
clear that ANFIS with more than only one input 
implemented by using a TDL will yield better results. 

For real data tests, the performance of ANFIS is relatively 
sensitive to the number of inputs and membership functions, 
and Gaussian and generalized bell membership functions are 
usually more suitable than the others. Given a proper 
selection of those factors, it is proved that ANFIS can 
provide a good performance. On the whole, considering the 
operation time and performance, ANFIS is rather suitable 
for EOG artifact removal from the EEG signal. Besides, as a 
universal approximator, ANFIS can be a promising 
approach for not only removing ocular artifacts from EEG, 
but other noise cancellation applications as well. 
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